The Rise of Quantum Mechanics 3

Total Page:16

File Type:pdf, Size:1020Kb

The Rise of Quantum Mechanics 3 QUADERNIDISTORIADELLAFISICA N.0-June2008 The Rise of Quantum Mechanics Sigfrido Boffi Dipartimento di Fisica Nucleare e Teorica, Universit`adegli Studi di Pavia 1. Introduction cal physics was well organized in differ- ent sectors. Within each sector a closed and coherent system of concepts and laws “The discovery and development of was able to satisfactorily account for the quantum theory in the twentieth century corresponding phenomenology. Some re- is an epic story and demands appropri- markable syntheses, such as the unifica- ate telling. This story cannot be told in tion of electric and magnetic phenomena the fullness of its glory without analyz- or the kinetic theory of matter, were sug- ing in some detail the multitude of prob- gesting that mechanics, thermodynam- lems which together came to constitute ics, electromagnetism were only different the fabric of quantum theory. Much more branches of physics on the road towards a than the relativity theories, both special global unified description of physical phe- and general, which completed the edifice nomena. Analytical mechanics would in of classical mechanics, the quantum the- any case play a privileged role because ory is unique in the history of science and the three Newton’s laws were at the ori- intellectual history of man: in its con- gin of the scientific paradigm of an objec- ceptions it made a complete break with tive world governed by the causality law, the past and fashioned a new worldview where the global behaviour can be lead about the structure of matter and radia- back to the knowledge of the mutual in- tion and many of the fundamental forces teraction of constituents. of nature.” With such emphatic words With the advent of quantum mechan- Jagdish Mehra starts a cyclopical enter- ics as a result of accounting for new prise together with Helmuth Rechenberg facts and discoveries, this paradigm was arXiv:0806.4515v1 [physics.hist-ph] 27 Jun 2008 describing the historical development of turned over. Objectivity, determinism quantum theory [1]. and locality were substituted by a pic- In fact, quantum mechanics has com- ture where the observer plays an essential pletely reoriented the way of looking at role in determining the phenomenon, the physical phenomena that emerged af- description of phenomena can only be ac- ter more than three centuries of intense complished in terms of probability of oc- investigation of nature. Around the currence, and non-locality effects have to year 1900 the nowadays so-called classi- be considered. 2 Sigfrido Boffi Fig. 1. – In the first quarter of the twentieth century the crisis produced when trying to unify the different sectors of physics, such as macrophysics (described in terms of temperature T and entropy S), mechanics (with its Lagrangian L and Hamiltonian H) and electromagnetism (with its electric and magnetic fields E~ and B~ , respectively), was overcome by introducing new concepts and a new way of thinking of reality as a consequence of the development of relativity theory (with its equivalence between energy E and mass m and the invariance of the light velocity c) and quantum mechanics (that associates, through the Planck’s constant h, a wave with wavelength λ and frequency ν to the motion of a particle with momentum p and energy E, respectively). This was achieved in the first quarter a scheme suffered a big attack when of the twentieth century, especially be- physicists realized that the mechanical tween June 1925 and October 1927, as a equations of motions are not compatible consequence of an extraordinary develop- with the Maxwell’s equations for the elec- ment of new data, ideas, formalisms, in- tromagnetic phenomena. The solution terpretations, within a polyphonic frame- found in 1905 by Albert Einstein (1879– work where very young researchers and 1955) with his revision of the concept more experienced scientists were chal- of simultaneity and the space-time struc- lenging each other in a cooperative and ture made it possible to reconcile me- unique effort. chanics and electromagnetism in a unified and objective picture. Thus, though rev- olutionary, relativity theory, even with 2. Crisis towards unification its extension to general relativity, still obeys the principle of objectivity and In analytical mechanics observers are lives within the paradigm of classical simulated by inertial frames of reference physics. and time is assumed to be an abso- lute evolution parameter. Then the ob- In contrast, in the attempt to es- jective description of phenomena means tablish a connection between the macro- that any physical law is translated into scopic behaviour of a complex system and one and the same equation when pass- the microscopic motion of its constituent ing from one observer to another. Such particles or to account for the thermody- The Rise of Quantum Mechanics 3 namic effects