Liver Fluke in Irish Sheep
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Downloaded from Genbank
Bargues et al. Parasites Vectors (2020) 13:171 https://doi.org/10.1186/s13071-020-04045-x Parasites & Vectors RESEARCH Open Access Genetic uniformity, geographical spread and anthropogenic habitat modifcations of lymnaeid vectors found in a One Health initiative in the highest human fascioliasis hyperendemic of the Bolivian Altiplano M. Dolores Bargues1*, Patricio Artigas1, Rene Angles2, David Osca1, Pamela Duran1, Paola Buchon3, R. Karina Gonzales‑Pomar3, Julio Pinto‑Mendieta3 and Santiago Mas‑Coma1 Abstract Background: Fascioliasis is a snail‑borne zoonotic trematodiasis emerging due to climate changes, anthropogenic environment modifcations, and livestock movements. Many areas where Fasciola hepatica is endemic in humans have been described in Latin America altitude areas. Highest prevalences and intensities were reported from four provinces of the northern Bolivian Altiplano, where preventive chemotherapy is ongoing. New strategies are now incorporated to decrease infection/re‑infection risk, assessment of human infection sources to enable efcient prevention measures, and additionally a One Health initiative in a selected zone. Subsequent extension of these pilot interventions to the remaining Altiplano is key. Methods: To verify reproducibility throughout, 133 specimens from 25 lymnaeid populations representative of the whole Altiplano, and 11 used for population dynamics studies, were analyzed by rDNA ITS2 and ITS1 and mtDNA cox1 and 16S sequencing to assess their classifcation, variability and geographical spread. Results: Lymnaeid populations proved to belong to a monomorphic group, Galba truncatula. Only a single cox1 mutation was found in a local population. Two cox1 haplotypes were new. Comparisons of transmission foci data from the 1990’s with those of 2018 demonstrated an endemic area expansion. -
Detection of Galba Truncatula, Fasciola Hepatica And
Aberystwyth University Detection of Galba truncatula, Fasciola hepatica and Calicophoron daubneyi environmental DNA within water sources on pasture land, a future tool for fluke control? Jones, Rhys; Brophy, Peter; Davis, Chelsea; Davies, Teresa; Emberson, Holly; Rees Stevens, Pauline; Williams, Hefin Published in: Parasites & Vectors DOI: 10.1186/s13071-018-2928-z Publication date: 2018 Citation for published version (APA): Jones, R., Brophy, P., Davis, C., Davies, T., Emberson, H., Rees Stevens, P., & Williams, H. (2018). Detection of Galba truncatula, Fasciola hepatica and Calicophoron daubneyi environmental DNA within water sources on pasture land, a future tool for fluke control? Parasites & Vectors, 11(N/A), [342]. https://doi.org/10.1186/s13071- 018-2928-z Document License CC BY General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 09. -
Ribosomal DNA ITS–1 Sequencing of Galba Truncatula (Gastropoda, Lymnaeidae) and Its Potential Impact on Fascioliasis Transmission in Mendoza, Argentina M
Animal Biodiversity and Conservation 29.2 (2006) 191 Ribosomal DNA ITS–1 sequencing of Galba truncatula (Gastropoda, Lymnaeidae) and its potential impact on fascioliasis transmission in Mendoza, Argentina M. D. Bargues, R. L. Mera y Sierra, H. G. Gómez, P. Artigas & S. Mas–Coma Bargues, M. D., Mera y Sierra, R. L., Gómez, H. G., Artigas P. & Mas–Coma, S., 2006. Ribosomal DNA ITS–1 sequencing of Galba truncatula (Gastropoda, Lymnaeidae) and its potential impact on fascioliasis transmission in Mendoza, Argentina. Animal Biodiversity and Conservation, 29.2: 191–194. Abstract Ribosomal DNA ITS–1 sequencing of Galba truncatula (Gastropoda, Lymnaeidae) and its potential impact on fascioliasis transmission in Mendoza, Argentina.— Sequencing of the rDNA ITS–1 proved that the lymnaeid snail species Galba truncatula is present in Argentina and that it belongs to the haplotype HC, the same as that responsible for the fascioliasis transmission in the human hyperendemic area with the highest human prevalences and intensities known, the Northern Bolivian Altiplano. Key words: Galba truncatula, Lymnaeid vectors, Human and animal fascioliasis, Transmission, Mendoza, Argentina. Resumen Secuenciación del ITS–1 del ADN ribosomal de Galba truncatula (Gastropoda, Lymnaeidae) y su impacto potencial en la transmisión de la fascioliasis en Mendoza, Argentina.— La secuenciación del ITS–1 del ADNr demostró que la especie de gasterópodo lymnaeido Galba truncatula se encuentra en Argentina y que pertenece al haplotipo HC, el mismo responsable de la transmisión de la fascioliasis en el área de hiperendemia humana con las mayores prevalencias e intensidades de fascioliasis conocidas, el Altiplano Norte Boliviano. Palabras clave: Galba truncatula, Vectores Lymnaeidae, Fascioliasis humana y animal, Transmisión, Mendoza, Argentina. -
