Etude Des Possibilites D'exploitation Des

Total Page:16

File Type:pdf, Size:1020Kb

Etude Des Possibilites D'exploitation Des UNIVERSITE D’ANTANANARIVO ------------------------------------------------- DOMAINE : SCIENCES ET TECHNOLOGIES ------------------------------------------------ ECOLE DOCTORALE : SCIENCES DE LA VIE ET DE L’ENVIRONNEMENT THESE DE DOCTORAT Spécialité : Biodiversité et Santé (Biochimie) ETUDE DES POSSIBILITES D’EXPLOITATION DES PROPRIETES TOXIQUES DES GRAINES DE Dodonaea madagascariensis RADLK. (SAPINDACEAE) DANS LE CONTRÔLE DES ORGANISMES NUISIBLES Présentée et soutenue publiquement par : RAZANATSEHENO Mihajasoa Stella Titulaire du DEA de Biochimie Appliquée aux Sciences Médicales Le 12 Décembre 2017 Devant le jury composé de : Président : Pr. RALAMBORANTO Laurence Rapporteur interne : Pr. RAZANAMPARANY Julia Louisette Rapporteur externe : Pr. ANDRIANASOLO Radonirina Lazasoa Examinateurs : Pr. RAKOTO Danielle Aurore Doll : Pr. RANDRIANARIVO Hanitra Ranjàna Directeur de thèse : Pr JEANNODA Victor Louis DEDICACE A mes parents, que ce travail soit un témoignage de ma reconnaissance pour votre affection et vos sacrifices. Je vous adresse ma profonde gratitude pour votre dévouement, vos encouragements et votre patience tout au long de mes études. A mon frère, je lui souhaite joie et réussite dans tout ce qu’il entreprendra. A toute ma famille. A tous mes collègues pour l’entraide qui n’a pas été vaine. A tous ceux qui me sont chers… Je remercie le plus Dieu qui m’a donné la force, la santé et le courage pour la réalisation de ce mémoire. TABLE DES MATIERES Pages TABLE DES MATIERES ........................................................................................................... i REMERCIEMENTS ................................................................................................................... vi GLOSSAIRE ................................................................................................................................ viii LISTE DES ABREVIATIONS .................................................................................................... x LISTE DES TABLEAUX ............................................................................................................ xii LISTE DES FIGURES ............................................................................................................... xiii INTRODUCTION GENERALE ................................................................................................. 1 CHAPITRE 1 : SYNTHESE BIBLIOGRAPHIQUE......................................................... 4 1.1. UTILISATIONS DES PHYTOTOXINES .................................................................... 4 1.1.1. Utilisations empiriques des phytotoxines .............................................................. 4 1.1.2. Les phytotoxines dans l’exploration, l’élucidation de phénomènes biologiques 5 1.1.3. Les plantes toxiques pouvant etre exploitées comme altérnatives aux pesticides de synthèse ................................................................................................................ 6 1.1.4. Les phytotoxines utilisées dans le traitement de diverses pathologies ................ 8 1.2. DONNEES SUR LES ESPECES DE Dodonaea .......................................................... 9 1.2.1. Description botanique et répartition géographique ............................................. 9 1.2.2. Importance des Dodonaea ....................................................................................... 10 1.2.2.1. Importance économique et écologique ............................................................... 10 1.2.2.2. Usages thérapeutiques ........................................................................................ 10 1.2.2.3. Propriétes pharmacologiques ............................................................................. 13 1.2.2.4. Propriétés biologiques ........................................................................................ 13 1.2.2.4.1. Propriétés insecticides ................................................................................... 13 1.2.2.4.2. Pouvoir antimicrobien ................................................................................................... 14 1.2.2.4.3. Cytotoxicité envers les lignées cellulaires cancéreuses ....................................... 14 1.2.2.4.4. Activité allélopathique ................................................................................................... 15 1.2.2.4.5. Propriétés molluscicides ............................................................................................... 15 1.2.2.4.6. Pouvoir hémolytique ...................................................................................................... 15 1.2.2.4.7. Autres propriétés toxiques ............................................................................................ 15 1.2.3. Travaux phytochimiques antérieurs relatifs au genre Dodonaea........................ 15 1.3. GENERALITES SUR LES SAPONOSIDES .............................................................. 17 1.3.1. Définition .................................................................................................................. 17 1.3.2. Structure des saponosides ....................................................................................... 17 1.3.2.1. Structure des génines .......................................................................................... 17 1.3.2.1.1. Saponosides à génines stéroïdiques ............................................................... 18 1.3.2.1.2. Saponosides à génines triterpéniques ............................................................ 18 1.3.2.1.3. Les alcaloïdes stéroïdiques ............................................................................ 