of radiation, one meets dif- On a different side, the discoveries of ficulties that are unsurmountable within radioactivity by Wilhelm Conrad R¨ont- the classical framework (Fig. 1). For ex- gen (1845–1923) and of the electron in ample, the frequency distribution of the the study of cathode rays by Joseph radiation energy density cannot be pre- John Thomson (1856–1940) added im- dicted invoking the classical thermody- portant insights into the constitution of namics of radiation. The formula pro- matter. In atomic physics by the end of posed on heuristic arguments by Max the 19th century a large amount of ac- Planck (1858–1947) in 1900 could only cumulating data on the line spectra were be explained by Einstein under the as- organized according to the combination sumption that the energy of the har- principle emerging from the studies of monic oscillator associated to each fre- Johann Jakob Balmer (1858–1898), Jo- quency takes discrete values or, alterna- hannes Robert Rydberg (1854–1919) and tively, the action corresponding to a com- Walther Ritz (1878–1909). In the case of plete oscillation is an integer multiple of the hydrogen atom, for example, in the an elementary value h, the Planck’s con- Balmer’s formula the inverse wavelength stant. Similarly, the temperature depen- of every spectral line could be expressed dence of specific heat of solids cannot be as the difference of two terms, each of explained assuming a classical motion of which depending on an integer number. atoms within the solid and violates the The discrete nature of the line spectra is classical equipartition principle of energy, incompatible with the stable atom gov- unless again one assumes with Einstein erned by the laws of classical physics, and and Peter Debye (1884–1966) the possi- their classification in terms of the inter- bility of a discrete energy spectrum for nal atomic dynamics was a big puzzle. the oscillating atoms in solids. The discovery of the effect of a mag- The discrete nature of the electro- netic field on the spectral lines by Pieter magnetic field interacting with matter Zeeman (1865–1943) and its explana- and Einstein’s idea of a light quantum tion by Hendrik Antoon Lorentz (1853– with energy hν and momentum hν/c 1928) and Joseph Larmor (1857–1942) were not accepted by the physics commu- were a great success of the electron the- nity without a long discussion. Even af- ory of matter. However, in some cases ter the successful test of Einstein’s equa- an anomalous line splitting was observed tion for the photoelectric effect predict- such as that occurring for the two sodium ing a linear relation between the maxi- D-lines, with the D1-line splitting into mal kinetic energy of the ejected photo- a quartet and the D2-line into a sextet. electron and the frequency ν of the inci- Within the classical theory one could not dent radiation, Robert Andrews Millikan explain such an anomalous Zeeman ef- (1868–1953) remarked that “the semi- fect. corpuscolar theory by which Einstein ar- According to the model put forward rived at this equation seems at present to in 1911 by Ernest Rutherford of Nelson be wholly untenable” [2]. It took other (1871–1937) electrons revolving about ten years to look at the light quantum the positively charged atomic nucleus fol- as the “photon” responsible, e.g., of the low a periodic motion. Quantization Compton effect [3]. rules for such periodic systems were pro- 4 Sigfrido Boffi posed in 1913 by Niels Hendrik David could also provide the necessary founda- Bohr (1885–1962) and implemented in tion for atomic mechanics. 1916 by Arnold Sommerfeld (1868–1951). The Bohr-Sommerfeld rules were With such rules one defines azimuthal soon applied to a variety of problems and radial quantum numbers describ- such as quantum theory of radiation, ing the Kepler’s orbit of the electron in atoms with one electron and with sev- a plane, and the Balmer’s formula for eral electrons, quantum theory of solids spectral lines can be easily recovered. and gases, atomic magnetism. They were Also the normal Zeeman effect could be so successful describing the constitution described by Sommerfeld introducing a of atoms and the periodic table of ele- third quantum number, whose values de- ments that the predicted element with termine the discrete positions of the elec- atomic number 72 was just discovered by tron orbit with respect to the external Dirk Coster (1889–1950) and George de magnetic field. Hevesy (1985–1966) in Bohr’s Institute in The Bohr-Sommerfeld rules are de- Copenhagen and called hafnium after the rived from two postulates, i.e. the ex- Latin name of Copenhagen (Hafnia), in istence of stable stationary states of the time for Bohr to mention it in his Nobel atom and the definition of the emitted or lecture in 1922. absorbed radiation frequency in terms of However, there were also some fail- the energy difference between initial and ures, such as the calculation of the en- final stationary states.
