The Suppressed Drawing: Paul Dirac's Hidden Geometry Author(S): Peter Galison Source: Representations, No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematical Melodies: the Beauty of Numbers “What Are You Studying?”
Mathematical Melodies: The Beauty of Numbers “What are you studying?” I asked a senior a couple of years ago. “Visual Art,” he replied. I said something like, “I never was good at drawing or anything like that,” and he responded, “I get that a lot,” seeming slightly annoyed. I hope that he did not think I was dismissing art simply because I am not very good at making it. In fact, I have a great appreciation for painting, sculpture, and art of all kinds. I recognize two facts: that visual art is aesthetic, and that someone with no particular gifts as an artist can appreciate it. Now I am the senior, and often when I tell someone that I study mathematics, I get a reply like, “I never could get the hang of math.” Now it is certainly fine if someone is not very good at math, but I always hope that their statement does not mean they dismiss mathematics from their life. In this article, I would like to demonstrate two facts: that mathematics is aesthetic, and that someone with no particular gifts as a mathematician can appreciate it. If I can get you to believe these two facts, then it would be just as desirable and beneficial to your life to take math seriously as it is for me to take art seriously. While it may be true that a non- mathematician cannot appreciate the beauty of mathematics as much as a mathematician can, I also doubt I can appreciate a painting as well as my artist friend can. -
Richard Phillips Feynman Physicist and Teacher Extraordinary
ARTICLE-IN-A-BOX Richard Phillips Feynman Physicist and Teacher Extraordinary The first three decades of the twentieth century have been among the most momentous in the history of physics. The first saw the appearance of special relativity and the birth of quantum theory; the second the creation of general relativity. And in the third, quantum mechanics proper was discovered. These developments shaped the progress of fundamental physics for the rest of the century and beyond. While the two relativity theories were largely the creation of Albert Einstein, the quantum revolution took much more time and involved about a dozen of the most creative minds of a couple of generations. Of all those who contributed to the consolidation and extension of the quantum ideas in later decades – now from the USA as much as from Europe and elsewhere – it is generally agreed that Richard Phillips Feynman was the most gifted, brilliant and intuitive genius out of many extremely gifted physicists. Here are descriptions of him by leading physicists of his own, and older as well as younger generations: “He is a second Dirac, only this time more human.” – Eugene Wigner …Feynman was not an ordinary genius but a magician, that is one “who does things that nobody else could ever do and that seem completely unexpected.” – Hans Bethe “… an honest man, the outstanding intuitionist of our age and a prime example of what may lie in store for anyone who dares to follow the beat of a different drum..” – Julian Schwinger “… the most original mind of his generation.” – Freeman Dyson Richard Feynman was born on 11 May 1918 in Far Rockaway near New York to Jewish parents Lucille Phillips and Melville Feynman. -
Einstein and Hilbert: the Creation of General Relativity
EINSTEIN AND HILBERT: THE CREATION OF GENERAL RELATIVITY ∗ Ivan T. Todorov Institut f¨ur Theoretische Physik, Universit¨at G¨ottingen, Friedrich-Hund-Platz 1 D-37077 G¨ottingen, Germany; e-mail: [email protected] and Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences Tsarigradsko Chaussee 72, BG-1784 Sofia, Bulgaria;∗∗e-mail: [email protected] ABSTRACT It took eight years after Einstein announced the basic physical ideas behind the relativistic gravity theory before the proper mathematical formulation of general relativity was mastered. The efforts of the greatest physicist and of the greatest mathematician of the time were involved and reached a breathtaking concentration during the last month of the work. Recent controversy, raised by a much publicized 1997 reading of Hilbert’s proof- sheets of his article of November 1915, is also discussed. arXiv:physics/0504179v1 [physics.hist-ph] 25 Apr 2005 ∗ Expanded version of a Colloquium lecture held at the International Centre for Theoretical Physics, Trieste, 9 December 1992 and (updated) at the International University Bremen, 15 March 2005. ∗∗ Permanent address. Introduction Since the supergravity fashion and especially since the birth of superstrings a new science emerged which may be called “high energy mathematical physics”. One fad changes the other each going further away from accessible experiments and into mathe- matical models, ending up, at best, with the solution of an interesting problem in pure mathematics. The realization of the grand original design seems to be, decades later, nowhere in sight. For quite some time, though, the temptation for mathematical physi- cists (including leading mathematicians) was hard to resist. -
