Human Intestinal Nutrient Transporters

Total Page:16

File Type:pdf, Size:1020Kb

Human Intestinal Nutrient Transporters Gastrointestinal Functions, edited by Edgard E. Delvin and Michael J. Lentze. Nestle Nutrition Workshop Series. Pediatric Program. Vol. 46. Nestec Ltd.. Vevey/Lippincott Williams & Wilkins, Philadelphia © 2001. Human Intestinal Nutrient Transporters Ernest M. Wright Department of Physiology, UCLA School of Medicine, Los Angeles, California, USA Over the past decade, advances in molecular biology have revolutionized studies on intestinal nutrient absorption in humans. Before the advent of molecular biology, the study of nutrient absorption was largely limited to in vivo and in vitro animal model systems. This did result in the classification of the different transport systems involved, and in the development of models for nutrient transport across enterocytes (1). Nutrients are either absorbed passively or actively. Passive transport across the epithelium occurs down the nutrient's concentration gradient by simple or facilitated diffusion. The efficiency of simple diffusion depends on the lipid solubility of the nutrient in the plasma membranes—the higher the molecule's partition coefficient, the higher the rate of diffusion. Facilitated diffusion depends on the presence of simple carriers (uniporters) in the plasma membranes, and the kinetic properties of these uniporters. The rate of facilitated diffusion depends on the density, turnover number, and affinity of the uniporters in the brush border and basolateral membranes. The ' 'active'' transport of nutrients simply means that energy is provided to transport molecules across the gut against their concentration gradient. It is now well recog- nized that active nutrient transport is brought about by Na+ or H+ cotransporters (symporters) that harness the energy stored in ion gradients to drive the uphill trans- port of a solute. The rate of active transport of a nutrient depends on the density and kinetics of these cotransporters. The models for passive and active nutrient absorption across the intestinal mucosa have evolved from those derived for sugar absorption (Fig. 1). Fructose is passively absorbed across the intestine by two different uniporters in the brush border and basolateral membranes of enterocytes (2), GLUTS in the brush border and GLUT2 in the basolateral membrane (Table 1) (5-26). In humans, the amount of fructose absorption is limited by the number of brush border GLUT5 transporters, and this accounts for the fact that 80% of the population shows malabsorption symptoms after ingesting 50 g of the sugar (27). Other nutrients (e.g., organic ions) are also passively absorbed across the gut by having two uniporters expressed in series in the brush border and basolateral membranes. Glucose and galactose are actively absorbed by a cotransporter and a uniporter expressed in series. These sugars are accumulated within the cell across the brush 77 78 HUMAN INTESTINAL NUTRIENT TRANSPORTERS Lumen Cell Blood Galactose/ducose Fructose GLUTS tight J lateral intercellular space FIG. 1. A model for nutrient absorption across enterocytes of the small intestine. The passive transport of fructose across the brush border and basolateral membranes of the epithelium is accomplished by two uniporters, GLUT5 and GLUT2. The active transport of glucose and galac- tose across the epithelium occurs in two stages: the first is the accumulation of the sugar within the epithelium by the brush border Na+/glucose cotransporter, SGLT1; the second stage is the transport of sugar out of the cell across the basolateral membrane by the uniporter, GLUT2. Similar models account for the passive and active absorption of other nutrients across the intes- tine. border membrane by an Na+/glucose cotransporter (SGLTJ), and then leave the cell across the basolateral membrane into the blood by facilitated diffusion through GLUT2 (28). Similar models have been proposed to explain the active absorption of vitamins, bile salts, phosphate, dicarboxylates, amino acids, peptides, and trace