Ebook Download the Historical Development of Quantum Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Richard Phillips Feynman Physicist and Teacher Extraordinary
ARTICLE-IN-A-BOX Richard Phillips Feynman Physicist and Teacher Extraordinary The first three decades of the twentieth century have been among the most momentous in the history of physics. The first saw the appearance of special relativity and the birth of quantum theory; the second the creation of general relativity. And in the third, quantum mechanics proper was discovered. These developments shaped the progress of fundamental physics for the rest of the century and beyond. While the two relativity theories were largely the creation of Albert Einstein, the quantum revolution took much more time and involved about a dozen of the most creative minds of a couple of generations. Of all those who contributed to the consolidation and extension of the quantum ideas in later decades – now from the USA as much as from Europe and elsewhere – it is generally agreed that Richard Phillips Feynman was the most gifted, brilliant and intuitive genius out of many extremely gifted physicists. Here are descriptions of him by leading physicists of his own, and older as well as younger generations: “He is a second Dirac, only this time more human.” – Eugene Wigner …Feynman was not an ordinary genius but a magician, that is one “who does things that nobody else could ever do and that seem completely unexpected.” – Hans Bethe “… an honest man, the outstanding intuitionist of our age and a prime example of what may lie in store for anyone who dares to follow the beat of a different drum..” – Julian Schwinger “… the most original mind of his generation.” – Freeman Dyson Richard Feynman was born on 11 May 1918 in Far Rockaway near New York to Jewish parents Lucille Phillips and Melville Feynman. -
Einstein and Hilbert: the Creation of General Relativity
EINSTEIN AND HILBERT: THE CREATION OF GENERAL RELATIVITY ∗ Ivan T. Todorov Institut f¨ur Theoretische Physik, Universit¨at G¨ottingen, Friedrich-Hund-Platz 1 D-37077 G¨ottingen, Germany; e-mail: [email protected] and Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences Tsarigradsko Chaussee 72, BG-1784 Sofia, Bulgaria;∗∗e-mail: [email protected] ABSTRACT It took eight years after Einstein announced the basic physical ideas behind the relativistic gravity theory before the proper mathematical formulation of general relativity was mastered. The efforts of the greatest physicist and of the greatest mathematician of the time were involved and reached a breathtaking concentration during the last month of the work. Recent controversy, raised by a much publicized 1997 reading of Hilbert’s proof- sheets of his article of November 1915, is also discussed. arXiv:physics/0504179v1 [physics.hist-ph] 25 Apr 2005 ∗ Expanded version of a Colloquium lecture held at the International Centre for Theoretical Physics, Trieste, 9 December 1992 and (updated) at the International University Bremen, 15 March 2005. ∗∗ Permanent address. Introduction Since the supergravity fashion and especially since the birth of superstrings a new science emerged which may be called “high energy mathematical physics”. One fad changes the other each going further away from accessible experiments and into mathe- matical models, ending up, at best, with the solution of an interesting problem in pure mathematics. The realization of the grand original design seems to be, decades later, nowhere in sight. For quite some time, though, the temptation for mathematical physi- cists (including leading mathematicians) was hard to resist. -
Richard P. Feynman Author
Title: The Making of a Genius: Richard P. Feynman Author: Christian Forstner Ernst-Haeckel-Haus Friedrich-Schiller-Universität Jena Berggasse 7 D-07743 Jena Germany Fax: +49 3641 949 502 Email: [email protected] Abstract: In 1965 the Nobel Foundation honored Sin-Itiro Tomonaga, Julian Schwinger, and Richard Feynman for their fundamental work in quantum electrodynamics and the consequences for the physics of elementary particles. In contrast to both of his colleagues only Richard Feynman appeared as a genius before the public. In his autobiographies he managed to connect his behavior, which contradicted several social and scientific norms, with the American myth of the “practical man”. This connection led to the image of a common American with extraordinary scientific abilities and contributed extensively to enhance the image of Feynman as genius in the public opinion. Is this image resulting from Feynman’s autobiographies in accordance with historical facts? This question is the starting point for a deeper historical analysis that tries to put Feynman and his actions back into historical context. The image of a “genius” appears then as a construct resulting from the public reception of brilliant scientific research. Introduction Richard Feynman is “half genius and half buffoon”, his colleague Freeman Dyson wrote in a letter to his parents in 1947 shortly after having met Feynman for the first time.1 It was precisely this combination of outstanding scientist of great talent and seeming clown that was conducive to allowing Feynman to appear as a genius amongst the American public. Between Feynman’s image as a genius, which was created significantly through the representation of Feynman in his autobiographical writings, and the historical perspective on his earlier career as a young aspiring physicist, a discrepancy exists that has not been observed in prior biographical literature. -