Waterborne Zoonotic Helminthiases Suwannee Nithiuthaia,*, Malinee T
Veterinary Parasitology 126 (2004) 167–193 www.elsevier.com/locate/vetpar Review Waterborne zoonotic helminthiases Suwannee Nithiuthaia,*, Malinee T. Anantaphrutib, Jitra Waikagulb, Alvin Gajadharc aDepartment of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Patumwan, Bangkok 10330, Thailand bDepartment of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Bangkok 10400, Thailand cCentre for Animal Parasitology, Canadian Food Inspection Agency, Saskatoon Laboratory, Saskatoon, Sask., Canada S7N 2R3 Abstract This review deals with waterborne zoonotic helminths, many of which are opportunistic parasites spreading directly from animals to man or man to animals through water that is either ingested or that contains forms capable of skin penetration. Disease severity ranges from being rapidly fatal to low- grade chronic infections that may be asymptomatic for many years. The most significant zoonotic waterborne helminthic diseases are either snail-mediated, copepod-mediated or transmitted by faecal-contaminated water. Snail-mediated helminthiases described here are caused by digenetic trematodes that undergo complex life cycles involving various species of aquatic snails. These diseases include schistosomiasis, cercarial dermatitis, fascioliasis and fasciolopsiasis. The primary copepod-mediated helminthiases are sparganosis, gnathostomiasis and dracunculiasis, and the major faecal-contaminated water helminthiases are cysticercosis, hydatid disease and larva migrans. Generally, only parasites whose infective stages can be transmitted directly by water are discussed in this article. Although many do not require a water environment in which to complete their life cycle, their infective stages can certainly be distributed and acquired directly through water. Transmission via the external environment is necessary for many helminth parasites, with water and faecal contamination being important considerations. -
Biliary Obstruction Caused by the Liver Fluke, Fasciola Hepatica
CME Practice CMAJ Cases Biliary obstruction caused by the liver fluke, Fasciola hepatica Takuya Ishikawa MD PhD, Vanessa Meier-Stephenson MD PhD, Steven J. Heitman MD MSc Competing interests: None 20-year-old previously healthy man declared. presented to hospital with a two-day This article has been peer A history of right upper quadrant pain reviewed. and vomiting. Nine months earlier, he had The authors have obtained immigrated to Canada from Sudan, but he had patient consent. also lived in Djibouti and Ethiopia. Four Correspondence to: months before he presented to hospital, he Steven Heitman, received a diagnosis of tuberculous lymphade- [email protected] nitis and a four-drug course of tuberculosis CMAJ 2016. DOI:10.1503 treatment was started. However, he was non- /cmaj.150696 adherent after only two months of treatment. In addition, results from screening tests at that time showed evidence of schistosomiasis for Figure 1: A flat, leaf-shaped, brown worm emerg- which he was prescribed praziquantel. ing from the common bile duct of a 20-year-old On examination, he was alert and without man with abdominal pain. jaundice or scleral icterus. He had right upper quadrant tenderness on abdominal examination, ter of 1.1 cm. A computed tomography scan of but there were no palpable masses. The remain- the abdomen also showed prominence of the der of his examination was unremarkable. Labo- common bile duct, but no calcified stone was ratory test results showed elevated liver enzymes identified (Appendix 1). A hepatobiliary imino- (aspartate transaminase 133 [normal < 40] U/L, diacetic acid scan suggested distal obstruction in alanine transaminase 217 [normal < 41] U/L, the common bile duct. -