18 1.3.2.2. Structure de l’aglycone ....................................................................................... 18 1.3.3. Propriétes des saponines et leurs utilisations ........................................................ 18 i Pages CHAPITRE 2 : ETUDE CHIMIQUE ................................................................................ 20 2.1. INTRODUCTION .......................................................................................................... 20 2.2. MATERIELS ET METHODES .................................................................................... 20 2.2.1. La plante utilisée ...................................................................................................... 20 2.2.1.1. Position systématique ......................................................................................... 20 2.2.1.2. Description botanique ........................................................................................ 20 2.2.1.3. Récolte et préparation du matériel végétal ......................................................... 22 2.2.1.4. Utilisations empiriques ....................................................................................... 22 2.2.2. Les consommables de laboratoire .......................................................................... 22 2.2.3. Méthode d’extraction .............................................................................................. 23 2.2.3.1. Préparation des extraits ...................................................................................... 23 2.2.3.2. Extraction des saponosides ................................................................................. 23 2.2.4. Méthodes de purification ........................................................................................ 23 2.2.4.1. Fractionnement par le n-butanol (extraction liquide-liquide) ............................ 23 2.2.4.2. Chromatographie sur colonne ............................................................................ 24 2.2.4.2.1. Chromatographie d’exclusion sur Sephadex LH-20 ..................................... 24 2.2.4.2.2. Chromatographie sur colonne de silice ......................................................... 24 2.2.5. Calcul du rendement d’extraction/ purification ................................................... 25 2.2.6. Méthode analytique : Chromatographie sur Couche Mince………………….... 25 2.2.7. Réactions de détection des familles chimiques ...................................................... 25 2.2.7.1. Détection des anthraquinones : tests de Borntrager ........................................... 25 2.2.7.2. Détection des triterpènes, stéroïdes et stérols insaturés ..................................... 26 2.2.7.2.1. Test de Lieberman-burchard .......................................................................... 26 2.2.7.2.2. Test de Salkowski ........................................................................................... 26 2.2.7.3. Détection des composés phénoliques : flavonoïdes, leucoanthocyanes, tanins et polyphénols .................................................................................................................. 26 2.2.7.3.1. Détection des flavonoïdes : test de Willstatter ............................................... 26 2.2.7.3.2. Détection des leucoanthocyanes : test de Bate-Smith ................................... 27 2.2.7.3.3. Détection des tanins et des polyphénols ........................................................ 27 2.2.7.3.3.1. Test à la gélatine ............................................................................................................................................. 27 2.2.7.3.3.2. Test à la gélatine salée .................................................................................................................................
Recommended publications
  • Ngoka, Thesis Final 2012
    RELATIVE ABUNDANCE OF THE WILD SILKMOTH, Argema mimosae BOISDUVAL ON DIFFERENT HOST PLANTS AND HOST SELECTION BEHAVIOUR OF PARASITOIDS, AT ARABUKO SOKOKE FOREST BY Boniface M. Ngoka (M.Sc.) I84/15320/05 Department of Zoological Sciences A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE SCHOOL OF PURE AND APPLIED SCIENCES OF KENYATTA UNIVERSITY NOVEMBER, 2012 ii DECLARATION This thesis is my original work and has not been presented for a degree in any other university or any other award. Signature----------------------------------------------Date--------------------------------- SUPERVISORS We confirm that the thesis is submitted with our approval as supervisors Professor Jones M. Mueke Department of Zoological Sciences, School of Pure and Applied Sciences Kenyatta University Nairobi, Kenya Signature----------------------------------------------Date--------------------------------- Dr. Esther N. Kioko Zoology Department National Museums of Kenya Nairobi, Kenya Signature----------------------------------------------Date--------------------------------- Professor Suresh K. Raina International Center of Insect Physiology and Ecology Commercial Insects Programme Nairobi, Kenya Signature----------------------------------------------Date--------------------------------- iii DEDICATION This thesis is dedicated to my family, parents, brothers and sisters for their perseverance, love and understanding which made this task possible. iv ACKNOWLEDGEMENTS My sincere thanks are due to Prof. Suresh K. Raina, Senior icipe supervisor and Commercial Insects Programme Leader, whose contribution ranged from useful suggestions and discussions throughout the study period. My sincere appreciations are also due to Dr. Esther N. Kioko, icipe immediate supervisor who provided me with wealth of literature and made many suggestions that shaped the research methodologies. Her support and keen supervision throughout the study period gave me a lot of inspiration. I would like to thank Prof.