Julian Schwinger (1918-1994)
Julian Schwinger (1918-1994) K. A. Milton Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 June 15, 2006 Julian Schwinger’s influence on Twentieth Century science is profound and pervasive. Of course, he is most famous for his renormalization theory of quantum electrodynamics, for which he shared the Nobel Prize with Richard Feynman and Sin-itiro Tomonaga. But although this triumph was undoubt- edly his most heroic accomplishment, his legacy lives on chiefly through sub- tle and elegant work in classical electrodynamics, quantum variational princi- ples, proper-time methods, quantum anomalies, dynamical mass generation, partial symmetry, and more. Starting as just a boy, he rapidly became the pre-eminent nuclear physicist in the late 1930s, led the theoretical develop- ment of radar technology at MIT during World War II, and then, soon after the war, conquered quantum electrodynamics, and became the leading quan- tum field theorist for two decades, before taking a more iconoclastic route during his last quarter century. Given his commanding stature in theoretical physics for decades it may seem puzzling why he is relatively unknown now to the educated public, even to many younger physicists, while Feynman is a cult figure with his photograph needing no more introduction than Einstein’s. This relative ob- scurity is even more remarkable, in view of the enormous number of eminent physicists, as well as other leaders in science and industry, who received their Ph.D.’s under Schwinger’s direction, while Feynman had but few. In part, the answer lies in Schwinger’s retiring nature and reserved demeanor. -
A Complete Bibliography of Publications in Isis, 1990–1999
A Complete Bibliography of Publications in Isis, 1990{1999 Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 25 May 2018 Version 0.07 Title word cross-reference c [1275]. AΠOPHMA [2901]. BOTANIKON [2901]. ΠEPITΩNΠEΠONΘΩNTOΠΩN [1716]. ⊂ [431]. ⊃ [431]. -1708 [2436]. -4 [3189]. /Max [3367, 1215]. 0Die [1766]. 1 [1169, 2655, 2935, 566, 1131, 1939]. 1.7 [1001]. 1.7-7 [1001]. 10 [2649, 2983]. 100 [323]. 129 [1808]. 1333 [1938]. 1336 [2425]. 1345 [2250, 920]. 1400 [3429]. 1420 [2078]. 1450 [1797]. 1483 [348]. 150-Year [2452]. 1500 [29]. 1530 [30]. 1543 [441]. 1550 [2160, 3491, 1246]. 1570 [1998]. 1597 [3531]. 1600 [3326, 2734, 440, 151, 347]. 1610 [1724]. 1610/11 [1651]. 1620 [2652]. 1626 [2003]. 1632 [2000]. 1650 [1377]. 1653 [2901]. 1 2 1654 [2346]. 1657 [732]. 1659 [2816]. 1662 [357]. 1676 [1379, 452]. 1683 [1531]. 1685 [838]. 1687 [1976]. 1690 [2661]. 1696 [1531]. 1699 [835]. 1700 [34, 2491, 3315, 2975]. 1701 [2512]. 1715 [1820]. 1718 [2167]. 1727 [1193, 42]. 1730 [1733]. 1740 [2899]. 1742 [260]. 1750 [3140, 1479, 1560, 3142, 1286, 1566, 2746, 3141, 2351, 1385, 3404]. 1753 [456]. 1770 [460, 3152]. 1773 [3342]. 1777 [1483]. 1783 [2749]. 1785 [3057]. 1789 [461]. 1789/90 [461]. 1791 [3146]. 1792 [1734]. 1795 [2174, 165]. 1799 [561, 3442]. 17de [2814]. 1800 [2356, 326, 2412, 44, 923, 1928, 2902, 2101, 932, 245, 3590]. -
Wolfgang Pauli 1900 to 1930: His Early Physics in Jungian Perspective
Wolfgang Pauli 1900 to 1930: His Early Physics in Jungian Perspective A Dissertation Submitted to the Faculty of the Graduate School of the University of Minnesota by John Richard Gustafson In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Advisor: Roger H. Stuewer Minneapolis, Minnesota July 2004 i © John Richard Gustafson 2004 ii To my father and mother Rudy and Aune Gustafson iii Abstract Wolfgang Pauli's philosophy and physics were intertwined. His philosophy was a variety of Platonism, in which Pauli’s affiliation with Carl Jung formed an integral part, but Pauli’s philosophical explorations in physics appeared before he met Jung. Jung validated Pauli’s psycho-philosophical perspective. Thus, the roots of Pauli’s physics and philosophy are important in the history of modern physics. In his early physics, Pauli attempted to ground his theoretical physics in positivism. He then began instead to trust his intuitive visualizations of entities that formed an underlying reality to the sensible physical world. These visualizations included holistic kernels of mathematical-physical entities that later became for him synonymous with Jung’s mandalas. I have connected Pauli’s visualization patterns in physics during the period 1900 to 1930 to the psychological philosophy of Jung and displayed some examples of Pauli’s creativity in the development of quantum mechanics. By looking at Pauli's early physics and philosophy, we gain insight into Pauli’s contributions to quantum mechanics. His exclusion principle, his influence on Werner Heisenberg in the formulation of matrix mechanics, his emphasis on firm logical and empirical foundations, his creativity in formulating electron spinors, his neutrino hypothesis, and his dialogues with other quantum physicists, all point to Pauli being the dominant genius in the development of quantum theory. -