Recommended publications
  • Franck-Hertz Experiment
    IIA2 Modul Atomic/Nuclear Physics Franck-Hertz Experiment This experiment by JAMES FRANCK and GUSTAV LUDWIG HERTZ from 1914 (Nobel Prize 1926) is one of the most impressive comparisons in the search for quantum theory: it shows a very simple arrangement in the existence of discrete stationary energy states of the electrons in the atoms. ÜÔ ÖÑÒØ Á Á¾ ¹ ÜÔ ÖÑÒØ This experiment by JAMES FRANCK and GUSTAV LUDWIG HERTZ from 1914 (Nobel Prize 1926) is one of the most impressive comparisons in the search for quantum theory: it shows a very simple arrangement in the existence of discrete stationary energy states of the electrons in the atoms. c AP, Department of Physics, University of Basel, September 2016 1.1 Preliminary Questions • Explain the FRANCK-HERTZ experiment in our own words. • What is the meaning of the unit eV and how is it defined? • Which experiment can verify the 1. excitation energy as well? • Why is an anode used in the tube? Why is the current not measured directly at the grid? 1.2 Theory 1.2.1 Light emission and absorption in the atom There has always been the question of the microscopic nature of matter, which is a key object of physical research. An important experimental approach in the "world of atoms "is the study of light absorption and emission of light from matter, that the accidental investigation of the spectral distribution of light absorbed or emitted by a particular substance. The strange phenomenon was observed (first from FRAUNHOFER with the spectrum of sunlight), and was unexplained until the beginning of this century when it finally appeared: • If light is a continuous spectrum (for example, incandescent light) through a gas of a particular type of atom, and subsequently , the spectrum is observed, it is found that the light is very special, atom dependent wavelengths have been absorbed by the gas and therefore, the spectrum is absent.
    [Show full text]
  • Richard Phillips Feynman Physicist and Teacher Extraordinary
    ARTICLE-IN-A-BOX Richard Phillips Feynman Physicist and Teacher Extraordinary The first three decades of the twentieth century have been among the most momentous in the history of physics. The first saw the appearance of special relativity and the birth of quantum theory; the second the creation of general relativity. And in the third, quantum mechanics proper was discovered. These developments shaped the progress of fundamental physics for the rest of the century and beyond. While the two relativity theories were largely the creation of Albert Einstein, the quantum revolution took much more time and involved about a dozen of the most creative minds of a couple of generations. Of all those who contributed to the consolidation and extension of the quantum ideas in later decades – now from the USA as much as from Europe and elsewhere – it is generally agreed that Richard Phillips Feynman was the most gifted, brilliant and intuitive genius out of many extremely gifted physicists. Here are descriptions of him by leading physicists of his own, and older as well as younger generations: “He is a second Dirac, only this time more human.” – Eugene Wigner …Feynman was not an ordinary genius but a magician, that is one “who does things that nobody else could ever do and that seem completely unexpected.” – Hans Bethe “… an honest man, the outstanding intuitionist of our age and a prime example of what may lie in store for anyone who dares to follow the beat of a different drum..” – Julian Schwinger “… the most original mind of his generation.” – Freeman Dyson Richard Feynman was born on 11 May 1918 in Far Rockaway near New York to Jewish parents Lucille Phillips and Melville Feynman.