    [Show full text]
  • Silk Moths in Madagascar: a Review of the Biology, Uses and Challenges
    B A S E Biotechnol. Agron. Soc. Environ. 2012 16(2), 269-276 Focus on: Silk moths in Madagascar: A review of the biology, uses, and challenges related to Borocera cajani (Vinson, 1863) (Lepidoptera: Lasiocampidae) Tsiresy M. Razafimanantsoa (1), Gabrielle Rajoelison (2), Bruno Ramamonjisoa (2), Noromalala Raminosoa (1), Marc Poncelet (3), Jan Bogaert (4), Éric Haubruge (5), François J. Verheggen (5) (1) Université de Antananarivo. Faculté des Sciences. Département de Biologie animale, Écologie et Conservation. BP 906. Antananarivo (Madagascar). (2) Université de Antananarivo. École supérieure des Sciences agronomiques. Département des Eaux et Forêts. BP 175. Antananarivo 101 (Madagascar). (3) Univ. Liège. Département de Sociologie du Développement. Boulevard du Rectorat, 7. B-4000 Liège 1 (Belgique). (4) Université libre de Bruxelles. Service d’Écologie du Paysage et Systèmes de Production végétale. Avenue Franklin Roosevelt, 50. B-1050 Bruxelles (Belgique). (5) Univ. Liege - Gembloux Agro-Bio Tech. Unité d’Entomologie fonctionnelle et évolutive. Passage des Déportés, 2. B-5030 Gembloux (Belgique). E-mail: [email protected] Received on December 3, 2010; accepted on December 8, 2011. Borocera cajani or “Landibe” (vernacular name) is the wild silk moth that is currently used to produce silk textiles in Madagascar. This species is endemic to Madagascar, and is distributed throughout the island, colonizing the Uapaca bojeri or “Tapia” forest of the central highlands. The forest provides food in the form of plants for B. cajani, including U. bojeri leaves. The species secretes silk at the onset of pupation and for making cocoons. Borocera cajani and its natural habitat are threatened by human destruction, such as bush fires, firewood collection, charcoal production, and the over-harvesting of their cocoons.
    [Show full text]
  • F I N a L CS1 31012007.Indd
    MADAGASCAR CONSERVATION & DEVELOPMENT VOLUME 1 | ISSUE 1 — DECEMBER 2006 PAGE 34 REPORT ON A FEASIBILITY STUDY Indigenous silk moth farming as a means to support Ranomafana National Park Tsiresy RazafimanantosoaI, Olga R. RavoahangimalalaI, Correspondence: Catherine L. CraigII Catherine L. Craig 221 Lincoln Road Lincoln, MA 01773 Telephone: +31 781 2599184 E-mail: [email protected] ABSTRACT uct may be wild silk. Wild silk can be sustainably harvested in We envisage a world where the rural poor can derive a livelihood remote areas and easily transported to commercial centers. To from protecting forests instead of cutting them down; where determine if wild silk is a potential means of income generation development planners understand that habitat health is the key- for people living in areas of Madagascar where silk has not been stone for human health and survival, and where conservation traditionally produced, we gathered three types of information: biologists understand that long - term solutions to biodiversity 1. The diversity of silk producing larvae in the Eastern Forest loss must be built around social programs which enable local Corridor and specifically in Ranomafana people to thrive. Our vision, however, can only be achieved 2. The physical properties of larval silk and their estimated com- when scientists express the role of biodiversity conservation mercial value in economic terms (Baird and Dearden 2003), and development 3. How to apply our data in order to select sites where wild silk planners understand environmental complexity and its role in production could have a maximum economic and conservation poverty alleviation. Our long - term goal is to develop a gener- effect alized approach to biodiversity conservation that will enable We emphasize that the work reported here is preliminary scientists and development professionals to identify, plan and and that we are working to expand our database for silkworm initiate sustainable, small - scale businesses in ecologically larvae and potential projects sites.