The Rise of Quantum Mechanics 3
QUADERNIDISTORIADELLAFISICA N.0-June2008 The Rise of Quantum Mechanics Sigfrido Boffi Dipartimento di Fisica Nucleare e Teorica, Universit`adegli Studi di Pavia 1. Introduction cal physics was well organized in differ- ent sectors. Within each sector a closed and coherent system of concepts and laws “The discovery and development of was able to satisfactorily account for the quantum theory in the twentieth century corresponding phenomenology. Some re- is an epic story and demands appropri- markable syntheses, such as the unifica- ate telling. This story cannot be told in tion of electric and magnetic phenomena the fullness of its glory without analyz- or the kinetic theory of matter, were sug- ing in some detail the multitude of prob- gesting that mechanics, thermodynam- lems which together came to constitute ics, electromagnetism were only different the fabric of quantum theory. Much more branches of physics on the road towards a than the relativity theories, both special global unified description of physical phe- and general, which completed the edifice nomena. Analytical mechanics would in of classical mechanics, the quantum the- any case play a privileged role because ory is unique in the history of science and the three Newton’s laws were at the ori- intellectual history of man: in its con- gin of the scientific paradigm of an objec- ceptions it made a complete break with tive world governed by the causality law, the past and fashioned a new worldview where the global behaviour can be lead about the structure of matter and radia- back to the knowledge of the mutual in- tion and many of the fundamental forces teraction of constituents. -
Drawing Theories Apart: the Dispersion of Feynman Diagrams In
Drawing Theories Apart Drawing Theories Apart The Dispersion of Feynman Diagrams in Postwar Physics david kaiser The University of Chicago Press chicago and london David Kaiser is associate professor in the Program in Science, Technology, and Society and lecturer in the Department of Physics at the Massachusetts Institute of Technology. The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London C 2005 by The University of Chicago All rights reserved. Published 2005 Printed in the United States of America 14 13 12 11 10 09 08 07 06 05 1 2 3 4 5 isbn: 0-226-42266-6 (cloth) isbn: 0-226-42267-4 (paper) Library of Congress Cataloging-in-Publication Data Kaiser, David. Drawing theories apart : the dispersion of Feynman diagrams in postwar physics / David Kaiser. p. cm. Includes bibliographical references and index. isbn 0-226-42266-6 (alk. paper)—isbn 0-226-42267-4 (pbk. : alk. paper) 1. Feynman diagrams. 2. Physics—United States—History— 20th century. 3. Physics—History—20th century. I. Title. QC794.6.F4K35 2005 530.0973 0904—dc22 2004023335 ∞ The paper used in this publication meets the minimum requirements of the American National Standard for Information Sciences—Permanence of Paper for Printed Library Materials, ansi z39.48-1992. He teaches his theory, not as a body of fact, but as a set of tools, to be used, and which he has actually used in his work. John Clarke Slater describing Percy Bridgman after Bridgman won the Nobel Prize in Physics, 11 January 1947 Contents Preface and Acknowledgments xi Abbreviations xvii Chapter 1 . -
Inside a Physicist
--------------SPRING744 BOOKS--------------NATllRF VOL ..1.12 21 APRIL 1988 major factors leading Kramers to turn of its author in several ways. Dresden is a Inside a physicist away from active participation in work of distinguished physicist from Holland, who John Stachel the quartet just when it was about to studied with Kramers before going to the culminate in the definitive formulation of United States in 1939, and who met him the new mechanics. again several times after the war. He is H.A. Kramers: Between Tradition and K,ramers left Copenhagen in 1926 to clearly very involved, both intellectually Revolution. By M. Dresden. Springer accept the chair of physics in Utrecht, and emotionally. with the subject and his Verlag:1987. Pp.563. DM 120, $74.95, £45. becoming the dean of the Dutch physics milieu (he spent 11 years working on this ccmmunity after the deaths of Lorentz book), and is well acquainted with many THE Dutch theoretical physicist Hendrik and Ehrenfest. His life and scientific others who figure in the story. The book is Antonie Kramers is probably known to activity after the move are treated sketchily based on a close reading of Kramers's more physicists as an initial than as a in Part Three, except for a chapter of over writings. both technical and popular, and name. How many realize what lies hidden 100 pages devoted to his work on quantum of a host of other sources in physics behind the modest 'K' of the WKBJ electrodynamics. Like Pauli. Kramers was and the history of physics. As might be approximation method in quantum very critical of Dirac's approach. -
