<I>Catomerus Polymerus</I>

Total Page:16

File Type:pdf, Size:1020Kb

<I>Catomerus Polymerus</I> AUSTRALIAN MUSEUM MEMOIR 18 Papers from the Conference on the Biology and Evolution of Crustacea HELD AT THE AUSTRALIAN MUSEUM SYDNEY, 1980 Edited by JAMES K. LOWRY The Australian Museum, Sydney Published by order of the Trustees of the Australian Museum Sydney, New South Wales, Australia 1983 Manuscripts accepted for publication 1 April, 1982 7 CA TOMERUS POLYMERUS AND THE EVOLUTION OF THE BALANOMORPH FORM IN BARNACLES (CIRRIPEDIA) D.T.ANDERSON School of Biological Sciences, University of Sydney Sydney, N.S.W. 2006, Australia SUMMARY On the basis of comparative anatomy, Darwin proposed that the catophragmid C. polymerus, representing the basic form among balanomorphs, had evolved from a scalpellid lepadomorph ancestry. This hypothesis has since been supported by fossil evidence, but has not been tested by the techniques of comparative functional morphology. Functional studies of C. po!ymerus and Ca!antica villosa have now shown that an evolution of catophragmid balanomorphs from calanticine scalpellids is functionally feasible, upholding Darwin's proposal. C. polymerus retains the scalpellid mode of planktivorous extension feeding, except for further modification of the first two pairs of cirri as short maxillipeds acting in forward food transfer in a limited space. The basic adaptive significance of the foreshortened form and flattened operculum of C. po!ymerus lies in allowing a species with this mode of feeding to inhabit a high energy intertidal environment. Protection against certain kinds of predation may also have been important. The development of the opercular valves from capitular plates and their changed orientation relative to the wall is accommodated by further modification of a hinge mechanism already present in calanticine scalpeIlids. The closure mechanism of the operculum involves supplementation of the action of the adductor scutorum by the downward pull of large tergal depressor muscles, evolved as a modification of the peduncular longitudinal muscles of calanticines. Massive tergal and small scutal depressor muscles, a basic balanomorph condition, are functionally associated with a large prosoma and paired branchiae occupying the rostral part of the limited mantle cavity. Introduction Catomerus polymerus (Darwin) is a common balanomorph barnacle on the rocky shores of southeastern Australia (Pope, 1965), easily distinguished by its eight wall plates supplemented by several concentric whorls of marginal plates (Fig. la). The recent revision of the Balanomorpha by Newman and Ross (1976) follows Utinomi (1968) and places C. po!ymerus in the family Catophragmidae of the superfamiIy Chthamaloidea. The species was first described by Darwin (1854) in his monograph on the Balanidae, from specimens collected from Twofold Bay, N.S.W. Darwin placed his specimens in the genus Catophragmus, previously erected by Sower by (1826) for a similar animal, Catophragmus imbricatus Sowerby, known as two shells from Antigua in the West Indies in the collections of the British Museum. Pilsbry (1916) with more material of C. imbricatus at his disposal from Bermuda, recognised a difference between the two species sufficient to require transfer of C. polymerus to another genus, which he named Catomerus. A difference already noted by Darwin, is the presence in C. imbricatus of a pair of caudal appendages, absent in C. polymerus. The distinction between the two is otherwise minor, comprising slight diff~rences in the operculum and basis. In a personal communication, W.A. Newman writes "I have despaired of finding much if any differences in the appendages between the two." At the same time, it has been recognised recently that C. imbricatus is now confined to the tropical W. Atlantic (Antigua and Bermuda), while the animals on the other side of the isthmus, in Panama and Costa Rica, are a distinct species, C. pilsbryi Broch (Southward and Newman, 1977). The Catophragmidae also includes another surviving form, Chionelasmus darwini (Pilsbry), which apparently has a disjunct distribution, Hawaii and New Zealand in the Pacific Ocean and the Rodriguez 8 D.T. ANDERSON Fig. I. a, Catomerus po!ymerus, apical view. b, Pollicipes po!ymerus, right lateral view. e, carina; cl, carinolateral; I, lateral; p, peduncle; r, rostrum; rt, rostrolateral; s, subcarina; se, scutum; sr, subrostrum; le, tergum. Islands in the Western Indian Ocean, as a benthic shelf form at 450-460 m (Stanley and Newman, 1980). Chionelasmus is more advanced than Catophragmus or Catomerus in some features of its carapace. The wall plates are 6 in number, as in most balanomorphs, and there is only a single whorl of supplementary plates outside the primary wall plates. The general anatomy of the body and limbs, however, remains catophragmid. Catomerus polymerus is therefore a typical representative of the Catophragmidae. Darwin, in a delightful example of his thinking in evolutionary terms, recognised immediately the phylogenetic importance of this animal, which "forms in a very remarkable way the transitional link