Clease (Sulbsequenit Eiizymic Actioln Beinig Inhihited by the Addition of 20 J4tii of Tri- Sodium Citrate) Led to a 40 Per Cent, Reduction in C14 Uptake

Total Page:16

File Type:pdf, Size:1020Kb

Clease (Sulbsequenit Eiizymic Actioln Beinig Inhihited by the Addition of 20 J4tii of Tri- Sodium Citrate) Led to a 40 Per Cent, Reduction in C14 Uptake A'l.0 41IOCHEMISTR?19)54 Y: COHEN AND BARNER88885 clease (sulbsequenit eiizymic actioln beinig inhihited by the addition of 20 j4TiI of tri- sodium citrate) led to a 40 per cent, reduction in C14 uptake. When desoxyrihoull- clease was allowed to act throughout the whole of the incubation period (75 minutes total), the C14 uptake was only 15 per cent of that observed in control experiments. a. The addition of supplementary calf thymus desoxyribonucleic acid (DNA) to nuclei previously treated with desoxyribonuelease results in higher amino acid incorporations than are observed in the absence of added DNA. This result is reminiscent of the recent experiments of Gale8 on amino acid incorporation by broken bacterial cells, in which it was found that added DNA (as well as RNA and a purine-pyrimidine mixture) could restore the protein synthetic capacity of nu- clease-treated cells. In summary, the experiments described above have shown that isolated calf thymus nuclei can incorporate C14-alanine into nuclear protein and that this in- corporation requires that the desoxyribonucleic acid of the nucleus remain intact. H. Stern and A. E. Mirsky, J. Gen. Physiol., 37, 177, 1953. 2 V. Alifrey, H. Stern, A. E. AMirsk, and H. Saetren, J. Gen. Physiol., 35, 529, 1952. 3V. Allfrey, AI. .4. Daly, and A. E. Mirsky, J. Gen. Physiol., 37, 157, 1953. 4 R. M. Schneider and M. L. Petermann, Cancer Research, 10, 751, 1950. 5 P. Siekevitz, J. Riot. Chem., 195, 549, 1952. 6 G. K. Schweitzer and B. R. Stein, Nucleonics, 7, 65, 1950. 7K. Lang, H. Lang, G. Siebert, and S. Lucius, Biochem. Z., 324, 217, 1953 8 E. F. Gale and J. P. Folkes, Nature, 173, 1223, 1954. STUDIES ON UNBALANCED GROWTH IN ESCHERICHIA COLI* BY SEYMOUR S. COHEN AND HAZEL D. BARNER CHILD)REN S HOSPITAL OF PHILADELPHIA (DEPARTMENT OF PEDIATRICS) AND DEPARTMENT OF PHYS- IOLOGICAI CHEMISTRY OF THE UNIVERSITY OF PENNSYLVANIA SCHOOL OF MEDICINE Communicated by David Goddard, August 11, 1954 The discovery of a unique viral constituent, 5-hydroxymethylcytosine,l has led this laboratory to metabolic studies on pyrimidines. Among the approaches em- ployed have been nutritional investigations with mutants of Escherichia coli re- quiring specific pyrimidines. One of these organisms was a thymine-requiring strain, designated 1T-. It was found that, on infection with T2 bacteriophage in the absence of thymine, the infected 15T - produced as much virus and DNA as if thymine had been added to the medium.2 More detailed investigation revealed that the infected cell synthesized thymine in considerable quantity as a component essential to virus deoxyribonucleic acid (DNA).' Indeed, the only nucleic acid pyrimidines synthesized after infection were thymine and 5-hydroxymethylcytosine, neither of which appeared to be synthesized in appreciable amounts before infec- tion. The existence of this phenomenon led to a study of other properties of strain 15T-- Consequences of Thymine Deficiency.-It has been observed that, in a synthetic medium lacking thymine, the organism irreversibly loses the power to form colonies ("dies") at the rate of about 90 per cent per division time. This type of steriliza- 886 BIOCHEMISTRY: COHEN AND BARNER PROC. N. A. S. tion or "death" is accompanied by a significant increase in the turbidity of the cul- ture, a marked increase in bacterial length and girth, doubling of ribose nucleic acid (RNA) content, and a very slight increment in DNA.3 The respiration of the cul- ture increases considerably on incubation in glucose and a nitrogen source, and the assimilation of limited amounts of glucose is only slightly impaired.4 The RQ is essentially unchanged. Thus