Mouse Slc22a2 Knockout Project (CRISPR/Cas9)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Interplay Between Metformin and Serotonin Transport in the Gastrointestinal Tract: a Novel Mechanism for the Intestinal Absorption and Adverse Effects of Metformin
INTERPLAY BETWEEN METFORMIN AND SEROTONIN TRANSPORT IN THE GASTROINTESTINAL TRACT: A NOVEL MECHANISM FOR THE INTESTINAL ABSORPTION AND ADVERSE EFFECTS OF METFORMIN Tianxiang Han A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Eshelman School of Pharmacy. Chapel Hill 2013 Approved By: Dhiren R. Thakker, Ph.D. Michael Jay, Ph.D. Kim L. R. Brouwer, Pharm.D., Ph.D. Joseph W. Polli, Ph.D. Xiao Xiao, Ph.D. © 2013 Tianxiang Han ALL RIGHTS RESERVED ii ABSTRACT TIANXIANG HAN: Interplay between Metformin and Serotonin Transport in the Gastrointestinal Tract: A Novel Mechanism for the Intestinal Absorption and Adverse Effects of Metformin (Under the direction of Dhiren R. Thakker, Ph.D.) Metformin is a widely prescribed drug for Type II diabetes mellitus. Previous studies have shown that this highly hydrophilic and charged compound traverses predominantly paracellularly across the Caco-2 cell monolayer, a well-established model for human intestinal epithelium. However, oral bioavailability of metformin is significantly higher than that of the paracellular probe, mannitol (~60% vs ~16%). Based on these observations, the Thakker laboratory proposed a “sponge” hypothesis (Proctor et al., 2008) which states that the functional synergy between apical (AP) transporters and paracellular transport enhances the intestinal absorption of metformin. This dissertation work aims to identify AP uptake transporters of metformin, determine their polarized localization, and elucidate their roles in the intestinal absorption and adverse effects of metformin. Chemical inhibition and transporter-knockdown studies revealed that four transporters, namely, organic cation transporter 1 (OCT1), plasma membrane monoamine transporter (PMAT), serotonin reuptake transporter (SERT) and choline high-affinity transporter (CHT) contribute to AP uptake of metformin in Caco-2 cells. -
Correlation Between Apparent Substrate Affinity and OCT2 Transport Turnover S
Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2017/06/14/jpet.117.242552.DC1 1521-0103/362/3/405–412$25.00 https://doi.org/10.1124/jpet.117.242552 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 362:405–412, September 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics Correlation between Apparent Substrate Affinity and OCT2 Transport Turnover s Alyscia Cory Severance, Philip J. Sandoval, and Stephen H. Wright Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona Received April 28, 2017; accepted June 12, 2017 ABSTRACT Organic cation (OC) transporter 2 (OCT2) mediates the first step for six structurally distinct OCT2 substrates and found a strong Downloaded from in the renal secretion of many cationic drugs: basolateral uptake correlation between Jmax and Ktapp; high-affinity substrates from blood into proximal tubule cells. The impact of this process [Ktapp values ,50 mM, including 1-methyl-4-phenylpyridinium, on the pharmacokinetics of drug clearance as estimated using a or 1-methyl-4-phenylpyridinium (MPP), and cimetidine] dis- 22 21 physiologically-based pharmacokinetic approach relies on an played systematically lower Jmax values (,50 pmol cm min ) accurate understanding of the kinetics of transport because the than did low-affinity substrates (Ktapp .200 mM, including choline ratio of the maximal rate of transport to the Michaelis constant and metformin). Similarly, preloading OCT2-expressing cells with (i.e., Jmax/Kt) provides an estimate of the intrinsic clearance (Clint) low-affinity substrates resulted in systematically larger trans- jpet.aspetjournals.org used in in vitro–in vivo extrapolation of experimentally determined stimulated rates of MPP uptake than did preloading with high- transport data. -