between" the lepadomorphs and the balanomorphs, "for it is impossible not to be struck with the resemblance of its shell with the capitulum of Pollicipes" (see Fig. 1b). "In Pollicipes, at least in certain species, the scuta and terga are articulated together-the carina, rostrum and three pairs of latera, making altogether eight inner valves, are considerably larger than those of the outer whorls-the arrangement of the latter, their manner of growth and union,-all are as in Catophragmus. If we, in imagination, unite some of the characters found in the different species of Pollicipes, and then make the peduncle so short (and it sometimes is very short in P. mite/la) that the valves of the capitulum should touch the surface of attachment, it would be impossible to point out a single external character by which the two genera in these two distinct families could be distinguished." While Darwin went on to recognise that there were some fairly major internal differences, especially in the arrangement of the mantle musculature, that he was unable to explain, he saw Catomerus not only as an indicator of a scalpellid ancestry for the baianomorph form, but also as a form ancestral to other baianomorphs. "Considering the whole structure, external and internal, of Catophragmus, with the great exception of the exterior whorls of valves, there is hardly a single generic character by which it can be separated from Octomeris and Pachylasma"; and the generalised position of Octomeris and Pachylasma at the base of the balanomorph stock continues to be recognised to this day (Newman and Ross, 1976). Darwin, then, presented a hypothesis of the origin of the Balanomorpha-that they had evolved from a scaipellid ancestry via forms represented today by the catophragmids, which in turn gave origin to the other balanomorphs. EVOLUTION OF BALANOMORPH FORM IN BARNACLES 9 se te Fig. 2. a, Seillae/epas dorsata, right lateral view. b,S. dorsata, plan of capitular plates. c, Catomerus polymerus, right lateral view. 11, C. po/ymerus, plan of wall plates. (From Newman, Zullo and Withers, 1969, reproduced with permission, courtesy of the Geological Society of America and University of Kansas.) e, carina; cl, carinolateral; I, lateral; r, rostrum; rI, rostrolateral; se, scutum; te, tergum. In the years since 1854 this hypothesis, based on comparative anatomy, has gained further support from fossil evidence. Withers (1935) described from the Cretaceous of Sweden a fossil catophragmid, Pachydiadema cretaceum, which remains the only known Mesozoic balanomorph. This discovery placed the catophragmids chronologically at the base of balanomorph evolution in the later Mesozoic, a time of abundant and diverse sca\pellids (Newman, Zullo and Withers, 1969). P. cretaceum, furthermore, shows opercular features more like those of scalpellids than the modern catophragmids, which can now be recognised as relicts of a family of once widespread distribution (Stanley and Newman, 1980). Newman et al. (1969) following Aurivillius (1894), developed the idea of a scalpellid ancestry further in a comparison (see Fig. 2) of the plate arrangements of C. polymerus and the Eocene calanticine Scillaelepas dorsata (Steenstrup). Allowing for only a minor modification of the position of the laterals in relation to the rostrolaterals and carinolaterais, the arrangement of the capitular plates in C. dorsata is one which can be easily envisaged, with foreshortening of the stalk, to have become modified to that of the wall plates of C. polymerus. Since Scillaelepas and Calantica are thought to be central and early evolved genera within the calanticine scalpellids, first appearing in the Upper Jurassic (Newman, 1979), Darwin's hypothesis gains further support from this evidence, as it does from the cirral and mouth part anatomy of the two groups. Pollicipoid scalpellids, including calanticines and pollicipines (Zevina, 1978), show some modification of the first and to a lesser extent the second pair of cirri as maxillipeds (Figs 3a, 3d), and have a characteristic setation of the four posterior pairs of cirri (Fig. 4b). Each cirral segment carries several pairs of long setae anterolaterally and has a bunch of short, forwardly projecting setae between them on the anterior face of the segment. C. polymerus shares this feature in the setation of the four posterior pairs of cirri (Fig. 4a), but it exhibits a greater modification of the first two pairs (Figs 3b, 3c) as short maxillipeds (Darwin, 1854; Pope, 1965). A striking similarity also attends the 10 D.T. ANDERSON a c d Fig. 3. a, Left cirrus I of Calantica villosa, median view. b, Left cirrus I of Catomerus polymerus, median view. c, Left cirrus II of C. polymerus, median view. d, Left cirrus II of C. villosa, median view. en, endopod; ex, exopod. oral cone and mouthparts (Fig. 5) (Darwin, 1854; Pilsbry, 1916; Nilsson-Cantell, 1926; Pope, 1965; Newman and Ross, 1976; Foster, 1978). The labrum is bullate. The palps are simple, and setose mainly at the tips. The mandibles are tri- or quadridentoid, with a well developed incisor tooth and a strong, setose or pectinated molar process.