Imaging Parasitic Diseases
Insights Imaging (2017) 8:101–125 DOI 10.1007/s13244-016-0525-2 REVIEW Unexpected hosts: imaging parasitic diseases Pablo Rodríguez Carnero1 & Paula Hernández Mateo2 & Susana Martín-Garre2 & Ángela García Pérez3 & Lourdes del Campo1 Received: 8 June 2016 /Revised: 8 September 2016 /Accepted: 28 September 2016 /Published online: 23 November 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Radiologists seldom encounter parasitic dis- • Some parasitic diseases are still endemic in certain regions eases in their daily practice in most of Europe, although in Europe. the incidence of these diseases is increasing due to mi- • Parasitic diseases can have complex life cycles often involv- gration and tourism from/to endemic areas. Moreover, ing different hosts. some parasitic diseases are still endemic in certain • Prompt diagnosis and treatment is essential for patient man- European regions, and immunocompromised individuals agement in parasitic diseases. also pose a higher risk of developing these conditions. • Radiologists should be able to recognise and suspect the This article reviews and summarises the imaging find- most relevant parasitic diseases. ings of some of the most important and frequent human parasitic diseases, including information about the para- Keywords Parasitic diseases . Radiology . Ultrasound . site’s life cycle, pathophysiology, clinical findings, diag- Multidetector computed tomography . Magnetic resonance nosis, and treatment. We include malaria, amoebiasis, imaging toxoplasmosis, trypanosomiasis, leishmaniasis, echino- coccosis, cysticercosis, clonorchiasis, schistosomiasis, fascioliasis, ascariasis, anisakiasis, dracunculiasis, and Introduction strongyloidiasis. The aim of this review is to help radi- ologists when dealing with these diseases or in cases Parasites are organisms that live in another organism at the where they are suspected. -
Endemicity of Opisthorchis Viverrini Liver Flukes, Vietnam, 2011–2012
LETTERS Endemicity of for species identification of Opisthor- A total of 4 fish species were in- chis fluke metacercariae 7( ). fected with O. viverrini metacercariae Opisthorchis Fish were collected from Tuy (online Technical Appendix Table 1, viverrini Liver Hoa City and from the districts of Hoa wwwnc.cdc.gov/EID/article/20/1/13- Flukes, Vietnam, Xuan Dong, Tuy An, and Song Hinh; 0168-Techapp1.pdf). Metacercariae these 3 districts are areas of large prevalence was highest (28.1%) 2011–2012 aquaculture production of freshwater among crucian carp (Carasius aura- To the Editor: Fishborne zoo- fish. Fresh fish from ponds, rice fields, tus). Specific identification was con- notic trematodes are highly prevalent rivers, and swamps were purchased at firmed by morphologic appearance of in many Asian communities (1,2). Al- local markets from April 2011 through adult worms recovered from hamsters though presence of the liver flukeClo - March 2012. The fish sellers provided (Figure) and PCR and sequence anal- norchis sinensis is well documented information about the source of the ysis of the partial metacercarial CO1 in Vietnam (3), evidence of the pres- fish (e.g., type of water body). Fish gene, amplified by CO1-OV-Hap- ence of the more common liver fluke were transported live with mechani- F&R primers (7). Infected fish origi- of Southeast Asia, Opisthorchis viver- cal aeration to the Research Institute nated predominantly from so-called rini, is only circumstantial. Surveys of for Aquaculture No. 3 in Nha Trang, wild water (i.e., swamps, rice fields, human fecal samples have frequently where they were examined for meta- rivers). -
Clonal Amplification of Fasciola Hepatica in Galba Truncatula: Within and Between Isolate Variation of Triclabendazole- Susceptible and -Resistant Clones Jane E