ions. In some cases, it is the pH gradient across the brush border membrane rather than the Na+ gradient that drives uptake, for example the PEPTI and NRAMP cotransporters (Table 1). The actual identification of the transport proteins proved to be elusive, owing to the inherent problems in working with rare integral membrane proteins. For example, the brush border Na+/glucose cotransporter only accounts for 0.1% of the total protein in the brush border, and it was very difficult to purify and assay by conven- tional biochemical techniques. In fact, it took almost 25 years to identify the trans- porter protein (29). The rapid advances of the past decade have come through the power of molecular biology and the development of heterologous expression systems for transport pro- teins. Nevertheless, it took the development of a novel cloning strategy by Coady, Hediger, and Ikeda in my laboratory—expression cloning (30,31)—to remove the major bottleneck to cloning membrane transporters. Rather than screening comple- mentary DNA (cDNA) libraries with oligonucleotide probes or antibodies, which required the purification of rare membrane proteins, a functional screening approach HUMAN INTESTINAL NUTRIENT TRANSPORTERS 79 TABLE 1. Human intestinal nutrient transporters Gene Substrate Location Reference 1. Na+ cotransporters IA. Na+/glucose family 1. SGLT1 (SLC5A1) Glucose, galactose BBM 3 2. SMVT1 (SLC5A6) Biotin, pantothenate, lipoate BBM 4 3. /V/S(SLC5A5) Iodide BBM 5 4. SMIT (SLC5A3) Myoinositol BBM 6 IB. Na+/ascorbate 1. Sl/C72(SLC23A1) Ascorbate BBM 7 IC. Na+/bile salt 1. ASBT (SLC10A2) Cholate, taurocholate BBM 8 ID. Na+/phosphate 1. NaPi-IIB (SLC34A3) Phosphate BBM 9 IE. Na"7dicarboxylate 1. NaDC 1 (SLC13A2) Citrate, succinate BBM 10 2. ratNaDC2 (SLC13A3) Citrate, succinate BLM 11 IF. Na+/nucleoside 1. SPNT1ICNT2 (SLC28A2) Inosine, uridine BBM 12 2. CNT2 (SLC28AZ) Inosine, uridine BBM 13 IG. Na+/camitine 1. OCTN2 (SLC22A5) Carnitine BBM 14, 15 IH. Na+/H+/K+/glutamate 1. EAAT3/EAAC1 (SLC1A1) Glutamate, aspartate BBM 16 II. H+/peptide 1. PEPT1 (SLC15A1) Di- and tripeptides BBM 17 MB. HVdivalent cations 1. DCT1/NRAMP2 (SLC11A2) Zn, Fe, Cd, Mn, Co, Ni BBM 18 III. Uniporters IMA. Multiple facilitator family (MFS) 1. GLUT2 (SLC2A2) Glucose, galactose, fructose BBM 19 2. GLUT5 (SLC2A5) Fructose BBM 20 11 IB. Organic cation 1. OCT1 (SLC22A2) TEA, choline BLM 21 2. OCT2 (SLC22A) TEA, choline BLM 21 IMC. Folate 1. RFC1/F0LT1 (SLC19A1) Reduced folate BBM? 22 HID. Nucleoside 1. ENT1 (SLC29A1) Purine and pyrimidine 23 nucleosides 2. ENT2 (SLC29A2) Purine and pyrimidine 24, 25 nucleosides HIE. Neutral amino acids 1. M72(SLC7A6) 2. 4F2hc (SLC3A2) Tyrosine, phenylalanine BLM 26 BBM, brush border membrane; BLM, basolateral membranes; TEA, tetraethyl ammonium. Transporters cloned from human intestinal cDNA libraries, or cloned from other human libraries and known to be expressed in the small intestine. The human gene nomenclature used in the table (www.gene.ucl.ac.uk/nomenclature/) is that employed by the database Online Mendelian Inheritance in Man (OMIM) for human genetic disorders (www.ncbi.nlm.nih.gov/Omim). 80 HUMAN INTESTINAL NUTRIENT TRANSPORTERS was used. This rested on the finding that Xenopus laevis oocytes have the remarkable ability to efficiently translate foreign complementary RNA (cRNA) from virtually any source and, in the case of membrane proteins, correctly target the functional protein to the plasma membrane. The rate of sodium-dependent sugar uptake into native oocytes is extraordinarily small (< 0.25 pmol/h for 50 |xM aMDG), but this increases by more than an order of magnitude after injecting 50 ng of intestinal polyA+ RNA into the oocytes (30). Then, this radioactive tracer assay was used to isolate a clone from a rabbit intestinal cDNA that coded for the Na + /glucose cotransporter. Injection of cRNA from the plasmid pMJC 429 into oocytes increased sodium-dependent uptake more than 1,000 times above background (31), and the characteristics of this cloned transport were very similar to those of the native brush border