Recommended publications
  • Evolutionary History of Inversions in the Direction of Architecture-Driven
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Evolutionary history of inversions in the direction of architecture- driven mutational pressures in crustacean mitochondrial genomes Dong Zhang1,2, Hong Zou1, Jin Zhang3, Gui-Tang Wang1,2*, Ivan Jakovlić3* 1 Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Bio-Transduction Lab, Wuhan 430075, China * Corresponding authors Short title: Evolutionary history of ORI events in crustaceans Abbreviations: CR: control region, RO: replication of origin, ROI: inversion of the replication of origin, D-I skew: double-inverted skew, LBA: long-branch attraction bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Inversions of the origin of replication (ORI) of mitochondrial genomes produce asymmetrical mutational pressures that can cause artefactual clustering in phylogenetic analyses. It is therefore an absolute prerequisite for all molecular evolution studies that use mitochondrial data to account for ORI events in the evolutionary history of their dataset.
    [Show full text]
  • Larval Development of Shallow Water Barnacles of the Carolinas (Cirripedia
    421 NOAA Technical Report Circular 421 OF <•*>" *o, Larval Development of / Shallow Water Barnacles of the Carolinas (Cirripedia: Sr V/ *TES O* Thoracica) With Keys to Naupliar Stages William H. Lang February 1979 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA TECHNICAL REPORTS National Marine Fisheries Service, Circulars The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The NOAA Technical Report NMFS Circular series continues a series that has been in existence since 1941. The Circulars are technical publications of general interest intended to aid conservation and management. Publications that review in considerable detail and at a high technical level certain broad areas of research appear in this series. Technical papers originating in economics studies and from management in- vestigations appear in the Circular series. NOAA Technical Report NMFS Circulars are available free in limited numbers to governmental agencies, both Federal and State.
    [Show full text]
  • Balanus Glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia
    Phylum: Arthropoda, Crustacea Balanus glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia Order: Thoracica, Sessilia, Balanomorpha Acorn barnacle Family: Balanoidea, Balanidae, Balaninae Description (the plate overlapping plate edges) and radii Size: Up to 3 cm in diameter, but usually (the plate edge marked off from the parietes less than 1.5 cm (Ricketts and Calvin 1971; by a definite change in direction of growth Kozloff 1993). lines) (Fig. 3b) (Newman 2007). The plates Color: Shell usually white, often irregular themselves include the carina, the carinola- and color varies with state of erosion. Cirri teral plates and the compound rostrum (Fig. are black and white (see Plate 11, Kozloff 3). 1993). Opercular Valves: Valves consist of General Morphology: Members of the Cirri- two pairs of movable plates inside the wall, pedia, or barnacles, can be recognized by which close the aperture: the tergum and the their feathery thoracic limbs (called cirri) that scutum (Figs. 3a, 4, 5). are used for feeding. There are six pairs of Scuta: The scuta have pits on cirri in B. glandula (Fig. 1). Sessile barna- either side of a short adductor ridge (Fig. 5), cles are surrounded by a shell that is com- fine growth ridges, and a prominent articular posed of a flat basis attached to the sub- ridge. stratum, a wall formed by several articulated Terga: The terga are the upper, plates (six in Balanus species, Fig. 3) and smaller plate pair and each tergum has a movable opercular valves including terga short spur at its base (Fig. 4), deep crests for and scuta (Newman 2007) (Figs.