    [Show full text]
  • The Franck-Hertz Experiment: 100 Years Ago and Now
    The Franck-Hertz experiment: 100 years ago and now A tribute to two great German scientists Zoltán Donkó1, Péter Magyar2, Ihor Korolov1 1 Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Budapest, Hungary 2 Physics Faculty, Roland Eötvös University, Budapest, Hungary Franck-Hertz experiment anno (~1914) The Nobel Prize in Physics 1925 was awarded jointly to James Franck and Gustav Ludwig Hertz "for their discovery of the laws governing the impact of an electron upon an atom" Anode current Primary experimental result 4.9 V nobelprize.org Elv: ! # " Accelerating voltage ! " Verh. Dtsch. Phys. Ges. 16: 457–467 (1914). Franck-Hertz experiment anno (~1914) The Nobel Prize in Physics 1925 was awarded jointly to James Franck and Gustav Ludwig Hertz "for their discovery of the laws governing the impact of an electron upon an atom" nobelprize.org Verh. Dtsch. Phys. Ges. 16: 457–467 (1914). Franck-Hertz experiment anno (~1914) “The electrons in Hg vapor experience only elastic collisions up to a critical velocity” “We show a method using which the critical velocity (i.e. the accelerating voltage) can be determined to an accuracy of 0.1 V; its value is 4.9 V.” “We show that the energy of the ray with 4.9 V corresponds to the energy quantum of the resonance transition of Hg (λ = 253.6 nm)” ((( “Part of the energy goes into excitation and part goes into ionization” ))) Important experimental evidence for the quantized nature of the atomic energy levels. The Franck-Hertz experiment: 100 years ago and now Franck-Hertz experiment: published in 1914, Nobel prize in 1925 Why is it interesting today as well? “Simple” explanation (“The electrons ....”) → description based on kinetic theory (Robson, Sigeneger, ...) Modern experiments Various gases (Hg, He, Ne, Ar) Modern experiment + kinetic description (develop an experiment that can be modeled accurately ...) → P.
    [Show full text]
  • Bohr Model of Hydrogen
    Chapter 3 Bohr model of hydrogen Figure 3.1: Democritus The atomic theory of matter has a long history, in some ways all the way back to the ancient Greeks (Democritus - ca. 400 BCE - suggested that all things are composed of indivisible \atoms"). From what we can observe, atoms have certain properties and behaviors, which can be summarized as follows: Atoms are small, with diameters on the order of 0:1 nm. Atoms are stable, they do not spontaneously break apart into smaller pieces or collapse. Atoms contain negatively charged electrons, but are electrically neutral. Atoms emit and absorb electromagnetic radiation. Any successful model of atoms must be capable of describing these observed properties. 1 (a) Isaac Newton (b) Joseph von Fraunhofer (c) Gustav Robert Kirch- hoff 3.1 Atomic spectra Even though the spectral nature of light is present in a rainbow, it was not until 1666 that Isaac Newton showed that white light from the sun is com- posed of a continuum of colors (frequencies). Newton introduced the term \spectrum" to describe this phenomenon. His method to measure the spec- trum of light consisted of a small aperture to define a point source of light, a lens to collimate this into a beam of light, a glass spectrum to disperse the colors and a screen on which to observe the resulting spectrum. This is indeed quite close to a modern spectrometer! Newton's analysis was the beginning of the science of spectroscopy (the study of the frequency distri- bution of light from different sources). The first observation of the discrete nature of emission and absorption from atomic systems was made by Joseph Fraunhofer in 1814.
    [Show full text]
  • Einstein and Hilbert: the Creation of General Relativity
    EINSTEIN AND HILBERT: THE CREATION OF GENERAL RELATIVITY ∗ Ivan T. Todorov Institut f¨ur Theoretische Physik, Universit¨at G¨ottingen, Friedrich-Hund-Platz 1 D-37077 G¨ottingen, Germany; e-mail: [email protected] and Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences Tsarigradsko Chaussee 72, BG-1784 Sofia, Bulgaria;∗∗e-mail: [email protected] ABSTRACT It took eight years after Einstein announced the basic physical ideas behind the relativistic gravity theory before the proper mathematical formulation of general relativity was mastered. The efforts of the greatest physicist and of the greatest mathematician of the time were involved and reached a breathtaking concentration during the last month of the work. Recent controversy, raised by a much publicized 1997 reading of Hilbert’s proof- sheets of his article of November 1915, is also discussed. arXiv:physics/0504179v1 [physics.hist-ph] 25 Apr 2005 ∗ Expanded version of a Colloquium lecture held at the International Centre for Theoretical Physics, Trieste, 9 December 1992 and (updated) at the International University Bremen, 15 March 2005. ∗∗ Permanent address. Introduction Since the supergravity fashion and especially since the birth of superstrings a new science emerged which may be called “high energy mathematical physics”. One fad changes the other each going further away from accessible experiments and into mathe- matical models, ending up, at best, with the solution of an interesting problem in pure mathematics. The realization of the grand original design seems to be, decades later, nowhere in sight. For quite some time, though, the temptation for mathematical physi- cists (including leading mathematicians) was hard to resist.
