Waterborne Zoonotic Helminthiases Suwannee Nithiuthaia,*, Malinee T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Literature Survey of Common Parasitic Zoonoses Encountered at Post-Mortem Examination in Slaughter Stocks in Tanzania: Economic and Public Health Implications
Volume 1- Issue 5 : 2017 DOI: 10.26717/BJSTR.2017.01.000419 Erick VG Komba. Biomed J Sci & Tech Res ISSN: 2574-1241 Research Article Open Access A Literature Survey of Common Parasitic Zoonoses Encountered at Post-Mortem Examination in Slaughter Stocks in Tanzania: Economic and Public Health Implications Erick VG Komba* Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Tanzania Received: September 21, 2017; Published: October 06, 2017 *Corresponding author: Erick VG Komba, Senior lecturer, Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania Abstract Zoonoses caused by parasites constitute a large group of infectious diseases with varying host ranges and patterns of transmission. Their public health impact of such zoonoses warrants appropriate surveillance to obtain enough information that will provide inputs in the design anddistribution, implementation prevalence of control and transmission strategies. Apatterns need therefore are affected arises by to the regularly influence re-evaluate of both human the current and environmental status of zoonotic factors. diseases, The economic particularly and in view of new data available as a result of surveillance activities and the application of new technologies. Consequently this paper summarizes available information in Tanzania on parasitic zoonoses encountered in slaughter stocks during post-mortem examination at slaughter facilities. The occurrence, in slaughter stocks, of fasciola spp, Echinococcus granulosus (hydatid) cysts, Taenia saginata Cysts, Taenia solium Cysts and ascaris spp. have been reported by various researchers. Information on these parasitic diseases is presented in this paper as they are the most important ones encountered in slaughter stocks in the country. -
Gnathostoma Spinigerum Was Positive
Department Medicine Diagnostic Centre Swiss TPH Winter Symposium 2017 Helminth Infection – from Transmission to Control Sushi Worms – Diagnostic Challenges Beatrice Nickel Fish-borne helminth infections Consumption of raw or undercooked fish - Anisakis spp. infections - Gnathostoma spp. infections Case 1 • 32 year old man • Admitted to hospital with severe gastric pain • Abdominal pain below ribs since a week, vomiting • Low-grade fever • Physical examination: moderate abdominal tenderness • Laboratory results: mild leucocytosis • Patient revealed to have eaten sushi recently • Upper gastrointestinal endoscopy was performed Carmo J, et al. BMJ Case Rep 2017. doi:10.1136/bcr-2016-218857 Case 1 Endoscopy revealed 2-3 cm long helminth Nematode firmly attached to / Endoscopic removal of larva with penetrating gastric mucosa a Roth net Carmo J, et al. BMJ Case Rep 2017. doi:10.1136/bcr-2016-218857 Anisakiasis Human parasitic infection of gastrointestinal tract by • herring worm, Anisakis spp. (A.simplex, A.physeteris) • cod worm, Pseudoterranova spp. (P. decipiens) Consumption of raw or undercooked seafood containing infectious larvae Highest incidence in countries where consumption of raw or marinated fish dishes are common: • Japan (sashimi, sushi) • Scandinavia (cod liver) • Netherlands (maatjes herrings) • Spain (anchovies) • South America (ceviche) Source: http://parasitewonders.blogspot.ch Life Cycle of Anisakis simplex (L1-L2 larvae) L3 larvae L2 larvae L3 larvae Source: Adapted to Audicana et al, TRENDS in Parasitology Vol.18 No. 1 January 2002 Symptoms Within few hours of ingestion, the larvae try to penetrate the gastric/intestinal wall • acute gastric pain or abdominal pain • low-grade fever • nausea, vomiting • allergic reaction possible, urticaria • local inflammation Invasion of the third-stage larvae into gut wall can lead to eosinophilic granuloma, ulcer or even perforation. -
Genetic Characterization, Species Differentiation and Detection of Fasciola Spp
Ai et al. Parasites & Vectors 2011, 4:101 http://www.parasitesandvectors.com/content/4/1/101 REVIEW Open Access Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches Lin Ai1,2,3†, Mu-Xin Chen1,2†, Samer Alasaad4, Hany M Elsheikha5, Juan Li3, Hai-Long Li3, Rui-Qing Lin3, Feng-Cai Zou6, Xing-Quan Zhu1,6,7* and Jia-Xu Chen2* Abstract Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp. -