    [Show full text]
  • Vertical and Cross-Shore Distributions of Barnacle Larvae in La Jolla, CA Nearshore Waters
    University of San Diego Digital USD Theses Theses and Dissertations Summer 8-31-2017 Vertical and cross-shore distributions of barnacle larvae in La Jolla, CA nearshore waters: implications for larval transport processes Malloree Lynn Hagerty University of San Diego Follow this and additional works at: https://digital.sandiego.edu/theses Part of the Environmental Sciences Commons, Marine Biology Commons, and the Oceanography Commons Digital USD Citation Hagerty, Malloree Lynn, "Vertical and cross-shore distributions of barnacle larvae in La Jolla, CA nearshore waters: implications for larval transport processes" (2017). Theses. 25. https://digital.sandiego.edu/theses/25 This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital USD. It has been accepted for inclusion in Theses by an authorized administrator of Digital USD. For more information, please contact [email protected]. UNIVERSITY OF SAN DIEGO San Diego Vertical and cross-shore distributions of barnacle larvae in La Jolla, CA nearshore waters: implications for larval transport processes A thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Marine Science by Malloree L. Hagerty Thesis Committee Nathalie B. Reyns, Ph.D., Chair Jennifer C. Prairie, Ph.D. Jesús Pineda, Ph.D. 2017 The thesis of Malloree L. Hagerty is approved by: Nathalie B. Reyns, Ph.D., Thesis Cgmmittee Chair University of San Diego JennifG?'C. Prairie1 Ph.D., Tfiesis Committee Member University of San Diego Jesus Pineda, Ph.D., The~is Committee Member Woods Hole Oceanographic Institution University of San Diego San Diego 2017 ii ii Copyright 2017 Malloree Hagerty iii ACKNOWLEDGMENTS I’d like to thank my advisor, Dr.
    [Show full text]
  • A Possible 150 Million Years Old Cirripede Crustacean Nauplius and the Phenomenon of Giant Larvae
    Contributions to Zoology, 86 (3) 213-227 (2017) A possible 150 million years old cirripede crustacean nauplius and the phenomenon of giant larvae Christina Nagler1, 4, Jens T. Høeg2, Carolin Haug1, 3, Joachim T. Haug1, 3 1 Department of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Planegg- Martinsried, Germany 2 Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark 3 GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 Munich, Germany 4 E-mail: [email protected] Key words: nauplius, metamorphosis, palaeo-evo-devo, Cirripedia, Solnhofen lithographic limestones Abstract The possible function of giant larvae ................................ 222 Interpretation of the present case ....................................... 223 The larval phase of metazoans can be interpreted as a discrete Acknowledgements ....................................................................... 223 post-embryonic period. Larvae have been usually considered to References ...................................................................................... 223 be small, yet some metazoans possess unusually large larvae, or giant larvae. Here, we report a possible case of such a giant larva from the Upper Jurassic Solnhofen Lithographic limestones (150 Introduction million years old, southern Germany), most likely representing an immature cirripede crustacean (barnacles and their relatives). The single specimen was documented with up-to-date
    [Show full text]
  • The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group
    The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group THE MARINE BIODIVERSITY AND FISHERIES CATCHES OF THE PITCAIRN ISLAND GROUP M.L.D. Palomares, D. Chaitanya, S. Harper, D. Zeller and D. Pauly A report prepared for the Global Ocean Legacy project of the Pew Environment Group by the Sea Around Us Project Fisheries Centre The University of British Columbia 2202 Main Mall Vancouver, BC, Canada, V6T 1Z4 TABLE OF CONTENTS FOREWORD ................................................................................................................................................. 2 Daniel Pauly RECONSTRUCTION OF TOTAL MARINE FISHERIES CATCHES FOR THE PITCAIRN ISLANDS (1950-2009) ...................................................................................... 3 Devraj Chaitanya, Sarah Harper and Dirk Zeller DOCUMENTING THE MARINE BIODIVERSITY OF THE PITCAIRN ISLANDS THROUGH FISHBASE AND SEALIFEBASE ..................................................................................... 10 Maria Lourdes D. Palomares, Patricia M. Sorongon, Marianne Pan, Jennifer C. Espedido, Lealde U. Pacres, Arlene Chon and Ace Amarga APPENDICES ............................................................................................................................................... 23 APPENDIX 1: FAO AND RECONSTRUCTED CATCH DATA ......................................................................................... 23 APPENDIX 2: TOTAL RECONSTRUCTED CATCH BY MAJOR TAXA ............................................................................