Screening of Genetic Variations of SLC15A2, SLC22A1, SLC22A2 and SLC22A6 Genes
Journal of Human Genetics (2011) 56, 666–670 & 2011 The Japan Society of Human Genetics All rights reserved 1434-5161/11 $32.00 www.nature.com/jhg ORIGINAL ARTICLE Screening of genetic variations of SLC15A2, SLC22A1, SLC22A2 and SLC22A6 genes Hyun Sub Cheong1,4, Hae Deun Kim2,4, Han Sung Na2,JiOnKim1, Lyoung Hyo Kim1, Seung Hee Kim2, Joon Seol Bae3, Myeon Woo Chung2 and Hyoung Doo Shin1,3 A growing list of membrane-spanning proteins involved in the transport of a large variety of drugs has been recognized and characterized to include peptide and organic anion/cation transporters. Given such an important role of transporter genes in drug disposition process, the role of single-nucleotide polymorphisms (SNPs) in such transporters as potential determinants of interindividual variability in drug disposition and pharmacological response has been investigated. To define the distribution of transporter gene SNPs across ethnic groups, we screened 450 DNAs in cohorts of 250 Korean, 50 Han Chinese, 50 Japanese, 50 African-American and 50 European-American ancestries for 64 SNPs in four transporter genes encoding proteins of the solute carrier family (SLC15A2, SLC22A1, SLC22A2 and SLC22A6). Of the 64 SNPs, 19 were core pharmacogenetic variants and 45 were HapMap tagging SNPs. Polymorphisms were genotyped using the golden gate genotyping assay. After genetic variability, haplotype structures and ethnic diversity were analyzed, we observed that the distributions of SNPs in a Korean population were similar to other Asian groups (Chinese and Japanese), and significantly different from African-American and European-American cohorts. Findings from this study would be valuable for further researches, including pharmacogenetic studies for drug responses. -
Analysis of OAT, OCT, OCTN, and Other Family Members Reveals 8
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.23.887299; this version posted December 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Reclassification of SLC22 Transporters: Analysis of OAT, OCT, OCTN, and other Family Members Reveals 8 Functional Subgroups Darcy Engelhart1, Jeffry C. Granados2, Da Shi3, Milton Saier Jr.4, Michael Baker6, Ruben Abagyan3, Sanjay K. Nigam5,6 1Department of Biology, University of California San Diego, La Jolla 92093 2Department of Bioengineering, University of California San Diego, La Jolla 92093 3School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla 92093 4Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, San Diego, CA, USA 5Department of Pediatrics, University of California San Diego, La Jolla 92093 6Department of Medicine, University of California San Diego, La Jolla 92093 *To whom correspondence should be addressed: [email protected] Running title: Functional subgroups for SLC22 1 bioRxiv preprint doi: https://doi.org/10.1101/2019.12.23.887299; this version posted December 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Among transporters, the SLC22 family is emerging as a central hub of endogenous physiology. -
Effects of Gold Nanorods on Imprinted Genes Expression in TM-4 Sertoli Cells