Fasciola Hepatica and Associated Parasite, Dicrocoelium Dendriticum in Slaughter Houses in Anyigba, Kogi State, Nigeria
Advances in Infectious Diseases, 2018, 8, 1-9 http://www.scirp.org/journal/aid ISSN Online: 2164-2656 ISSN Print: 2164-2648 Fasciola hepatica and Associated Parasite, Dicrocoelium dendriticum in Slaughter Houses in Anyigba, Kogi State, Nigeria Florence Oyibo Iyaji1, Clement Ameh Yaro1,2*, Mercy Funmilayo Peter1, Agatha Eleojo Onoja Abutu3 1Department of Zoology and Environmental Biology, Faculty of Natural Sciences, Kogi State University, Anyigba, Nigeria 2Department of Zoology, Ahmadu Bello University, Zaria, Nigeria 3Department of Biology Education, Kogi State of Education Technical, Kabba, Nigeria How to cite this paper: Iyaji, F.O., Yaro, Abstract C.A., Peter, M.F. and Abutu, A.E.O. (2018) Fasciola hepatica and Associated Parasite, Fasciola hepatica is a parasite of clinical and veterinary importance which Dicrocoelium dendriticum in Slaughter causes fascioliasis that leads to reduction in milk and meat production. Bile Houses in Anyigba, Kogi State, Nigeria. samples were centrifuged at 1500 rpm for ten (10) minutes in a centrifuge Advances in Infectious Diseases, 8, 1-9. https://doi.org/10.4236/aid.2018.81001 machine and viewed microscopically to check for F. hepatica eggs. A total of 300 bile samples of cattle which included 155 males and 145 females were col- Received: July 20, 2016 lected from the abattoir. Results were analyzed using chi-square (p > 0.05). Accepted: January 16, 2018 The prevalence of F. gigantica and Dicrocoelium dentriticum is 33.0% (99) Published: January 19, 2018 and 39.0% (117) respectively. Age prevalence of F. hepatica revealed that 0 - 2 Copyright © 2018 by authors and years (33.7%, 29 cattle) were more infected than 2 - 4 years (32.7%, 70 cattle) Scientific Research Publishing Inc. -
Comparative Transcriptomic Analysis of the Larval and Adult Stages of Taenia Pisiformis
G C A T T A C G G C A T genes Article Comparative Transcriptomic Analysis of the Larval and Adult Stages of Taenia pisiformis Shaohua Zhang State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; [email protected]; Tel.: +86-931-8342837 Received: 19 May 2019; Accepted: 1 July 2019; Published: 4 July 2019 Abstract: Taenia pisiformis is a tapeworm causing economic losses in the rabbit breeding industry worldwide. Due to the absence of genomic data, our knowledge on the developmental process of T. pisiformis is still inadequate. In this study, to better characterize differential and specific genes and pathways associated with the parasite developments, a comparative transcriptomic analysis of the larval stage (TpM) and the adult stage (TpA) of T. pisiformis was performed by Illumina RNA sequencing (RNA-seq) technology and de novo analysis. In total, 68,588 unigenes were assembled with an average length of 789 nucleotides (nt) and N50 of 1485 nt. Further, we identified 4093 differentially expressed genes (DEGs) in TpA versus TpM, of which 3186 DEGs were upregulated and 907 were downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analyses revealed that most DEGs involved in metabolic processes and Wnt signaling pathway were much more active in the TpA stage. Quantitative real-time PCR (qPCR) validated that the expression levels of the selected 10 DEGs were consistent with those in RNA-seq, indicating that the transcriptomic data are reliable. The present study provides comparative transcriptomic data concerning two developmental stages of T. -
Molecular Identification of the Etiological Agent of Human