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin
    California State University, Monterey Bay Digital Commons @ CSUMB Capstone Projects and Master's Theses Capstone Projects and Master's Theses Summer 2020 Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin Kenji Jordi Soto California State University, Monterey Bay Follow this and additional works at: https://digitalcommons.csumb.edu/caps_thes_all Recommended Citation Soto, Kenji Jordi, "Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin" (2020). Capstone Projects and Master's Theses. 892. https://digitalcommons.csumb.edu/caps_thes_all/892 This Master's Thesis (Open Access) is brought to you for free and open access by the Capstone Projects and Master's Theses at Digital Commons @ CSUMB. It has been accepted for inclusion in Capstone Projects and Master's Theses by an authorized administrator of Digital Commons @ CSUMB. For more information, please contact [email protected]. HYDROTEHRMAL VENT PERIPHERY INVERTEBRATE COMMUNITY HABITAT PREFERENCES OF THE LAU BASIN _______________ A Thesis Presented to the Faculty of Moss Landing Marine Laboratories California State University Monterey Bay _______________ In Partial Fulfillment of the Requirements for the Degree Master of Science in Marine Science _______________ by Kenji Jordi Soto Spring 2020 CALIFORNIA STATE UNIVERSITY MONTEREY BAY The Undersigned Faculty Committee Approves the Thesis of Kenji Jordi Soto: HYDROTHERMAL VENT PERIPHERY INVERTEBRATE COMMUNITY HABITAT PREFERENCES OF THE LAU BASIN _____________________________________________
    [Show full text]
  • Cladistic Analysis of the Cirripedia Thoracica
    UvA-DARE (Digital Academic Repository) Cladistic analysis of the Cirripedia Thoracica Schram, F.R.; Glenner, H.; Hoeg, J.T.; Hensen, P.G. Publication date 1995 Published in Zoölogical Journal of the Linnean Society Link to publication Citation for published version (APA): Schram, F. R., Glenner, H., Hoeg, J. T., & Hensen, P. G. (1995). Cladistic analysis of the Cirripedia Thoracica. Zoölogical Journal of the Linnean Society, 114, 365-404. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:28 Sep 2021 Zoological Journal of the Linnean Society (1995), 114: 365–404. With 12 figures Cladistic analysis of the Cirripedia Thoracica HENRIK GLENNER,1 MARK J. GRYGIER,2 JENS T. HOšEG,1* PETER G. JENSEN1 AND FREDERICK R.