    [Show full text]
  • Savanna Woodland, Fire, Protein and Silk in Highland Madagascar
    J. Ethnobiol. 5(2):109-122 Winter 1985 SAVANNA WOODLAND, FIRE, PROTEIN AND SILK IN HIGHLAND MADAGASCAR DANIEL W. GADE Department of Geography University of Vermont Burlington, VT 05405 ABSTRACT.-Anthropogenic fire above 900 m elevation on Madagascar has created several discrete zones of savanna woodland dominated by tapia (Uapaca bojen). This tree, preadapted to surviving periodic burning, provides edible fruit, firewood and medicinal bark, but it is most important as a host plant to several useful lepidop­ teran insects. Borocera madagascatiensis has been a source of silk made from its wild cocoons in tapia groves. Use of this fabric, still made on hand looms, is largely confined to shrouds for the elaborate reburial ceremony of the Merina and Betsileo ethnic groups. In addition, the pupae of Borocera and Tagoropsis are gathered and eaten by rural folk. Caterpillars that live on tapia leaves belonging to three different genera are also consumed, and the adult male of still another species is avidly sought for sale to butterfly collectors. A major shift in burning practice, fuelwood demand, mortuary ritual, or dietary custom could spell the end of this man/plant/animal symbiosis. INTRODUCTION On almost every continent and climatic zone, fires set by man have destroyed some plant communities while creating others. Periodic burning is now accepted as necessary to sustain certain ecosystems, and the only debate is how many of the fires were caused by lightning and how many by human agency. These "pyrophytic deformations" as Carl Sauer (1956:55) once called them, go far back enough in time to be viewed as part of the natural order.
    [Show full text]
  • Geo-Eco-Trop., 2014, 38, 2 : 339-372
    Geo-Eco-Trop., 2014, 38, 2 : 339-372 Human consumption of Lepidoptera in Africa : an updated chronological list of references (370 quoted!) with their ethnozoological analysis La consommation humaine de Lépidoptères en Afrique : une liste chronologique actualisée des références (370 citées !) avec leur analyse ethnozoologique François MALAISSE1 & Paul LATHAM2 Résumé : La consommation humaine d’insectes ou “lépideroptérophagie” connaît un intérêt croissant. Dans le présent article 370 références abordant ce thème pour l’Afrique sont citées. Des accès à cette information par ordre chronologique ainsi que par ordre alphabétique des noms d’auteurs sont fournies. Une liste systématique des noms scientifiques des espèces consommées en Afrique est encore établie. L’importance de l’information disponible pour divers groupes ethnolinguistiques est signalée. L’évolution des thèmes approchés est analysée et commentée. Mots clés: Consommation, Lépidoptères, Afrique, Campéophagie. Abstract : Human consumption of insects or « lepidopterophagy » is becoming increasingly important. In the present paper 370 references dealing with this subject in Africa are quoted. Access to this information is provided both, by chronological and alphabetic order of authors. A systematic list of scientific names of edible Lepidoptera in Africa is also provided. The importance of the information available for various ethnolinguidstic groups is presented. The evolution of issues covered is analyzed and discussed. Keywords : Consumption, Lepidoptera, Africa, Campeophagy. INTRODUCTION The utilization of insects as a sustainable and secure source of animal-based food for the human diet has continued to increase in popularity in recent years (SHOCKLEY & DOSSEY, 2014). In particular, human consumption of Lepidoptera receives an increasing interest (MALAISSE et al., 2015). Several terms have been suggested to describe this consumption, notably regarding caterpillars, “campeophagy” (MALAISSE, 2002, 2004; MALAISSE et al.