Hodgkinson et al. Parasites & Vectors (2018) 11:363 https://doi.org/10.1186/s13071-018-2952-z RESEARCH Open Access Clonal amplification of Fasciola hepatica in Galba truncatula: within and between isolate variation of triclabendazole- susceptible and -resistant clones Jane E. Hodgkinson1* , Krystyna Cwiklinski1,2, Nicola Beesley1, Catherine Hartley1, Katherine Allen1 and Diana J. L. Williams1 Abstract Background: Fasciola hepatica is of worldwide significance, impacting on the health, welfare and productivity of livestock and regarded by WHO as a re-emerging zoonosis. Triclabendazole (TCBZ), the drug of choice for controlling acute fasciolosis in livestock, is also the drug used to treat human infections. However TCBZ-resistance is now considered a major threat to the effective control of F. hepatica. It has yet to be demonstrated whether F. hepatica undergoes a genetic clonal expansion in the snail intermediate host, Galba truncatula,andtowhat extent amplification of genotypes within the snail facilitates accumulation of drug resistant parasites. Little is known about genotypic and phenotypic variation within and between F. hepatica isolates. Results: Six clonal isolates of F. hepatica (3× triclabendazole-resistant, TCBZ-R and 3× triclabendazole-susceptible, TCBZ-S) were generated. Snails infected with one miracidium started to shed cercariae 42–56 days post-infection and shed repeatedly up to a maximum of 11 times. A maximum of 884 cercariae were shed by one clonally-infected snail (FhLivS1) at a single time point, with > 3000 clonal metacercariae shed over its lifetime. Following experimental infection all 12 sheep were FEC positive at the time of TCBZ treatment. Sheep infected with one of three putative TCBZ-S clones and treated with TCBZ had no parasites in the liver at post-mortem, whilst sheep each infected with putative TCBZ-R isolates had 35–165 adult fluke at post-mortem, despite TCBZ treatment. -
Parasitology Group Annual Review of Literature and Horizon Scanning Report 2018
APHA Parasitology Group Annual Review of Literature and Horizon Scanning Report 2018 Published: November 2019 November 2019 © Crown copyright 2018 You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v.3. To view this licence visit www.nationalarchives.gov.uk/doc/open-government-licence/version/3/ or email [email protected] This publication is available at www.gov.uk/government/publications Any enquiries regarding this publication should be sent to us at [email protected] Year of publication: 2019 The Animal and Plant Health Agency (APHA) is an executive agency of the Department for Environment, Food & Rural Affairs, and also works on behalf of the Scottish Government and Welsh Government. November 2019 Contents Summary ............................................................................................................................. 1 Fasciola hepatica ............................................................................................................. 1 Rumen fluke (Calicophoron daubneyi) ............................................................................. 2 Parasitic gastro-enteritis (PGE) ........................................................................................ 2 Anthelmintic resistance .................................................................................................... 4 Cestodes ......................................................................................................................... -
Galba Truncatula (Gastropoda, Lymnaeidae): First Findings On
Ann. Limnol. - Int. J. Lim. 45 (2009) 51–54 Available online at: Ó EDP Sciences, 2009 www.limnology-journal.org DOI: 10.1051/limn/09006 Galba truncatula (Gastropoda, Lymnaeidae): First findings on populations showing a single annual generation in lowland zones of central France Daniel Rondelaud, Philippe Hourdin, Philippe Vignoles and Gilles Dreyfuss* UPRES EA nx 3174, Faculties of Pharmacy and Medicine, 87025 Limoges, France Received 27 November 2008; Accepted 12 January 2009 Abstract – Three-year investigations were carried out in three populations of Galba truncatula to study their dynamics throughout the year when there was a single annual generation for the snail. These communities were living in permanently watered habitats, on acid soil and in lowland zones. In the three cases, egg-laying occurred from the end of June to the beginning of October and was closely associated with the summer fall in level and speed of running water. The highest numbers of egg-masses were noted at the end of July and the beginning of August. Newborns which hatched from these egg-deposits showed a strong decrease of their number from July to October and this diminution continues up to next June (at 3.4 snails per m2 of habitat). Juvenile snails measuring j2 mm in height were observed up to the end of next March. Compared to single annual generations of G. truncatula studied by other authors in zones of higher elevation, the longer period of egg-laying must be related to the local climatic and hydrologic conditions which are more favourable in low- lands than in elevation. -