    [Show full text]
  • Sterns Lebensdaten Und Chronologie Seines Wirkens
    Sterns Lebensdaten und Chronologie seines Wirkens Diese Chronologie von Otto Sterns Wirken basiert auf folgenden Quellen: 1. Otto Sterns selbst verfassten Lebensläufen, 2. Sterns Briefen und Sterns Publikationen, 3. Sterns Reisepässen 4. Sterns Züricher Interview 1961 5. Dokumenten der Hochschularchive (17.2.1888 bis 17.8.1969) 1888 Geb. 17.2.1888 als Otto Stern in Sohrau/Oberschlesien In allen Lebensläufen und Dokumenten findet man immer nur den VornamenOt- to. Im polizeilichen Führungszeugnis ausgestellt am 12.7.1912 vom königlichen Polizeipräsidium Abt. IV in Breslau wird bei Stern ebenfalls nur der Vorname Otto erwähnt. Nur im Emeritierungsdokument des Carnegie Institutes of Tech- nology wird ein zweiter Vorname Otto M. Stern erwähnt. Vater: Mühlenbesitzer Oskar Stern (*1850–1919) und Mutter Eugenie Stern geb. Rosenthal (*1863–1907) Nach Angabe von Diana Templeton-Killan, der Enkeltochter von Berta Kamm und somit Großnichte von Otto Stern (E-Mail vom 3.12.2015 an Horst Schmidt- Böcking) war Ottos Großvater Abraham Stern. Abraham hatte 5 Kinder mit seiner ersten Frau Nanni Freund. Nanni starb kurz nach der Geburt des fünften Kindes. Bald danach heiratete Abraham Berta Ben- der, mit der er 6 weitere Kinder hatte. Ottos Vater Oskar war das dritte Kind von Berta. Abraham und Nannis erstes Kind war Heinrich Stern (1833–1908). Heinrich hatte 4 Kinder. Das erste Kind war Richard Stern (1865–1911), der Toni Asch © Springer-Verlag GmbH Deutschland 2018 325 H. Schmidt-Böcking, A. Templeton, W. Trageser (Hrsg.), Otto Sterns gesammelte Briefe – Band 1, https://doi.org/10.1007/978-3-662-55735-8 326 Sterns Lebensdaten und Chronologie seines Wirkens heiratete.
    [Show full text]
  • Richard P. Feynman Author
    Title: The Making of a Genius: Richard P. Feynman Author: Christian Forstner Ernst-Haeckel-Haus Friedrich-Schiller-Universität Jena Berggasse 7 D-07743 Jena Germany Fax: +49 3641 949 502 Email: [email protected] Abstract: In 1965 the Nobel Foundation honored Sin-Itiro Tomonaga, Julian Schwinger, and Richard Feynman for their fundamental work in quantum electrodynamics and the consequences for the physics of elementary particles. In contrast to both of his colleagues only Richard Feynman appeared as a genius before the public. In his autobiographies he managed to connect his behavior, which contradicted several social and scientific norms, with the American myth of the “practical man”. This connection led to the image of a common American with extraordinary scientific abilities and contributed extensively to enhance the image of Feynman as genius in the public opinion. Is this image resulting from Feynman’s autobiographies in accordance with historical facts? This question is the starting point for a deeper historical analysis that tries to put Feynman and his actions back into historical context. The image of a “genius” appears then as a construct resulting from the public reception of brilliant scientific research. Introduction Richard Feynman is “half genius and half buffoon”, his colleague Freeman Dyson wrote in a letter to his parents in 1947 shortly after having met Feynman for the first time.1 It was precisely this combination of outstanding scientist of great talent and seeming clown that was conducive to allowing Feynman to appear as a genius amongst the American public. Between Feynman’s image as a genius, which was created significantly through the representation of Feynman in his autobiographical writings, and the historical perspective on his earlier career as a young aspiring physicist, a discrepancy exists that has not been observed in prior biographical literature.