    [Show full text]
  • Cultural Significance of Lepidoptera in Sub-Saharan Africa Arnold Van Huis
    van Huis Journal of Ethnobiology and Ethnomedicine (2019) 15:26 https://doi.org/10.1186/s13002-019-0306-3 RESEARCH Open Access Cultural significance of Lepidoptera in sub-Saharan Africa Arnold van Huis Abstract Background: The taxon Lepidoptera is one of the most widespread and recognisable insect orders with 160,000 species worldwide and with more than 20,000 species in Africa. Lepidoptera have a complete metamorphosis and the adults (butterflies and moths) are quite different from the larvae (caterpillars). The purpose of the study was to make an overview of how butterflies/moths and caterpillars are utilised, perceived and experienced in daily life across sub-Saharan Africa. Method: Ethno-entomological information on Lepidoptera in sub-Saharan Africa was collected by (1) interviews with more than 300 people from about 120 ethnic groups in 27 countries in the region; and (2) library studies in Africa, London, Paris and Leiden. Results: Often the interviewees indicated that people from his or her family or ethnic group did not know that caterpillars turn into butterflies and moths (metamorphosis). When known, metamorphosis may be used as a symbol for transformation, such as in female puberty or in literature regarding societal change. Vernacular names of the butterfly/moth in the Muslim world relate to religion or religious leaders. The names of the caterpillars often refer to the host plant or to their characteristics or appearance. Close to 100 caterpillar species are consumed as food. Wild silkworm species, such as Borocera spp. in Madagascar and Anaphe species in the rest of Africa, provide expensive textiles. Bagworms (Psychidae) are sometimes used as medicine.
    [Show full text]
  • Edible Insects As Minilivestock
    B io div e r s ity and C o ns e rv atio n 4, 306-32I ( 1 995 ) Edible insects as minilivestock GENE R. DEFOLIART Department of Entomology, 1630 Linden Drive, University of Wisconsin, Madison, WI 53706, USA Received 30 April 1994; revised and accepted 13 October 1994 Many species of insects (probably 1000 or more) have served as traditional foods among indigenous peoples, especially in warmer climes, and the insects have played an important role in the history of human nutrition. As part of the hunter-gatherer style of life, the main criteria for selection of these traditional species appears to be medium-to-large size and easy availability, i.e., abundance, as noted by Dufour and others. Thus it is not surprising that many insects considered as crop pests in modern agriculture have served as important food sources. Locusts and grasshoppers, which often occur in swarms, are good examples, and these insects have been included in the diets of almost every culture with any history of food-insect use. Keywords'. edible insects; entomophagy; insects as food: microlivestock; minilivestock Introduction: the nutritive value ofinsects The insects (Class Insecta) are high in protein, especially in the dried form in which they are frequently stored or sold in the village markets of developing countries; some are high in fat (and thus, energy) and many are rich sources of important vitamins and minerals. DeFoliart (1992) provided a brief general overview of the nutritional quality of edible insects. Studies that provide nutrient analyses for a number of species in specific countries include Quin (1959) in South Africa, Oliveira and colleagues (1976) in Angola, Malaisse and Parent (1980) inZaire, Gope and Prasad (1983) in India, Sungpuag and Puwastien (1983) in Thailand, Conconi and colleagues (1984) and Ramos-Elorduy and Pino (1989, 1990) in Mexico.