Abstract Book | Seattle, WA | 1-4 November 2018
Abstract Book | Seattle, WA | 1-4 November 2018 Table of Contents_Toc528229514 “A Totally Unqualified Woman”: Gender and the Policing of Science in the IGY Expedition to South Georgia ...... 1 “Bringing the Bluegrass West: Scientific Agriculture and the California Thoroughbred Industry” ............................ 1 “China as a Field”: Carl Bishop, Ji Li, and the “First Archaeological Expedition in China led by the Chinese Themselves“ ............................................................................................................................................................. 1 “Collecting Evolution in the Galapagos and Rebuilding the California Academy of Sciences” .................................. 2 “Eating Electricity and Delivering India”: Cultural Resistance and Electricity in Late-nineteenth Century Bengali Drama ...................................................................................................................................................................... 2 “Esperienza,” Teacher of All Things: The Musical Art-Science of Vincenzo Galilei .................................................. 3 “Fossil Tug of War: Evolution and Controversy at Liang Bua” ................................................................................ 3 “How Do I Know... Prayers Don’t Do More Good than... Pills”: Don Pedrito Jaramillo, Curanderismo, and the Rise of Professional Medicine in the Texas-Mexico Borderlands over the Turn-of-the-Century ............................... 3 “Humanistic” Science, “Scientific” Humanities: -
Conference on the History of Quantum Physics Max Planck
MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science 2008 PREPRINT 350 Christian Joas, Christoph Lehner, and Jürgen Renn (eds.) HQ-1: Conference on the History of Quantum Physics Max-Planck-Institut f¨urWissenschaftsgeschichte Max Planck Institute for the History of Science Christian Joas, Christoph Lehner, and J¨urgenRenn (eds.) HQ-1: Conference on the History of Quantum Physics Preprint 350 2008 This preprint volume is a collection of papers presented at HQ-1. The editors wish to thank Carmen Hammer, Nina Ruge, Judith Levy and Alexander Riemer for their substantial help in preparing the manuscript. c Max Planck Institute for the History of Science, 2008 No reproduction allowed. Copyright remains with the authors of the individual articles. Front page illustrations: copyright Laurent Taudin. Preface The present volume contains a selection of papers presented at the HQ-1 Conference on the History of Quantum Physics. This conference, held at the Max Planck Institute for the History of Science (July 2{6, 2007), has been sponsored by the Max Planck Society in honor of Max Planck on the occasion of the sixtieth anniversary of his passing. It is the first in a new series of conferences devoted to the history of quantum physics, to be organized by member institutions of the recently established International Project on the History and Foundations of Quantum Physics (Quantum History Project). The second meeting, HQ-2, takes place in Utrecht (July 14{17, 2008). The Quantum History Project is an international cooperation of researchers interested in the history and foundations of quantum physics. -
The Suppressed Drawing: Paul Dirac's Hidden Geometry Author(S): Peter Galison Source: Representations, No
The Suppressed Drawing: Paul Dirac's Hidden Geometry Author(s): Peter Galison Source: Representations, No. 72 (Autumn, 2000), pp. 145-166 Published by: University of California Press Stable URL: https://www.jstor.org/stable/2902912 Accessed: 15-01-2019 14:41 UTC REFERENCES Linked references are available on JSTOR for this article: https://www.jstor.org/stable/2902912?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms University of California Press is collaborating with JSTOR to digitize, preserve and extend access to Representations This content downloaded from 140.247.28.156 on Tue, 15 Jan 2019 14:41:49 UTC All use subject to https://about.jstor.org/terms PETER GALISON The Suppressed Drawing: Paul Dirac's Hidden Geometry Purest Soul FOR MOST OF THE TWENTIETH century, Paul Dirac stood as the theo- rist's theorist. Though less known to the general public than Albert Einstein, Niels Bohr, or Werner Heisenberg, for physicists Dirac was revered as the "theorist with the purest soul," as Bohr described him. Perhaps Bohr called him that because of Dirac's taciturn and solitary demeanor, perhaps because he maintained practically no interests outside physics and never feigned engagement with art, literature, mu- sic, or politics.