    [Show full text]
  • Knowledge on the Web: Towards Robust and Scalable Harvesting of Entity-Relationship Facts
    Knowledge on the Web: Towards Robust and Scalable Harvesting of Entity-Relationship Facts Gerhard Weikum Max Planck Institute for Informatics http://www.mpi-inf.mpg.de/~weikum/ Acknowledgements 2/38 Vision: Turn Web into Knowledge Base comprehensive DB knowledge fact of human knowledge assets extraction • everything that (Semantic (Statistical Web) Web) Wikipedia knows • machine-readable communities • capturing entities, (Social Web) classes, relationships Source: DB & IR methods for knowledge discovery. Communications of the ACM 52(4), 2009 3/38 Knowledge as Enabling Technology • entity recognition & disambiguation • understanding natural language & speech • knowledge services & reasoning for semantic apps • semantic search: precise answers to advanced queries (by scientists, students, journalists, analysts, etc.) German chancellor when Angela Merkel was born? Japanese computer science institutes? Politicians who are also scientists? Enzymes that inhibit HIV? Influenza drugs for pregnant women? ... 4/38 Knowledge Search on the Web (1) Query: sushi ingredients? Results: Nori seaweed Ginger Tuna Sashimi ... Unagi http://www.google.com/squared/5/38 Knowledge Search on the Web (1) Query:Query: JapaneseJapanese computerscomputeroOputer science science ? institutes ? http://www.google.com/squared/6/38 Knowledge Search on the Web (2) Query: politicians who are also scientists ? ?x isa politician . ?x isa scientist Results: Benjamin Franklin Zbigniew Brzezinski Alan Greenspan Angela Merkel … http://www.mpi-inf.mpg.de/yago-naga/7/38 Knowledge Search on the Web (2) Query: politicians who are married to scientists ? ?x isa politician . ?x isMarriedTo ?y . ?y isa scientist Results (3): [ Adrienne Clarkson, Stephen Clarkson ], [ Raúl Castro, Vilma Espín ], [ Jeannemarie Devolites Davis, Thomas M. Davis ] http://www.mpi-inf.mpg.de/yago-naga/8/38 Knowledge Search on the Web (3) http://www-tsujii.is.s.u-tokyo.ac.jp/medie/ 9/38 Take-Home Message If music was invented Information is not Knowledge.
    [Show full text]
  • Prof. Walther Ritz
    Professor Walther Ritz (1878 – 1909) From Wikipedia, the free encyclopedia: http://en.wikipedia.org/wiki/Walther_Ritz Walther Ritz (b. February 22, 1878 in Sion, Switzerland - d. 7 July 1909 in Göttingen) was a Swiss theoretical physicist. His father, Raphael Ritz, a native of Valais, was a well-known landscape and interior scenes artist. His mother was the daughter of the engineer Noerdlinger of Tübingen. Ritz studied in Zurich and Göttingen. He is most famous for his work with Johannes Rydberg on the Rydberg–Ritz combination principle. Ritz is also known for the variational method named after him, the Ritz method. Ritz died in 1909, at the age of 31. According to Forman's Dictionary of Scientific Biography, Ritz contracted tuberculosis in 1900, which led to his death in 1909. According to Ritz's collected works (Œuvres) the disease was pleurisy. Criticism of Maxwell-Lorentz electromagnetic theory Not so well known is the fact that in 1908 Walter Ritz produced a lengthy criticism of Maxwell-Lorentz electromagnetic theory, in which he contended that the theory's connection with the luminescent ether (see Lorentz ether theory) made it "essentially inappropriate to express the comprehensive laws for the propagation of electrodynamic actions." Walter Ritz pointed out seven problems with Maxwell-Lorentz electromagnetic field equations: 1 Electric and magnetic forces really express relations about space and time and should be replaced with non- instantaneous elementary actions (his emission theory). 2 Advanced potentials don't exist (and their erroneous use led to the Rayleigh-Jeans ultraviolet catastrophe). 3 Localization of energy in the ether is vague.