    [Show full text]
  • Insects As Food in Sub-Saharan Africa
    Insect Sci. Applic. Vol. 23, No. 3, pp. 163–185,Insects 2003 as food in Africa 0191-9040/03 $3.00 + 0.00 163 Printed in Kenya. All rights reserved © 2003 ICIPE REVIEW ARTICLE INSECTS AS FOOD IN SUB-SAHARAN AFRICA A. VAN HUIS Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, the Netherlands. E-mail: [email protected] (Accepted 14 August 2003) Abstract—Data on insects as food in sub-Saharan Africa were collected by reviewing the literature and conducting interviews in a number of African countries. A list of about 250 edible insect species from Africa was compiled. Of these, 78 percent are Lepidoptera (30%), Orthoptera (29%) and Coleoptera (19%), and 22 percent Isoptera, Homoptera, Hymenoptera, Heteroptera, Diptera and Odonota. Insects are rich in protein, vitamins and minerals, and a good source of iron and B-vitamins. Examples of insects being toxic are given, but often traditional methods are used to remove the poison. Whether or not insects are eaten depends not only on taste and nutritional value, but also on customs, ethnic preferences or prohibitions. The harvesting of insects is often done by women. The way of collecting depends on insects’ behaviour. For example, inactivity at low temperatures enables easy catching of locusts and grasshoppers in the morning. Night flyers (termites, some grasshoppers) can be lured into traps by light and some insects like palm weevils can be attracted to artificially created breeding sites. Some species (crickets, cicadas) can be located by the sound they make. A number of tools are used to facilitate capturing such as glue, sticks, nets and baskets.
    [Show full text]
  • Lepidoptera. Robert Lucas
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Lepidoptera. Bearbeitet vou Dr. Robert Lucas in Reinickendorf. Al)l)ott, P. W. Rare Noctuae in the Isle of Wight. Entomologist 1896, p. 335. Arkle, J. (1). Apple-trees and wingless moths. Entomologist 1896, p. 193. Bezieht sich auf Mitchell's Artikel. — (2). Butterflies in the ehester District. Entomologist 1896, p. 195. — (3). Notes on the Season from the Chester District. t. c, p.215. Aurivillius, C. (1). Diagnosen neuer Lepidopteren aus dem Congo- Gebiete. OfversigtVet. Akad.Förhandlingar, 1896 p. 431 —^436. Behandelt werden: Mycalesis golo Aur. 9, Neptis lermanni n. sp., Euphaedra eberti n. S[)., Euryphene aurora n. sp., Cymothoe eris n. sp., Larinopoda hermansi n. sp. — (2). Beiträge zur Kenntnis der Insektenfauna von Kameran. 2. Tagfalter, 5. Farn. Hesperiidae. Entom. Tidskr. vol. XVII p. 279—292. Folgt der von Holland gegebenen Anordnung und behandelt No. 330—391 der Insektenfauna von Kamerun. Neu sind: Celaenor- rhinus intermixtus, Osmodes costatus, Ceratrichia fasciata und Caenides hidaroides. Sämmtliche 4 neue Arten sind abgebildet, ferner noch Caenides luehderi Plötz 9. Näher besprochen werden: Celaenorrhinus galenus Fabr., C. homeyeri Plötz, C. meditrina Hew., Osmudes adosus Mab., Ceratrichia flava, Andronymus leander Ploetz, Ortholexis melichroptera Karsch, Caenides luehderi Plötz, Rhopalo- campta forestan Cramer (Raupe) u. Rh. iphis Drury (Raupe). Zum Schluss eine Uebersicht über die Zahl der bis jetzt bekannten afrik. Tagfalter-Arten. Das kleine Gebiet zwischen dem Kamerun- Gebirge und dem N'Dian-Flusse: 392 Arten. — Das grosse Gebiet S.-Afrika's südl. vom Wendekreis des Steinbocks: 387 (nach Trimen). — Madagaskar: 255 (Mabille). — Sierra Leone: 211 (Schaus u.
    [Show full text]
  • Chapter 14. Other Countries in Southern Africa
    Chapter 14 Chapter 14 OTHER COUNTRIES IN SOUTHERN AFRICA The countries included in this chapter are Botswana, Madagascar, Mauritius, Mozambique and Namibia. Chapter 11 provides a Regional Taxonomic Inventory. BOTSWANA Silberbauer (1972), provides a useful discussion of the history and relationships of the Bushmen (pp. 271-273), and discusses their use of edible insects (pp. 284-287, 302). Animal products supplement the vegetable-based diet of the G/wi Bushmen. Silberbauer states: The meat of antelope and springhares (Pedestes caffer) is by far the most important of the animal products eaten, but the meat of other mammals and of birds and reptiles, the eggs of birds, and a number of edible insects are also regularly included in the diet, and in their seasons of availability, assume considerable temporary importance. In the second half of summer an unidentified species of hairless caterpillar, three inches long in its full form, is enthusiastically sought, and large numbers are eaten in the occasional and brief periods when it is superabundant. Its distribution is sporadic and localized, but a report of a good swarm brings a band hastening across country to camp in the vicinity for five or six days, during which the caterpillars form a major part of the diet. When termites swarm in the wet season they are caught in large numbers, but this is not a precisely predictable event and it is a stroke of luck for a band to be camped near enough to a swarming nest to be able to take advantage of the occasion. Termites provide one or two big meals a year, on average, and their catching provides a great deal of fun and excitement.