transporter (28,32). The human transporter was cloned soon after using the rabbit cDNA to screen a human intestinal cDNA library (3). Expression cloning is now the method of choice to identify genes coding for membrane transporters. Of the 23 human nutrient transporter clones listed in Table 1, more than half were directly or indirectly isolated by expression cloning and their function characterized by expression in oocytes. Generally, the transporter clones were first isolated from animal cDNA libraries by expression cloning and then from human cDNA libraries by homology screening. In some instances, the cDNA clones were isolated from nonintestinal libraries (e.g., renal or liver libraries) and these genes were subsequently shown to be expressed in the human intestine by Northern blot or reverse transcriptase polymerase chain reaction (RT-PCR) analysis. The func- tional characteristics of these cloned transporters closely match the properties of the transporters in intestinal brush border and basolateral membranes. HUMAN INTESTINAL TRANSPORTERS Thus far, some 23 transporters belonging to 15 gene families have been shown to be expressed in the human intestine (Table 1). Given the pace of research and the advances of the human genome project, this number is expected to grow rapidly. Ion and water channels, pumps, and ion exchangers expressed in the intestine are not included in Table 1. The list is divided into the secondary active transporters expressed in the brush border, and the uniporters expressed in
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Fructose Diet-Induced Hypertension
    Possible Involvement of Up-regulated Salt Dependent Glucose Transporter-5 (SGLT5) in High- fructose Diet-induced Hypertension Hiroaki Hara Saitama Medical Center, Saitama Medical University Kaori Takayanagi Saitama Medical Center, Saitama Medical University Taisuke Shimizu Saitama Medical Center, Saitama Medical University Takatsugu Iwashita Saitama Medical Center, Saitama Medical University Akira Ikari Gifu Pharmaceutical University Hajime Hasegawa ( [email protected] ) Dept. of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kamoda 1981, Kawagoe, Saitama 350-8550, Japan. Research Article Keywords: salt sensitive hypertension, salt reabsorption, extracellular volume, glucose Posted Date: January 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-122315/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/21 Abstract Excessive fructose intake causes a variety of adverse conditions (e.g., obesity, hepatic steatosis, insulin resistance and uric acid overproduction). Particularly, high fructose-induced hypertension is the most common and signicant pathological setting, however, its underlying mechanisms are not established. We investigated these mechanisms in 7-week-old male SD rats fed a diet containing 60% glucose (GLU) or 60% fructose (FRU) for 3, 6, or 12 weeks. Daily food consumption was measured to avoid between- group discrepancies in caloric/salt intake, adjusting for feeding amounts. The FRU rats' mean blood pressure was signicantly higher and fractional sodium excretion (FENa) was signicantly lower, indicating that the high-fructose diet caused salt retention. The FRU rats' kidney weight and glomerular surface area were greater, suggesting that the high-fructose diet induced an increase in extracellular uid volume.
    [Show full text]
  • Small Cell Ovarian Carcinoma: Genomic Stability and Responsiveness to Therapeutics
    Gamwell et al. Orphanet Journal of Rare Diseases 2013, 8:33 http://www.ojrd.com/content/8/1/33 RESEARCH Open Access Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics Lisa F Gamwell1,2, Karen Gambaro3, Maria Merziotis2, Colleen Crane2, Suzanna L Arcand4, Valerie Bourada1,2, Christopher Davis2, Jeremy A Squire6, David G Huntsman7,8, Patricia N Tonin3,4,5 and Barbara C Vanderhyden1,2* Abstract Background: The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. Method: The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. Results: BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing.