    [Show full text]
  • Communications-Mathematics and Applied Mathematics/Download/8110
    A Mathematician's Journey to the Edge of the Universe "The only true wisdom is in knowing you know nothing." ― Socrates Manjunath.R #16/1, 8th Main Road, Shivanagar, Rajajinagar, Bangalore560010, Karnataka, India *Corresponding Author Email: [email protected] *Website: http://www.myw3schools.com/ A Mathematician's Journey to the Edge of the Universe What’s the Ultimate Question? Since the dawn of the history of science from Copernicus (who took the details of Ptolemy, and found a way to look at the same construction from a slightly different perspective and discover that the Earth is not the center of the universe) and Galileo to the present, we (a hoard of talking monkeys who's consciousness is from a collection of connected neurons − hammering away on typewriters and by pure chance eventually ranging the values for the (fundamental) numbers that would allow the development of any form of intelligent life) have gazed at the stars and attempted to chart the heavens and still discovering the fundamental laws of nature often get asked: What is Dark Matter? ... What is Dark Energy? ... What Came Before the Big Bang? ... What's Inside a Black Hole? ... Will the universe continue expanding? Will it just stop or even begin to contract? Are We Alone? Beginning at Stonehenge and ending with the current crisis in String Theory, the story of this eternal question to uncover the mysteries of the universe describes a narrative that includes some of the greatest discoveries of all time and leading personalities, including Aristotle, Johannes Kepler, and Isaac Newton, and the rise to the modern era of Einstein, Eddington, and Hawking.
    [Show full text]
  • Julian Schwinger (1918-1994)
    Julian Schwinger (1918-1994) K. A. Milton Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 June 15, 2006 Julian Schwinger’s influence on Twentieth Century science is profound and pervasive. Of course, he is most famous for his renormalization theory of quantum electrodynamics, for which he shared the Nobel Prize with Richard Feynman and Sin-itiro Tomonaga. But although this triumph was undoubt- edly his most heroic accomplishment, his legacy lives on chiefly through sub- tle and elegant work in classical electrodynamics, quantum variational princi- ples, proper-time methods, quantum anomalies, dynamical mass generation, partial symmetry, and more. Starting as just a boy, he rapidly became the pre-eminent nuclear physicist in the late 1930s, led the theoretical develop- ment of radar technology at MIT during World War II, and then, soon after the war, conquered quantum electrodynamics, and became the leading quan- tum field theorist for two decades, before taking a more iconoclastic route during his last quarter century. Given his commanding stature in theoretical physics for decades it may seem puzzling why he is relatively unknown now to the educated public, even to many younger physicists, while Feynman is a cult figure with his photograph needing no more introduction than Einstein’s. This relative ob- scurity is even more remarkable, in view of the enormous number of eminent physicists, as well as other leaders in science and industry, who received their Ph.D.’s under Schwinger’s direction, while Feynman had but few. In part, the answer lies in Schwinger’s retiring nature and reserved demeanor.
    [Show full text]
  • Ether and Electrons in Relativity Theory (1900-1911) Scott Walter
    Ether and electrons in relativity theory (1900-1911) Scott Walter To cite this version: Scott Walter. Ether and electrons in relativity theory (1900-1911). Jaume Navarro. Ether and Moder- nity: The Recalcitrance of an Epistemic Object in the Early Twentieth Century, Oxford University Press, 2018, 9780198797258. hal-01879022 HAL Id: hal-01879022 https://hal.archives-ouvertes.fr/hal-01879022 Submitted on 21 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ether and electrons in relativity theory (1900–1911) Scott A. Walter∗ To appear in J. Navarro, ed, Ether and Modernity, 67–87. Oxford: Oxford University Press, 2018 Abstract This chapter discusses the roles of ether and electrons in relativity the- ory. One of the most radical moves made by Albert Einstein was to dismiss the ether from electrodynamics. His fellow physicists felt challenged by Einstein’s view, and they came up with a variety of responses, ranging from enthusiastic approval, to dismissive rejection. Among the naysayers were the electron theorists, who were unanimous in their affirmation of the ether, even if they agreed with other aspects of Einstein’s theory of relativity. The eventual success of the latter theory (circa 1911) owed much to Hermann Minkowski’s idea of four-dimensional spacetime, which was portrayed as a conceptual substitute of sorts for the ether.
    [Show full text]