Common Helminth Infections of Donkeys and Their Control in Temperate Regions J
EQUINE VETERINARY EDUCATION / AE / SEPTEMBER 2013 461 Review Article Common helminth infections of donkeys and their control in temperate regions J. B. Matthews* and F. A. Burden† Disease Control, Moredun Research Institute, Edinburgh; and †The Donkey Sanctuary, Sidmouth, Devon, UK. *Corresponding author email: [email protected] Keywords: horse; donkey; helminths; anthelmintic resistance Summary management of helminths in donkeys is of general importance Roundworms and flatworms that affect donkeys can cause to their wellbeing and to that of co-grazing animals. disease. All common helminth parasites that affect horses also infect donkeys, so animals that co-graze can act as a source Nematodes that commonly affect donkeys of infection for either species. Of the gastrointestinal nematodes, those belonging to the cyathostomin (small Cyathostomins strongyle) group are the most problematic in UK donkeys. Most In donkey populations in which all animals are administered grazing animals are exposed to these parasites and some anthelmintics on a regular basis, most harbour low burdens of animals will be infected all of their lives. Control is threatened parasitic nematode infections and do not exhibit overt signs of by anthelmintic resistance: resistance to all 3 available disease. As in horses and ponies, the most common parasitic anthelmintic classes has now been recorded in UK donkeys. nematodes are the cyathostomin species. The life cycle of The lungworm, Dictyocaulus arnfieldi, is also problematical, these nematodes is the same as in other equids, with a period particularly when donkeys co-graze with horses. Mature of larval encystment in the large intestinal wall playing an horses are not permissive hosts to the full life cycle of this important role in the epidemiology and pathogenicity of parasite, but develop clinical signs on infection. -
Aplexa Hypnorum (Gastropoda: Physidae) Exerts Competition on Two Lymnaeid Species in Periodically Dried Ditches
Ann. Limnol. - Int. J. Lim. 52 (2016) 379–386 Available online at: Ó The authors, 2016 www.limnology-journal.org DOI: 10.1051/limn/2016022 Aplexa hypnorum (Gastropoda: Physidae) exerts competition on two lymnaeid species in periodically dried ditches Daniel Rondelaud, Philippe Vignoles and Gilles Dreyfuss* Laboratory of Parasitology, Faculty of Pharmacy, 87025 Limoges Cedex, France Received 26 November 2014; Accepted 2 September 2016 Abstract – Samples of adult Aplexa hypnorum were experimentally introduced into periodically dried ditches colonized by Galba truncatula or Omphiscola glabra to monitor the distribution and density of these snail species from 2002 to 2008, and to compare these values with those noted in control sites only frequented by either lymnaeid. The introduction of A. hypnorum into each ditch was followed by the progressive coloni- zation of the entire habitat by the physid and progressive reduction of the portion occupied by the lymnaeid towards the upstream extremity of the ditch. Moreover, the size of the lymnaeid population decreased significantly over the 7-year period, with values noted in 2008 that were significantly lower than those recorded in 2002. In contrast, the mean densities were relatively stable in the sites only occupied by G. truncatula or O. glabra. Laboratory investigations were also carried out by placing juvenile, intermediate or adult physids in aquaria in the presence of juvenile, intermediate or adult G. truncatula (or O. glabra) for 30 days. The life stage of A. hypnorum had a significant influence on the survival of each lymnaeid. In snail combinations, this survival was significantly lower for adult G. truncatula (or O.