    [Show full text]
  • Iron Transport Proteins: Gateways of Cellular and Systemic Iron Homeostasis
    Iron transport proteins: Gateways of cellular and systemic iron homeostasis Mitchell D. Knutson, PhD University of Florida Essential Vocabulary Fe Heme Membrane Transport DMT1 FLVCR Ferroportin HRG1 Mitoferrin Nramp1 ZIP14 Serum Transport Transferrin Transferrin receptor 1 Cytosolic Transport PCBP1, PCBP2 Timeline of identification in mammalian iron transport Year Protein Original Publications 1947 Transferrin Laurell and Ingelman, Acta Chem Scand 1959 Transferrin receptor 1 Jandl et al., J Clin Invest 1997 DMT1 Gunshin et al., Nature; Fleming et al. Nature Genet. 1999 Nramp1 Barton et al., J Leukocyt Biol 2000 Ferroportin Donovan et al., Nature; McKie et al., Cell; Abboud et al. J. Biol Chem 2004 FLVCR Quigley et al., Cell 2006 Mitoferrin Shaw et al., Nature 2006 ZIP14 Liuzzi et al., Proc Natl Acad Sci USA 2008 PCBP1, PCBP2 Shi et al., Science 2013 HRG1 White et al., Cell Metab DMT1 (SLC11A2) • Divalent metal-ion transporter-1 • Former names: Nramp2, DCT1 Fleming et al. Nat Genet, 1997; Gunshin et al., Nature 1997 • Mediates uptake of Fe2+, Mn2+, Cd2+ • H+ coupled transporter (cotransporter, symporter) • Main roles: • intestinal iron absorption Illing et al. JBC, 2012 • iron assimilation by erythroid cells DMT1 (SLC11A2) Yanatori et al. BMC Cell Biology 2010 • 4 different isoforms: 557 – 590 a.a. (hDMT1) Hubert & Hentze, PNAS, 2002 • Function similarly in iron transport • Differ in tissue/subcellular distribution and regulation • Regulated by iron: transcriptionally (via HIF2α) post-transcriptionally (via IRE) IRE = Iron-Responsive Element Enterocyte Lumen DMT1 Fe2+ Fe2+ Portal blood Enterocyte Lumen DMT1 Fe2+ Fe2+ Fe2+ Fe2+ Ferroportin Portal blood Ferroportin (SLC40A1) • Only known mammalian iron exporter Donovan et al., Nature 2000; McKie et al., Cell 2000; Abboud et al.
    [Show full text]
  • Viewed Under 23 (B) Or 203 (C) fi M M Male Cko Mice, and Largely Unaffected Magni Cation; Scale Bars, 500 M (B) and 50 M (C)
    BRIEF COMMUNICATION www.jasn.org Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron Camille Ansermet,* Matthias B. Moor,* Gabriel Centeno,* Muriel Auberson,* † † ‡ Dorothy Zhang Hu, Roland Baron, Svetlana Nikolaeva,* Barbara Haenzi,* | Natalya Katanaeva,* Ivan Gautschi,* Vladimir Katanaev,*§ Samuel Rotman, Robert Koesters,¶ †† Laurent Schild,* Sylvain Pradervand,** Olivier Bonny,* and Dmitri Firsov* BRIEF COMMUNICATION *Department of Pharmacology and Toxicology and **Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland; †Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts; ‡Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia; §School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; |Services of Pathology and ††Nephrology, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland; and ¶Université Pierre et Marie Curie, Paris, France ABSTRACT Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is crit- leaves.4 Most recently, Legati et al. have ical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the shown an association between genetic kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical polymorphisms in Xpr1 and primary fa- sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the milial brain calcification disorder.5 How- molecular identity of the protein(s) participating in the basolateral Pi efflux remains ever, the role of XPR1 in the maintenance unknown. Evidence has suggested that xenotropic and polytropic retroviral recep- of Pi homeostasis remains unknown. Here, tor 1 (XPR1) might be involved in this process. Here, we show that conditional in- we addressed this issue in mice deficient for activation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi Xpr1 in the nephron.