Int. J. Environ. Res. Public Health 2016, 13, 271; doi:10.3390/ijerph13030271 S1 of S5 Supplementary Materials: Effects of Gold Nanorods on Imprinted Genes Expression in TM-4 Sertoli Cells Beilei Yuan, Hao Gu, Bo Xu, Qiuqin Tang, Wei Wu, Xiaoli Ji, Yankai Xia, Lingqing Hu, Daozhen Chen and Xinru Wang Table S1. List of primers used to test the expression of the 44 imprinted genes and the reference genes Gapdh and U6. Gene Primer-F (5’-3’) Primer-R (5’-3’) Ano1 CTGATGCCGAGTGCAAGTATG AGGGCCTCTTGTGATGGTACA Cdkn1c CCCATCTAGCTTGCAGTCTCTT CAGACGGCTCAGGAACCATT Ddc TGGGGACCACAACATGCTG TCAGGGCAGATGAATGCACTG Dlk1 AGCTGCACCCCCAACC CTGCTGGCGCAGTTGGTC Gnas TGCAAGGAGCAACAGCGAT GCGGCCACAATGGTTTCAAT Gpr1 GCTGGGAGTTGTTCACTGGG GACGATGGCATTTCCTGGAAT Grb10 AACCCAGCTTTTGCAGGAA TCAGGGAGAAGATGTTGCTGT Gtl2 GTTTCTGGACTGTGGGCTGT CAACAGCAACAAAACTCAGAACATTCA H19 GCACCTTGGACATCTGGAGT TTCTTTCCAGCCCTAGCTCA Hymai TGCCTTTCAGTGTTGAACCA TGCATCCCTAAACAACAGCTT Igf2 AGCCGTGGCATCGTTGAG GACTGCTTCCAGGTGTCATATTG Igf2as TCTTTGCCCTCTTTCGTCTC CTCCAGGTGCTTCCGTCTAG Igf2r CTGCCGCTATGAAATTGAGTGG CGCCGCTCAGAGAACAAGTT Inpp5f V2 ACTGAACCTGAGCAGATTTCCA CCACCCCACTCCAAAAGGTT Kcnk9 GATGAAACGCCGGAAGTC GTGTTCGGCTTTGGCAGT Kcnq1 GCGTCTCCATCTACAGCACG GAAGTGGTAAACGAAGCATTTCC Klf14 TTTCCCTCACACTTGATTACCC AGCGAGGGAGGGACTAAGAT Magel2 GGGCTCCGCTAAATCATTG CCCCTGCGGTCTATAGAAGA Magi2 GGACTAGCAGGGTTCACGAA GCTCCGACGTACGGAAACT Mest TGACCACATTAGCCACTATCCA CCTGCTGGCTTCTTCCTATACA Mir296 ACACTCCAGCTGGGAGGGCCCCCCCTCAA CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACAGGATT Mir298 ACACTCCAGCTGGGAGCAGAAGCAGGGAGGTT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTGGGAGAA -
Characterization of Centrally Expressed Solute Carriers
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1215 Characterization of Centrally Expressed Solute Carriers Histological and Functional Studies with Transgenic Mice SAHAR ROSHANBIN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-554-9555-8 UPPSALA urn:nbn:se:uu:diva-282956 2016 Dissertation presented at Uppsala University to be publicly examined in B:21, Husargatan. 75124 Uppsala, Uppsala, Friday, 3 June 2016 at 13:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Biträdande professor David Engblom (Institutionen för klinisk och experimentell medicin, Cellbiologi, Linköpings Universitet). Abstract Roshanbin, S. 2016. Characterization of Centrally Expressed Solute Carriers. Histological and Functional Studies with Transgenic Mice. (. His). Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1215. 62 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9555-8. The Solute Carrier (SLC) superfamily is the largest group of membrane-bound transporters, currently with 456 transporters in 52 families. Much remains unknown about the tissue distribution and function of many of these transporters. The aim of this thesis was to characterize select SLCs with emphasis on tissue distribution, cellular localization, and function. In paper I, we studied the leucine transporter B0AT2 (Slc6a15). Localization of B0AT2 and Slc6a15 in mouse brain was determined using in situ hybridization (ISH) and immunohistochemistry (IHC), localizing it to neurons, epithelial cells, and astrocytes. Furthermore, we observed a lower reduction of food intake in Slc6a15 knockout mice (KO) upon intraperitoneal injections with leucine, suggesting B0AT2 is involved in mediating the anorexigenic effects of leucine. -
Human Intestinal Nutrient Transporters
Gastrointestinal Functions, edited by Edgard E. Delvin and Michael J. Lentze. Nestle Nutrition Workshop Series. Pediatric Program. Vol. 46. Nestec Ltd.. Vevey/Lippincott Williams & Wilkins, Philadelphia © 2001. Human Intestinal Nutrient Transporters Ernest M. Wright Department of Physiology, UCLA School of Medicine, Los Angeles, California, USA Over the past decade, advances in molecular biology have revolutionized studies on intestinal nutrient absorption in humans. Before the advent of molecular biology, the study of nutrient absorption was largely limited to in vivo and in vitro animal model systems. This did result in the classification of the different transport systems involved, and in the development of models for nutrient transport across enterocytes (1). Nutrients are either absorbed passively or actively. Passive transport across the epithelium occurs down the nutrient's concentration gradient by simple or facilitated diffusion. The