Jpn. J. Infect. Dis., 73, 44–50, 2020 Original Article Molecular Identification of the Etiological Agent of Human Gnathostomiasis in an Endemic Area of Mexico Sylvia Paz Díaz-Camacho1, Jesús Ricardo Parra-Unda2, Julián Ríos-Sicairos2, and Francisco Delgado-Vargas2* 1Research Unit in Environment and Health, Autonomous University of Occident, Sinaloa; and 2Public Health Research Unit "Dra. Kaethe Willms", School of Chemical and Biological Sciences, Autonomous University of Sinaloa, University city, Culiacan, Sinaloa, Mexico SUMMARY: Human gnathostomiasis, which is endemic in Mexico, is a worldwide health concern. It is mainly caused by the consumption of raw or insufficiently cooked fish containing the advanced third-stage larvae (AL3A) of Gnathostoma species. The diagnosis of gnathostomiasis is based on epidemiological surveys and immunological diagnostic tests. When a larva is recovered, the species can be identified by molecular techniques. Polymerase chain reaction (PCR) amplification of the second internal transcription spacer (ITS-2) is useful to identify nematode species, including Gnathostoma species. This study aims to develop a duplex-PCR amplification method of the ITS-2 region to differentiate between the Gnathostoma binucleatum and G. turgidum parasites that coexist in the same endemic area, as well as to identify the Gnathostoma larvae recovered from the biopsies of two gnathostomiasis patients from Sinaloa, Mexico. The duplex PCR established based on the ITS- 2 sequence showed that the length of the amplicons was 321 bp for G. binucleatum and 226 bp for G. turgidum. The amplicons from the AL3A of both patients were 321 bp. Furthermore, the length and composition of these amplicons were identical to those deposited in GenBank as G. -
Gnathostomiasis: an Emerging Imported Disease David A.J
RESEARCH Gnathostomiasis: An Emerging Imported Disease David A.J. Moore,* Janice McCroddan,† Paron Dekumyoy,‡ and Peter L. Chiodini† As the scope of international travel expands, an ous complication of central nervous system involvement increasing number of travelers are coming into contact with (4). This form is manifested by painful radiculopathy, helminthic parasites rarely seen outside the tropics. As a which can lead to paraplegia, sometimes following an result, the occurrence of Gnathostoma spinigerum infection acute (eosinophilic) meningitic illness. leading to the clinical syndrome gnathostomiasis is increas- We describe a series of patients in whom G. spinigerum ing. In areas where Gnathostoma is not endemic, few cli- nicians are familiar with this disease. To highlight this infection was diagnosed at the Hospital for Tropical underdiagnosed parasitic infection, we describe a case Diseases, London; they were treated over a 12-month peri- series of patients with gnathostomiasis who were treated od. Four illustrative case histories are described in detail. during a 12-month period at the Hospital for Tropical This case series represents a small proportion of gnathos- Diseases, London. tomiasis patients receiving medical care in the United Kingdom, in whom this uncommon parasitic infection is mostly undiagnosed. he ease of international travel in the 21st century has resulted in persons from Europe and other western T Methods countries traveling to distant areas of the world and return- The case notes of patients in whom gnathostomiasis ing with an increasing array of parasitic infections rarely was diagnosed at the Hospital for Tropical Diseases were seen in more temperate zones. One example is infection reviewed retrospectively for clinical symptoms and confir- with Gnathostoma spinigerum, which is acquired by eating uncooked food infected with the larval third stage of the helminth; such foods typically include fish, shrimp, crab, crayfish, frog, or chicken. -
Coinfection of Schistosoma (Trematoda) with Bacteria, Protozoa and Helminths
CHAPTER 1 Coinfection of Schistosoma (Trematoda) with Bacteria, Protozoa and Helminths ,† ‡ Amy Abruzzi* and Bernard Fried Contents 1.1. Introduction 3 1.2. Coinfection of Species of Schistosoma and Plasmodium 4 1.2.1. Animal studies 21 1.2.2. Human studies 23 1.3. Coinfection of Schistosoma Species with Protozoans other than in the Genus Plasmodium 24 1.3.1. Leishmania 32 1.3.2. Toxoplasma 32 1.3.3. Entamoeba 34 1.3.4. Trypanosoma 35 1.4. Coinfection of Schistosoma Species with Salmonella 36 1.4.1. Animal studies 36 1.4.2. Human studies 42 1.5. Coinfection of Schistosoma Species with Bacteria other than Salmonella 43 1.5.1. Mycobacterium 43 1.5.2. Helicobacter pylori 49 1.5.3. Staphylococcus aureus 50 1.6. Coinfection of Schistosoma and Fasciola Species 50 1.6.1. Animal studies 57 1.6.2. Human studies 58 * Skillman Library, Lafayette College, Easton, Pennsylvania, USA { Epidemiology, University of Medicine and Dentistry of New Jersey (UMDNJ), Piscataway, New Jersey, USA { Department of Biology, Lafayette College, Easton, Pennsylvania, USA Advances in Parasitology, Volume 77 # 2011 Elsevier Ltd. ISSN 0065-308X, DOI: 10.1016/B978-0-12-391429-3.00005-8 All rights reserved. 