    [Show full text]
  • Primary and Secondary Thyroid Hormone Transporters Anita Kinne, Ralf Schülein, Gerd Krause*
    Kinne et al. Thyroid Research 2011, 4(Suppl 1):S7 http://www.thyroidresearchjournal.com/content/4/S1/S7 REVIEW Open Access Primary and secondary thyroid hormone transporters Anita Kinne, Ralf Schülein, Gerd Krause* Abstract Thyroid hormones (TH) are essential for the development of the human brain, growth and cellular metabolism. Investigation of TH transporters became one of the emerging fields in thyroid research after the discovery of inactivating mutations in the Monocarboxylate transporter 8 (MCT8), which was found to be highly specific for TH transport. However, additional transmembrane transporters are also very important for TH uptake and efflux in different cell types. They transport TH as secondary substrates and include the aromatic amino acid transporting MCT10, the organic anion transporting polypeptides (e.g. OATP1C1, OATP1A2, OPTP1A4) and the large neutral amino acid transporters (LAT1 and LAT2). These TH transporters characteristically possess 12 transmembrane spanners but due to the strong differing sequences between the three transporter families we assume an identical conformation is not very likely. In contrast to the others, the LAT family members form a heterodimer with the escort protein 4F2hc/CD98. A comparison of sequence proportions, locations and types of functional sensitive features for TH transport discovered by mutations, revealed that transport sensitive charged residues occur as conserved amino acids only within each family of the transporter types but not in all putative TH transporters. Based on the lack of highly conserved sensitive charged residues throughout the three transporter families as a common counterpart for the amino acid moiety of the substrates, we conclude that the molecular transport mechanism is likely organized either a) by different molecular determinants in the divergent transporter types or b) the counterparts for the substrates` amino acid moiety at the transporter are not any charged side chains but other proton acceptors or donators.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Expression Cloning of a Human Dual-Specificity Phosphatase TOSHIO ISHIBASHI, DONALD P
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 12170-12174, December 1992 Biochemistry Expression cloning of a human dual-specificity phosphatase TOSHIO ISHIBASHI, DONALD P. BOTTARO, ANDREW CHAN, TORU MIKI, AND STUART A. AARONSON* Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892 Communicated by Leon A. Heppel, September 24, 1992 ABSTRACT Using an expression cloning strategy, we iso- substrate specificity for both phosphotyrosine and phospho- lated a cDNA encoding a human protein-tyrosine-phosphatase. serine. Bacteria expressing the kinase domain of the keratinocyte growth factor receptor (bek/fibroblast growth factor receptor 2) were infected with a fibroblast cDNA library in a phanid MATERIALS AND METHODS prokaryotic expression vector and screened with a monoclonal Plamid Construction of bek Kiame. The EcoRI-Sal I anti-phosphotyrosine antibody. Among several clones showing fragment of the mouse keratinocyte growth factor (KGF) decreased anti-phosphotyrosine recognition, one displayed receptor cDNA (15), which includes the kinase and carboxyl- phosphatase activity toward the kinase in vitro. The 4.1- terminal domains (residues 361-707), was ligated to the kilobase cDNA encoded a deduced protein of 185 amino ds EcoRP-Sal I fragment ofthe expression vector pCEV-lacZ to with limited sequence similar to the vaccinia virus phospha- generate the plasmid pCEV-bek (Fig. 1A). pCEV-lacZ is a tase VH1. The puriffied recombinant protein dephosphorlated pUC-based plasmid expression vector that produces a 3-gal several activated growth factor receptors, as well as serine- fusion protein under the control of the lac promoter (see phosphorylated casein, in vitro. Both serine and tyrosine phos- below).
    [Show full text]
  • Mouse Slc22a2 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Slc22a2 Knockout Project (CRISPR/Cas9) Objective: To create a Slc22a2 knockout Mouse model (C57BL/6N) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Slc22a2 gene (NCBI Reference Sequence: NM_013667 ; Ensembl: ENSMUSG00000040966 ) is located on Mouse chromosome 17. 11 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 11 (Transcript: ENSMUST00000046959). Exon 2 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a knockout allele are viable and fertile and display no obvious phenotypic abnormalities. No significant defects in the renal secretion of a model organic cation are observed. Exon 2 starts from about 25.02% of the coding region. Exon 2 covers 6.27% of the coding region. The size of effective KO region: ~104 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 11 Legends Exon of mouse Slc22a2 Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 2 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats.