efficiency of simple diffusion depends on the lipid solubility of the nutrient in the plasma membranes—the higher the molecule's partition coefficient, the higher the rate of diffusion. Facilitated diffusion depends on the presence of simple carriers (uniporters) in the plasma membranes, and the kinetic properties of these uniporters. The rate of facilitated diffusion depends on the density, turnover number, and affinity of the uniporters in the brush border and basolateral membranes. The ' 'active'' transport of nutrients simply means that energy is provided to transport molecules across the gut against their concentration gradient. It is now well recog- nized that active nutrient transport is brought about by Na+ or H+ cotransporters (symporters) that harness the energy stored in ion gradients to drive the uphill trans- port of a solute. -
Tandem Repeats in the Cpg Islands of Imprinted Genes ⁎ Barbara Hutter A, Volkhard Helms A, Martina Paulsen B
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 88 (2006) 323–332 www.elsevier.com/locate/ygeno Tandem repeats in the CpG islands of imprinted genes ⁎ Barbara Hutter a, Volkhard Helms a, Martina Paulsen b, a Bioinformatik, FR 8.3 Biowissenschaften, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany b Genetik/Epigenetik, FR 8.3 Biowissenschaften, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany Received 21 December 2005; accepted 30 March 2006 Available online 11 May 2006 Abstract In contrast to most genes in mammalian genomes, imprinted genes are monoallelically expressed depending on the parental origin of the alleles. Imprinted gene expression is regulated by distinct DNA elements that exhibit allele-specific epigenetic modifications, such as DNA methylation. These so-called differentially methylated regions frequently overlap with CpG islands. Thus, CpG islands of imprinted genes may contain special DNA elements that distinguish them from CpG islands of biallelically expressed genes. Here, we present a detailed study of CpG islands of imprinted genes in mouse and in human. Our study shows that imprinted genes more frequently contain tandem repeat arrays in their CpG islands than randomly selected genes in both species. In addition, mouse imprinted genes more frequently possess intragenic CpG islands that may serve as promoters of allele-specific antisense transcripts. This feature is much less pronounced in human, indicating an interspecies variability in the evolution of imprinting control elements. © 2006 Elsevier Inc. All rights reserved. Keywords: Imprinting; CpG islands; Tandem repeats; DNA methylation; Repetitive elements; Epigenetics; Regulatory elements To date, approximately 40 imprinted genes have been likely that additional elements are needed. -
Frontiersin.Org 1 April 2015 | Volume 9 | Article 123 Saunders Et Al
ORIGINAL RESEARCH published: 28 April 2015 doi: 10.3389/fnins.2015.00123 Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study Norman R. Saunders 1*, Katarzyna M. Dziegielewska 1, Kjeld Møllgård 2, Mark D. Habgood 1, Matthew J. Wakefield 3, Helen Lindsay 4, Nathalie Stratzielle 5, Jean-Francois Ghersi-Egea 5 and Shane A. Liddelow 1, 6 1 Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia, 2 Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark, 3 Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia, 4 Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland, 5 Lyon Neuroscience Research Center, INSERM U1028, Centre National de la Recherche Scientifique UMR5292, Université Lyon 1, Lyon, France, 6 Department of Neurobiology, Stanford University, Stanford, CA, USA The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq Edited by: Joana A. Palha, was performed at embryonic day (E) 15 and adult with additional data obtained at University of Minho, Portugal intermediate ages from microarray analysis. The largest represented functional group Reviewed by: in the embryo was amino acid transporters (twelve) with expression levels 2–98 times Fernanda Marques, University of Minho, Portugal greater than in the adult. In contrast, in the adult only six amino acid transporters Hanspeter Herzel, were up-regulated compared to the embryo and at more modest enrichment levels Humboldt University, Germany (<5-fold enrichment above E15). -