1 2 Amy Abruzzi and Bernard Fried 1.7. Coinfection of Schistosoma Species and Helminths other than the Genus Fasciola 59 1.7.1. Echinostoma 59 1.7.2. Hookworm 70 1.7.3. Trichuris 70 1.7.4. Ascaris 71 1.7.5. Strongyloides and Trichostrongyloides 72 1.7.6. Filarids 73 1.8. Concluding Remarks 74 References 75 Abstract This review examines coinfection of selected species of Schisto- soma with bacteria, protozoa and helminths and focuses on the effects of the coinfection on the hosts. -
Lecture 5: Emerging Parasitic Helminths Part 2: Tissue Nematodes
Readings-Nematodes • Ch. 11 (pp. 290, 291-93, 295 [box 11.1], 304 [box 11.2]) • Lecture 5: Emerging Parasitic Ch.14 (p. 375, 367 [table 14.1]) Helminths part 2: Tissue Nematodes Matt Tucker, M.S., MSPH [email protected] HSC4933 Emerging Infectious Diseases HSC4933. Emerging Infectious Diseases 2 Monsters Inside Me Learning Objectives • Toxocariasis, larva migrans (Toxocara canis, dog hookworm): • Understand how visceral larval migrans, cutaneous larval migrans, and ocular larval migrans can occur Background: • Know basic attributes of tissue nematodes and be able to distinguish http://animal.discovery.com/invertebrates/monsters-inside- these nematodes from each other and also from other types of me/toxocariasis-toxocara-roundworm/ nematodes • Understand life cycles of tissue nematodes, noting similarities and Videos: http://animal.discovery.com/videos/monsters-inside- significant difference me-toxocariasis.html • Know infective stages, various hosts involved in a particular cycle • Be familiar with diagnostic criteria, epidemiology, pathogenicity, http://animal.discovery.com/videos/monsters-inside-me- &treatment toxocara-parasite.html • Identify locations in world where certain parasites exist • Note drugs (always available) that are used to treat parasites • Describe factors of tissue nematodes that can make them emerging infectious diseases • Be familiar with Dracunculiasis and status of eradication HSC4933. Emerging Infectious Diseases 3 HSC4933. Emerging Infectious Diseases 4 Lecture 5: On the Menu Problems with other hookworms • Cutaneous larva migrans or Visceral Tissue Nematodes larva migrans • Hookworms of other animals • Cutaneous Larva Migrans frequently fail to penetrate the human dermis (and beyond). • Visceral Larva Migrans – Ancylostoma braziliense (most common- in Gulf Coast and tropics), • Gnathostoma spp. Ancylostoma caninum, Ancylostoma “creeping eruption” ceylanicum, • Trichinella spiralis • They migrate through the epidermis leaving typical tracks • Dracunculus medinensis • Eosinophilic enteritis-emerging problem in Australia HSC4933. -
Hookworm-Related Cutaneous Larva Migrans with Exceptional Multiple Cutaneous Entries
Open Access Case Report J Clin Investigat Dermatol June 2017 Volume 5, Issue 1 © All rights are reserved by Vega et al. Journal of Hookworm-related Cutaneous Clinical & Investigative Larva Migrans with Exceptional Dermatology Luis J. Borda1, Penelope J. Kallis1, Robert D. Griffith1, Alessio Giubellino1 and Jeong Hee Cho-Vega2* Multiple Cutaneous Entries 1Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States Keywords: Hookworm-related Cutaneous Larva Migrans; 2Dermatopathology Division, Department of Pathology and Laboratory Hookworm; Serpiginous multiple tracks; Tropical area; Anti-parasite Medicine, Sylvester Comprehensive Cancer Center and University of agent Miami Miller School of Medicine, Miami, FL, United States Abstract *Address for Correspondence Jeong Hee Cho-Vega, Dermatopathology Division, Department of Hookworm-related Cutaneous Larva Migrans (HrCLM) is a pruritic Pathology and Laboratory Medicine Sylvester Comprehensive Cancer serpiginous cutaneous eruption caused by animal hookworms Center and University of Miami Miller School of Medicine 1120 NW commonly found in tropical and subtropical areas, especially the 14th Street, Holtz ET, Suite 2146 Miami, FL 33136, USA, Tel: (305)- Southeastern United States. We describe here a very exceptional 243-6433; Fax: (305)-243-1624; E-mail: [email protected] HrCLM case showing multiple larva entries/lesions in a 63-year- old white male living in Miami. Clinically he presented with multiple Submission: 25 May, 2017 pruritic erythematous serpiginous tracks on his left anterior leg, left Accepted: 15 June, 2017 calf, and right thigh. While skin biopsies failed to demonstrate larva Published: 22 June, 2017 itself, the overall histological features supported multiple larva tracks Copyright: © 2017 Borda LJ, et al. -