Richard P. Feynman Author
Title: The Making of a Genius: Richard P. Feynman Author: Christian Forstner Ernst-Haeckel-Haus Friedrich-Schiller-Universität Jena Berggasse 7 D-07743 Jena Germany Fax: +49 3641 949 502 Email: [email protected] Abstract: In 1965 the Nobel Foundation honored Sin-Itiro Tomonaga, Julian Schwinger, and Richard Feynman for their fundamental work in quantum electrodynamics and the consequences for the physics of elementary particles. In contrast to both of his colleagues only Richard Feynman appeared as a genius before the public. In his autobiographies he managed to connect his behavior, which contradicted several social and scientific norms, with the American myth of the “practical man”. This connection led to the image of a common American with extraordinary scientific abilities and contributed extensively to enhance the image of Feynman as genius in the public opinion. Is this image resulting from Feynman’s autobiographies in accordance with historical facts? This question is the starting point for a deeper historical analysis that tries to put Feynman and his actions back into historical context. The image of a “genius” appears then as a construct resulting from the public reception of brilliant scientific research. Introduction Richard Feynman is “half genius and half buffoon”, his colleague Freeman Dyson wrote in a letter to his parents in 1947 shortly after having met Feynman for the first time.1 It was precisely this combination of outstanding scientist of great talent and seeming clown that was conducive to allowing Feynman to appear as a genius amongst the American public. Between Feynman’s image as a genius, which was created significantly through the representation of Feynman in his autobiographical writings, and the historical perspective on his earlier career as a young aspiring physicist, a discrepancy exists that has not been observed in prior biographical literature. -
Dr. Abraham Pais Dr. Pais Was Born in Amsterdam on May 19, 1918. He
Director's Office: Faculty Files: Box 25: Pais, Abraham, Permanent Member From the Shelby White and Leon Levy Archives Center, Institute for Advanced Study, Princeton, NJ, USA Dr. Abraham Pais Dr. Pais was born i n Amsterdam on May 19, 1918. He obtained his Doctor's Degree at the University of Utrecht in 1941. During the years of the occupation, he continued to work under conditions of great difficulty, and the year after the war he was an assistant at the Insti- tute of Theoretical Physics in Copenhagen, In the fall of 1946, Dr. Pais came to the Institute for Advanced Study. ~he record of Dr. Pais' work in the last decade is almost a history of the efforts to clar ify our understanding of basic atomic theory and of the nature of elementary particles. Pais first proposed the compensa- tion theories of elenientary particles, and much of his work tas been devoted. to exploring the success and limitations of these theories, and indicating the radical character of the revisions which will be needed before they can successfully describe the sub-atomic world. Pais has made important contri- butions to nuclear theory and to electrodynamics . He is one of the few young theoretical physicists who within the last decade have enriched our understanding of physics. Statement prepared by J . R. Oppenheim.er Enclosure: Bibliography of papers by Dr. Pais Director's Office: Faculty Files: Box 25: Pais, Abraham, Permanent Member From the Shelby White and Leon Levy Archives Center, Institute for Advanced Study, Princeton, NJ, USA PUBLICATIONS OF ABRAHllJ~ PAIS The ener gy moment um tensor in projective r elativity theor y, Physi ca 8 (1941), 1137-116o . -
Pattern, the Visual Mathematics: a Search for Logical Connections in Design Through Mathematics, Science, and Multicultural Arts
Rochester Institute of Technology RIT Scholar Works Theses 6-1-1996 Pattern, the visual mathematics: A search for logical connections in design through mathematics, science, and multicultural arts Seung-eun Lee Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Lee, Seung-eun, "Pattern, the visual mathematics: A search for logical connections in design through mathematics, science, and multicultural arts" (1996). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. majWiif." $0-J.zn jtiJ jt if it a mtrc'r icjened thts (waefii i: Tkirr. afaidiid to bz i d ! -Lrtsud a i-trio. of hw /'' nvwte' mfratWf trawwi tpf .w/ Jwitfl- ''','-''' ftatsTB liovi 'itcj^uitt <t. dt feu. Tfui ;: tti w/ik'i w cWii.' cental cj lniL-rital. p-siod. [Jewy anJ ./tr.-.MTij of'irttion. fan- 'mo' that. I: wo!'.. PicrdoTrKwe, wiifi id* .or.if'iifer -now r't.t/ry summary Jfem2>/x\, i^zA 'jX7ipu.lv z&ietQStd (Xtrma iKc'i-J: ffocub. The (i^piicaiom o". crWx< M Wf flrtu't. fifesspwn, Jiii*iaiin^ jfli dtfifi,tmi jpivxei u3ili'-rCi luvjtv-tzxi patcrr? ;i t. drifters vcy. Symmetr, yo The theoretical concepts of symmetry deal with group theory and figure transformations. Figure transformations, or symmetry operations refer to the movement and repetition of an one-, two , and three-dimensional space. (f_8= I lhowtuo irwti) familiar iltjpg . -