Effects of SLC22A2 (Rs201919874) and SLC47A2 (Rs138244461)
155 Effects of SLC22A2 (rs201919874) and SLC47A2 (rs138244461) genetic variants on Metformin Pharmacokinetics in Pakistani T2DM patients Sadaf Moeez,1 Zoya Khalid,2 Fazal Jalil,3 Muhammad Irfan,4 Muhammad Ismail,5 Mohammad Ali Arif,6 Rauf Niazi,7 Sumbul Khalid8 Abstract Objective: To determine the frequencies of single nucleotide polymorphisms rs201919874 and rs138244461 in genes SLC22A2 and SLC47A2 respectively in Pakistani diabetes patients in order to characterise the genetic variants and determine their association with the pharmacokinetics of metformin. Methods: The case-control study was conducted at the International Islamic University, Islamabad, Pakistan, from June 2016 to June 2017, and comprised genotypes of diabetic cases and matching controls which were determined following allele-specific polymerase chain reaction. Cases were further divided into Group A and Group B. The former consisted of diabetics who were on monotherapy of metformin, while the latter consisted of diabetics treated with a combination of metformin and sulfonylureas. In-silico analysis was performed to verify the effect of single nucleotide polymorphisms rs201919874 and rs138244461 on the structure of genes. Association was statistically determined using SPSS 18. Results: Of the 1200 subjects, 800(66.6%) were cases and 400(33.3%) were controls. Among the cases, 400(50%) each were in Group A and Group B. Significant difference was observed in the distribution of rs201919874 between Group A and controls (p<0.05) and between Group B and controls (p<0.05) for heterozygous genotypic frequency and for allelic frequency. Conversely, statistically significant difference was observed in rs138244461 (p<0.05) for all genotypic and allelic frequencies. -
Bioivt Transporter Catalog DG V3
Transporter Assay Catalog Single Transporter Models Single Transporter Models Subcellular Transporter Relevance Gene Transporter Assay Species2 Cell Model3 Probe Substrate Inhibition 1 Localization in Type Type Assay Model Positive Control ASBT Bile acid uptake SLC10A2 Uptake IA H Apical MDCK-II Taurocholate NaCDC asc-1 Amino acid transport SLC7A10 Uptake IA H Basolateral MDCK-II Glycine Serine ASCT2 Amino acid transport SLC1A5 Uptake IA H Apical MDCK-II Glutamine Alanine ATB0+ Amino acid transport SLC6A14 Uptake IA H Apical MDCK-II Leucine N-Ethylmaleimide BAT1, CSNU3 Amino acid transport SLC7A9 Uptake IA H Apical MDCK-II Proline BCRP FDA & EMA DDI guidances; intestinal and BBB efflux, ABCG2 Efflux BD H Apical Caco-2 clone3 Genistein Chrysin biliary secretion, renal tubular secretion and drug resistance VA H, R N/A Vesicle CCK-8 Bromosulfophthalein BD H Apical MDCK-II Prazosin KO143 BSEP EMA DDI guidance; biliary secretion of bile salts, drug ABCB11 Efflux VA H, R, D N/A Vesicle Taurocholate Rifampicin induced liver injury CAT1 Amino acid transport SLC7A1 Uptake IA H Basolateral MDCK-II Arginine Lysine CAT2B Amino acid transport SLC7A2 Uptake IA H Basolateral MDCK-II Arginine CAT3 Amino acid transport SLC7A3 Uptake IA H Basolateral MDCK-II Arginine Lysine CHT Choline transport SLC5A7 Uptake IA H Basolateral MDCK-II Choline CNT1 Nucleoside uptake SLC28A1 Uptake IA H, R Apical MDCK-II Uridine Adenosine CNT2 Nucleoside uptake SLC28A2 Uptake IA H, R Apical MDCK-II Uridine Adenosine CNT3 Nucleoside uptake SLC28A3 Uptake IA H, R Apical MDCK-II