Visceral and Cutaneous Larva Migrans PAUL C
Visceral and Cutaneous Larva Migrans PAUL C. BEAVER, Ph.D. AMONG ANIMALS in general there is a In the development of our concepts of larva II. wide variety of parasitic infections in migrans there have been four major steps. The which larval stages migrate through and some¬ first, of course, was the discovery by Kirby- times later reside in the tissues of the host with¬ Smith and his associates some 30 years ago of out developing into fully mature adults. When nematode larvae in the skin of patients with such parasites are found in human hosts, the creeping eruption in Jacksonville, Fla. (6). infection may be referred to as larva migrans This was followed immediately by experi¬ although definition of this term is becoming mental proof by numerous workers that the increasingly difficult. The organisms impli¬ larvae of A. braziliense readily penetrate the cated in infections of this type include certain human skin and produce severe, typical creep¬ species of arthropods, flatworms, and nema¬ ing eruption. todes, but more especially the nematodes. From a practical point of view these demon¬ As generally used, the term larva migrans strations were perhaps too conclusive in that refers particularly to the migration of dog and they encouraged the impression that A. brazil¬ cat hookworm larvae in the human skin (cu¬ iense was the only cause of creeping eruption, taneous larva migrans or creeping eruption) and detracted from equally conclusive demon¬ and the migration of dog and cat ascarids in strations that other species of nematode larvae the viscera (visceral larva migrans). In a still have the ability to produce similarly the pro¬ more restricted sense, the terms cutaneous larva gressive linear lesions characteristic of creep¬ migrans and visceral larva migrans are some¬ ing eruption. -
The Effect of Triaenophorus Nodulosus (Cestoda: Bothriocephalidea) Infection on Some Biochemical Parameters of the Liver of Perca fluviatilis
J Parasit Dis (Oct-Dec 2019) 43(4):566–574 https://doi.org/10.1007/s12639-019-01128-0 ORIGINAL ARTICLE The effect of Triaenophorus nodulosus (Cestoda: Bothriocephalidea) infection on some biochemical parameters of the liver of Perca fluviatilis 1 1 1 Ekaterina V. Borvinskaya • Irina V. Sukhovskaya • Lev P. Smirnov • 1 1 1 Albina A. Kochneva • Aleksey N. Parshukov • Marina Yu. Krupnova • 1 1 1 Elizaveta A. Buoy • Rimma U. Vysotskaya • Maria V. Churova Received: 2 February 2019 / Accepted: 29 May 2019 / Published online: 5 June 2019 Ó Indian Society for Parasitology 2019 Abstract Natural infection of 2 to 6-year-old perch with Keywords Helminth Á Triaenophorus Á Cestoda Á the cestode parasites Triaenophorus nodulosus was shown Perca fluviatilis Á Invasion Á Biochemical status to have minor effects on the studied components of the antioxidant defense system, nucleic acids degradation, and carbohydrate metabolism enzymes in the liver of the fish. Introduction The level of infection of 1–4 parasite larvae per fish observed in wild population of perch was shown to be The study of the effect of parasites on the biochemical moderate in terms of its effect on the health of the host fish. status of their host is important for clarifying the mutual The activity of hepatic enzymes b-galactosidase, b-glu- adaptations in the parasite–host system. A parasite directly cosidase, cathepsin D, and glutathione S-transferase affects its host by competing with it for resources; never- showed different responses in infected males and females, theless, there is usually a balance in the system, where which indicates different potential resistance of fish to the parasites cannot cause major damage to the host popula- stress exposure between genders.