What Is Mathematical Beauty? Teaching Through Big Ideas and Connections
What is Mathematical Beauty? Teaching through Big Ideas and Connections Jo Boaler, Professor of Mathematics Education, co-director of youcubed Jen Munson, Doctoral Candidate, Mathematics Education Cathy Williams, co-director of youcubed Stanford University Mathematics is a beautiful subject. Ask mathematicians and others what they love about the subject and they will talk about the amazing connections that thread through the terrain, unifying the diferent ideas. There are not many facts or methods to remember in mathematics but there are a few really big and important ideas that are connected to each other and that infuse the subject. Yet when we ask students what they think math is, most will say that it is a lot of diferent rules and methods. This is really unfortunate as students who believe mathematics is a set of methods to be remembered are the lowest achieving students, worldwide, as revealed by PISA data (Boaler & Zoido, 2016). So, why do so few students, or teachers, see mathematics as a set of rich ideas and connections? One of the reasons is that teachers are given sets of standards to teach and no matter how good the standard writers are, they all cut mathematics up into small pieces and give teachers small atomized content areas – usually a set of methods – to teach. The connections disappear – teachers cannot see them and they are lost from students’ learning pathways. Instead, teachers see the lists of content – often 100 or more methods in a year – and work systematically through them. This often leads teachers to skim through content quickly as when mathematics is disconnected and ofered in small sections there is a lot to get through in any year. -
Reflections on Mathematics and Aesthetics
rivista on-line del Seminario Permanente di Estetica anno VIII, numero 1 Reflections on Mathematics and Aesthetics John L. Bell My work has always tried to unite the true with the beautiful and when I had to choose one or the other, I usually chose the beautiful. Hermann Weyl I am interested in mathematics only as a creative art. G. H. Hardy 1. Mathematics as embodying intelligible beauty The association of mathematics with the Beautiful was first explicitly made by Plato (through the words of Socrates). In the Philebus Socrates says: I do not mean by beauty of form such beauty as that of animals or pictures... but ... under- stand me to mean straight lines and circles... for these I affirm to be not relatively beautiful, like other things, but eternally and absolutely beautiful. For Plato the essence of mathematical beauty was its absoluteness, its resistance to change and fashion. Some four centuries later, Plutarch asserts: «The purpose of geometry is to draw us away from the sensible and the perishable to the intelligible and eternal». The word «intelligible» has two meanings. First, of course, the usual meaning of «comprehensible» or «capable of being understood». But the word also has an older meaning, namely, «capable of being apprehended only by the intellect, not by the sens- es»; in this guise it serves as an antonym to «sensible». It is, I believe, precisely with this signification that Plutarch uses the word «intelligible» in this quotation. Plutarch doesn’t mention «beauty» here, but he does link «sensible» with «perisha- ble2 and «intelligible» with «eternal». -
Wabi-Sabi Mathematics
Journal of Humanistic Mathematics Volume 6 | Issue 1 January 2016 Wabi-Sabi Mathematics Jean-Francois Maheux Université du Québec à Montréal Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Education Commons, Epistemology Commons, Esthetics Commons, Logic and Foundations of Mathematics Commons, and the Other Philosophy Commons Recommended Citation Maheux, J. "Wabi-Sabi Mathematics," Journal of Humanistic Mathematics, Volume 6 Issue 1 (January 2016), pages 174-195. DOI: 10.5642/jhummath.201601.11 . Available at: https://scholarship.claremont.edu/jhm/vol6/iss1/11 ©2016 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. Wabi-Sabi Mathematics Cover Page Footnote I would like to thank Draco Szathmary, Maude Bélanger and Franciele da Silva for their contribution to my thinking for this paper; and the reviewers whose comments helped me introduce these ideas in a more inviting way. This work is available in Journal of Humanistic Mathematics: https://scholarship.claremont.edu/jhm/vol6/iss1/11 Wabi-Sabi Mathematics Jean-Fran¸coisMaheux Department of Mathematics, Universit´edu Qu´ebec `aMontr´eal,CANADA [email protected] Abstract Mathematics and aesthetics have a long history in common. -
Julian Schwinger (1918-1994)