    [Show full text]
  • Ecosystem Services Provided by the Little Things That Run the World
    DOI: 10.5772/intechopen.74847 ProvisionalChapter chapter 13 Ecosystem Services Provided by the Little Things That Run the World Olga Maria Correia Chitas Ameixa, Ameixa, António Onofre Soares,Onofre Soares, Amadeu M.V.M. SoaresM.V.M. Soares and andAna AnaI. Lillebø I. Lillebø Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.74847 Abstract Highest extinction risk and consequently biodiversity loss are predicted to occur in inver- tebrates, specifically insects, and these declines are expected to cascade onto ecosystem functioning and human well-being. Although this knowledge is intrinsically present in more traditional communities, in more urban environments, mapping ecosystem ser- vices can be an important tool to raise people’s awareness on the importance of pre- serving insect diversity. After an extensive revision of the available literature, we used a rule-based approach to assess the provisioning, regulating and maintenance, and cul- tural services delivered by insects. We followed the Common International Classification of Ecosystem Services (CICES) and identified several potential indicators that may help underpin the mapping and valuation of the services delivered by insects. From our search, we extracted a total of 73 indicators, divided as 17 Provisional indicators, 27 Regulation and Maintenance indicators, and 29 Cultural indicators. We concluded that insects are providers of services in the three major ‘Sections’ of ecosystem services defined by CICES. Despite the lack of recognition of provisioning and cultural services, the indicators provided may help to raise awareness on the importance of the little things the run the world, in order to preserve traditional and technological uses of insects and their services.
    [Show full text]
  • Influence De La Plante Hôte Sur Le Développement Larvaire De Borocera Cajani (Lepidoptera : Lasiocampidae)
    3 — Influence de la plante hôte sur le développement larvaire de Borocera cajani (Lepidoptera : Lasiocampidae) Tsiresy M. Razafimanantsoa, François malaisse, Noromalala Raminosoa, Olivia L. RakotondRasoa, Gabrielle L. Rajoelison, Misha R. RabeaRisoa, Bruno S. Ramamonjisoa, Marc Poncelet, Jan bogaeRt, éric HaubRuge, François J. VeRHeggen Borocera cajani Vinson (Lepidoptera: Lasiocampidae) est un papillon séricigène endé- mique de Madagascar dont la soie est utilisée dans le domaine textile. Ce ver à soie est polyphage et colonise la forêt des hautes plaines centrales constituée principalement de tapia (Uapaca bojeri). Au sein de ces forêts, les chenilles de B. cajani sont couramment observées sur deux plantes hôtes : le tapia et le voafotsy (Aphloia theiformis). Dans cette étude, nous avons évalué des paramètres de différents stades (taux de survie, durée des stades, poids et taille, fécondité des adultes, etc.) de B. cajani élevé sur ces deux plantes hôtes. Nous avons observé un taux de survie plus élevé de 30 % sur U. bojeri. La durée du développement larvaire et de la nymphose est plus courte pour les individus élevés sur U. bojeri (64,8 ± 1,5 jours) que pour ceux élevés sur A. theiformis (87,4 ± 2,0 jours). La taille et le poids des cocons sont également plus importants lorsque les femelles sont élevées sur U. bojeri. Cette dernière plante se révèle être la plus appropriée pour l’élevage de B. cajani et devrait être privilégiée. Host plant influence on the larval development ofBorocera cajani (Lepidoptera: Lasiocampidae)2 Borocera cajani Vinson (Lepidoptera: Lasiocampidae) is a silk moth endemic to Madagascar that is currently used to produce silk textiles.
    [Show full text]