    [Show full text]
  • Invited Review Ion Transport in Chondrocytes: Membrane
    Histol Histopathol (1998) 13: 893-910 Histology and 001: 10.14670/HH-13.893 Histopathology http://www.hh.um.es From Cell Biology to Tissue Engineering Invited Review Ion transport in chondrocytes: membrane transporters involved in intracellular ion homeostasis and the regulation of cell volume, free [Ca2+] and pH A. MobasherP, R. Mobasherl2, M.J.O. Francis3, E. Trujillo4, D. Alvarez de la Rosa4 and P. Martin-Vasallo4 1 University Laboratory of Physiology, University of Oxford, and Department of Biomedical Sciences, School of Biosciences, University of Westminster, London, 2United Medical and Dental Schools of Guy's and St Thomas's Hospitals, London, 3Nuffield Department of Orthopaedic Surgery, Nuffield Orthopaedic Centre, Headington, UK and 4Laboratory of Developmental Biology, Department of Biochemistry and Molecular Biology, University of La Laguna, La Laguna, Tenerife, Spain Summary. Chondrocytes exist in an unusual and their patterns of isoform expression underscore the variable ionic and osmotic environment in the extra­ subtlety of ion homeostasis and pH regulation in normal cellular matrix of cartilage and are responsible for cartilage. Perturbations in these mechanisms may affect maintaining the delicate equilibrium between extra­ the physiological turnover of cartilage and thus increase cellular matrix synthesis and degradation. The the susceptibility to degenerative joint disease. mechanical performance of cartilage relies on the biochemical properties of the matrix. Alterations to the Key words: Chondrocyte, Cartilage, Ion transport, £H ionic and osmotic extracellular environment of chondro­ regulation, Na+, K+-ATPase, Na+/H+ exchange, Ca +­ cytes have been shown to influence the volume, ATPase intracellular pH and ionic content of the cells, which in turn modify the synthesis and degradation of extra­ cellular matrix macromolecules.
    [Show full text]
  • The Concise Guide to Pharmacology 2019/20
    Edinburgh Research Explorer THE CONCISE GUIDE TO PHARMACOLOGY 2019/20 Citation for published version: Cgtp Collaborators 2019, 'THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters', British Journal of Pharmacology, vol. 176 Suppl 1, pp. S397-S493. https://doi.org/10.1111/bph.14753 Digital Object Identifier (DOI): 10.1111/bph.14753 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: British Journal of Pharmacology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology (2019) 176, S397–S493 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters Stephen PH Alexander1 , Eamonn Kelly2, Alistair Mathie3 ,JohnAPeters4 , Emma L Veale3 , Jane F Armstrong5 , Elena Faccenda5 ,SimonDHarding5 ,AdamJPawson5 , Joanna L
    [Show full text]
  • US5266490.Pdf
    ||||||||||||I|| US005266490A United States Patent (19) 11 Patent Number: 5,266,490 Davis et al. 45 Date of Patent: Nov.30, 1993 (54) MAMMALIAN EXPRESSION VECTOR Maniatis et al. (1990), Molecular Cloning: A Laboratory Manual, vol. 2, pp. 16.3-16.81. 75 Inventors: Samuel Davis, New York; George D. Martson (1987), DNA Cloning: A Practical Approach, Yancopoulos, Briarcliff Manor, both vol. 3, Chap. 4, pp. 59-88. of N.Y. Mizushima et al. (1990), Nucl. Acids Res. 18 (17): 5322. 73) Assignee: Regeneron Pharmaceuticals, Inc., Sambrook et al. (1988), Focus 10(3): 41-48. Tarrytown, N.Y. Simmons et al. (1988), J. Immunol. 141 (8): 2797-2800. Spector (1985), Genet. Engineering 7: 199-234. (21) Appl. No.: 678,408 Stamenkovic et al. (1988), J. Exp. Med. 167: 1975-1980. (22 Filed: Mar. 28, 1991 Urlaub et al. (1980), Proc. Nat. Acad. Sci USA 77(7): 51) Int. Cl.5...................... C12N 15/79; C12N 15/12; 426-4220. C12N 15/18 Woeltje et al. (1990), J. Biol. Chem. 265 (18): 10720-10725. 52) U.S. C. ................................ 435/320.1; 536/23.4; Wysocki et al. (1978); Proc. Nat. Acad. Sci USA 75(6): 536/23.5; 536/24.1 2844-2848. 58) Field of Search ................. 435/320.1, 69.1, 172.3; Seed, B. (Oct. 1987), Nature, vol. 329, pp. 840-842. 536/27, 24.1, 23.4, 23.5 Yanisch-Perron et al. (1985), Gene, vol. 33, pp. (56) References Cited 103-119. PUBLICATIONS Seed et al. (May, 1987), Proc. Nat. Acad. Sci USA, vol. 84, pp. 3365-3369.
    [Show full text]