    [Show full text]
  • Cladistic Analysis of the Cirripedia Thoracica
    UvA-DARE (Digital Academic Repository) Cladistic analysis of the Cirripedia Thoracica Schram, F.R.; Glenner, H.; Hoeg, J.T.; Hensen, P.G. Published in: Zoölogical Journal of the Linnean Society Link to publication Citation for published version (APA): Schram, F. R., Glenner, H., Hoeg, J. T., & Hensen, P. G. (1995). Cladistic analysis of the Cirripedia Thoracica. Zoölogical Journal of the Linnean Society, 114, 365-404. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl) Download date: 19 Jan 2020 Zoological Journal of the Linnean Society (1995), 114: 365–404. With 12 figures Cladistic analysis of the Cirripedia Thoracica HENRIK GLENNER,1 MARK J. GRYGIER,2 JENS T. HOšEG,1* PETER G. JENSEN1 AND
    [Show full text]
  • The Recent Species of Megabalanus (Cirripedia: Balanomorpha) with Special Emphasis on Balanus Tintinnabulum (Linnaeus) Sensu Lato
    THE RECENT SPECIES OF MEGABALANUS (CIRRIPEDIA: BALANOMORPHA) WITH SPECIAL EMPHASIS ON BALANUS TINTINNABULUM (LINNAEUS) SENSU LATO by DORA P. HENRY and PATSY A. MCLAUGHLIN Henry, Dora P. & Patsy A. McLaughlin: The Recent species of Megabalanus (Cirripedia: Balanomorpha) with special emphasis on Balanus tintinnabulum (Linnaeus) sensu lato. Zool. Verh. Leiden 235, 25-viii-1986: 1-69, figs. 1-14, appendix. — ISSN 0024-1652. Key words: Crustacea; Cirripedia; Balanomorpha; Megabalanus; key, species. Since Darwin's (1854) description of 11 varieties of Megabalanus tintinnabulum (Linnaeus) [as Balanus tintinnabulum], 26 Recent taxa have been assigned to the genus. In this review, two taxa confounded by Darwin are reestablished [i.e., M. crispatus (Schroter) and M. dorbignii (Chenu)]. M. antillensis (Pilsbry) and M. intermedius (Darwin) are placed in synonymy with M. tintin- nabulum sensu stricto. M. galapaganus (Pilsbry) is synonymized with M. peninsularis (Pilsbry) and M. xishaensis Xianqui & Liu is considered a synonym of M. occator. Diagnoses and an il- lustrated key to the species are presented. Lectotypes are designated for M. tintinnabulum, M. crispatus, M. dorbignii, M. coccopoma (Darwin), M. spinosus (Chenu), M. validus (Darwin), and M. ajax (Darwin). Dora P. Henry, School of Oceanography, University of Washington, Seattle, Washington 98195, U.S.A. Patsy A. McLaughlin, Department of Biological Sciences, Florida International University, Miami, Florida 33199, U.S.A. TABLE OF CONTENTS Introduction 3 Historical Account 5 Taxonomic Account 9 Megabalaninae 9 Megabalanus 9 Key to the recent species of Megabalanus 10 M. tintinnabulum (Linnaeus) 17 M. azoricus (Pilsbry) 21 M. californicus (Pilsbry) 22 M. clippertonensis (Zullo) 23 M. coccopoma (Darwin) 25 M.
    [Show full text]
  • Cirripedia, Thoracica) De La Región Sur De La Península De Baja California, México
    INSTITUTO POLITÉCNICO NACIONAL Centro Interdisciplinario de Ciencias Marinas Departamento de Plancton y Ecología Marina Tesis Sistemática de los Balanomorfos (Cirripedia, Thoracica) de la Región Sur de la Península de Baja California, México. Que para obtener el grado de Maestro en Ciencias con especialidad en Manejo de Recursos Marinos Presenta: Biol. Mar. Liza Edith Gómez Daglio La Paz, B. C. S. Junio de 2003. A MIS PADRES (Henny y Arturo) A ORSITO AGRADECIMIENTOS A mis dos maravillosos y más dulces jefes (jefazo y jefecito: Enrique y Ricardo) mil gracias por todo su apoyo, paciencia y enseñanzas, pero sobre todo por su amistad, por creer en mi y en mis locos bichos aberrantes. A la fundación ROSAS-GÓMEZ-DAGLIO gracias a la cual pude finalizar este trabajo, ya que además de su amor, paciencia y comprensión, siempre han estado a mi lado. A mis queridísimos abuelos (NANA y RUDY) como decir cuanto los quiero. Mis tíos y primos que siempre piensan en mí. Abuelita, por este trabajo es que no te escribo cartas, mis tíos Ana & Ross, Terry &Lila y las tías Yolandas Daglio. Al Maestro Siqueiros, gracias por su paciencia y por todo lo que he aprendido gracias a usted. Bob Van Syoc , thanks for your for comments, patience and for believe in me and my work. Maestro Pepe de La Cruz por sus comentarios hacia este trabajo. Roommate y Paty, por hacer de mi estancia en CICIMAR algo super agradable ya que su amistad, compañía y comentarios siempre lograron sacar de mi una sonrisa. A mis hijos: José bien sabes cuanto te quiero, Joe (peludito) cuídate y gracias por estar cerca de mí.
    [Show full text]