Julian Schwinger (1918-1994) K. A. Milton Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 June 15, 2006 Julian Schwinger’s influence on Twentieth Century science is profound and pervasive. Of course, he is most famous for his renormalization theory of quantum electrodynamics, for which he shared the Nobel Prize with Richard Feynman and Sin-itiro Tomonaga. But although this triumph was undoubt- edly his most heroic accomplishment, his legacy lives on chiefly through sub- tle and elegant work in classical electrodynamics, quantum variational princi- ples, proper-time methods, quantum anomalies, dynamical mass generation, partial symmetry, and more. Starting as just a boy, he rapidly became the pre-eminent nuclear physicist in the late 1930s, led the theoretical develop- ment of radar technology at MIT during World War II, and then, soon after the war, conquered quantum electrodynamics, and became the leading quan- tum field theorist for two decades, before taking a more iconoclastic route during his last quarter century. Given his commanding stature in theoretical physics for decades it may seem puzzling why he is relatively unknown now to the educated public, even to many younger physicists, while Feynman is a cult figure with his photograph needing no more introduction than Einstein’s. This relative ob- scurity is even more remarkable, in view of the enormous number of eminent physicists, as well as other leaders in science and industry, who received their Ph.D.’s under Schwinger’s direction, while Feynman had but few. In part, the answer lies in Schwinger’s retiring nature and reserved demeanor. -
CP Symmetry Violation: the Search for Its Origin.” Reviews of Modern Physics 53 (1981) 373–383
CP SYMMETRY VIOLATION 1 Jonathan L. Rosner The symmetry known as CP is a fundamental relation between matter and antimatter. The discovery of its violation by Christenson, Cronin, Fitch, and Turlay (1964) has given us important insights into the structure of particle interactions and into why the Universe appears to contain more matter than antimatter. In 1928, Paul Dirac predicted that every particle has a corresponding an- tiparticle. If the particle has quantum numbers (intrinsic properties), such as electric charge, the antiparticle will have opposite quantum numbers. Thus, an electron, with charge −|e|, has as its antiparticle a positron, with charge +|e| and the same mass and spin. Some neutral particles, such as the photon, the quantum of radiation, are their own antiparticles. Others, like the neutron, have distinct antiparticles; the neutron carries a quantum number known as baryon number B = 1, and the antineutron has B = –1. (The prefix bary- is Greek for heavy.) The operation of charge reversal, or C, carries a particle into its antiparticle. Many laws of physics are invariant under the C operation; that is, they do arXiv:hep-ph/0109240v2 15 Oct 2001 not change their form, and, consequently, one cannot tell whether one lives in a world made of matter or one made of antimatter. Many equations are also invariant under two other important symmetries: space reflection, or parity, denoted by P, which reverses the direction of all spatial coordinates, and time reversal, denoted by T, which reverses the arrow of time. By observing systems governed by these equations, we cannot tell whether our world is reflected in a mirror or in which direction its clock is running. -
J. Robert Oppenheimer Papers [Finding Aid]. Library of Congress
J. Robert Oppenheimer Papers A Finding Aid to the Collection in the Library of Congress Manuscript Division, Library of Congress Washington, D.C. 2016 Revised 2016 June Contact information: http://hdl.loc.gov/loc.mss/mss.contact Additional search options available at: http://hdl.loc.gov/loc.mss/eadmss.ms998007 LC Online Catalog record: http://lccn.loc.gov/mm77035188 Prepared by Carolyn H. Sung and David Mathisen Revised and expanded by Michael Spangler and Stephen Urgola in 2000, and Michael Folkerts in 2016 Collection Summary Title: J. Robert Oppenheimer Papers Span Dates: 1799-1980 Bulk Dates: (bulk 1947-1967) ID No.: MSS35188 Creator: Oppenheimer, J. Robert, 1904-1967 Extent: 76,450 items ; 301 containers plus 2 classified ; 120.2 linear feet Language: Collection material in English Location: Manuscript Division, Library of Congress, Washington, D.C. Summary: Physicist and director of the Institute for Advanced Study, Princeton, New Jersey. Correspondence, memoranda, speeches, lectures, writings, desk books, lectures, statements, scientific notes, and photographs chiefly comprising Oppenheimer's personal papers while director of the Institute for Advanced Study but reflecting only incidentally his administrative work there. Topics include theoretical physics, development of the atomic bomb, the relationship between government and science, nuclear energy, security, and national loyalty. Selected Search Terms The following terms have been used to index the description of this collection in the Library's online catalog. They are grouped by name of person or organization, by subject or location, and by occupation and listed alphabetically therein. People Bethe, Hans A. (Hans Albrecht), 1906-2005--Correspondence. Birge, Raymond T. (Raymond Thayer), 1887- --Correspondence.