death appears to be a concomitant of growth which is vigorous with respect to cytoplasmic function and deficient with respect to DNA and nuclear synthesis. This unbalanced growth would appear to produce a struc- tural change, since it can no longer be reversed even when thymine is added to the medium at a later time, although DNA synthesis may still occur on addition of the pyrimidine. Recent studies with 5-bromouracil have revealed that this compound can par- tially replace the thymine requirement of 15T-, as can be seen in Figure 1. Bromo- uracil permits a five- to sixfold increase of turbidity of the culture and a temporary increase in viable cell number, 8 which eventually falls more slowly than in complete thymine defi- 120 \ \Br U ciency. In the presence of bro- \ mouracil there is a very extensive 100. / \ \ 7 : synthesis of RNA and DNA which 80 *BrU / is many times that seen in the ab- _ / \ < sence of thymine. X. / \ .6 >3 The phenomenon of thymineless death was also observed in E. coli, 40/ strain B, rendered nutritionally deficient by growth in sulfanila- 20\5 mide. The resulting folic acid re- quirement may be partially re- C 3 2 3 placed a of HOURS containingby essentialgroup compoundsone-carbon FIG. 1-The effect of 5-bromouracil on turbidity and fragments. These compounds in- viability of E. coli strain 15T, incubated in the ab- sence of thymine. dlude methionine, serine, xanthine, pantothenate, etc., and thymine. Elimination of thymine from the fortified medium results in a rapid loss of cells capable of forming colonies. Elimination of the other compounds in the presence of thymine inhibits growth but does not produce death. A uracil-less strain, WC-, did not die in the absence of uracil. In such a medium the cell appears to be incapable of unbalanced growth, since uracil is essential to both RNA and DNA synthesis. It would appear reasonable to suppose that death similar to thymineless death may be provoked in many organisms only by a spe- cific block in DNA synthesis. Quantitative Aspects of the Inabilety to Synthesize Thymine.-The following ex- periments were made to test the ability of 15T- to a synthesize thymine: The bac- teria were grown in a synthetic medium containing uniformly labeled glucose-C14 (1 mg/ml) and exogenous thymine at 2 ,ug/ml. The bases of the nuclteic acids were isolated by paper chromatography in two solvent mixtures.3 The thymine was further purified by paper electrophoresis in 0.1 N NaOH and by ion exchange on a Voi,. 40, 19z5-1 BIOCHEMISTRY: COHEN AND BARNER 887 Dowex-l-acetate column. The radioactivities of the compounds are given in Table 1 and show a slight activity in the thymine, equal to 2 per cent of the carbon of the glucose used. Thus at least 98 per cent of the thymine of the organism is derived from exogenous thymine. Bacteria were also grown in unlabeled glucose and thymine, washed, and resus- pended in the mineral medium containing uniformly labeled glucose-C'4 (1 mg/ml) as sole carbon source. The culture was incubated for 2 hours, in which time the glucose was exhausted and the number of colony-formers fell from 6.2 X 108 to 9.4 X 106 per milliliter. The bacteria were harvested, and the bases were isolated, the thymine being purified by the three types of procedures described above. The activities of the compounds are given in Table 2. TABLE 1 RADIOACTIVITIES OF THE BASES OF STRAIN 15T- GROWN IN UNIFORMLY LABELED GLUCOSE-C'4 AND UNLABELED EXOGENOUS THYMINE ,AM. Carbon Counts/Min/ Substance Plated Counts/Min* juM Carbon Glucose 1.5-6.2 ... 259 Uracil 1.70 440 258 Cytosine 1.81 423 235 Guanine 1.90 477 251 Adenine 1.55 340 220 Thymine: Chromatography 4.90 67.2 13.8 Electrophoresis 9. 4 62.7 6.7 6.5 50.2 7.7 Ion exchange 10.6 45.9 4.4 All planchets were counted to 3,000 counts. TABLE 2 RADIOACTIVITIES OF THE BASES OF STRAIN 15T-INCUBATED IN UNIFORMLY LABELED GLUCOSE- C14 IN THE ABSENCE OF EXOGENOUS THYMINE Per Cent EL\I. Carbon Counts/Min/ Activity Substance Plated Counts/Min AM Carbon of Glucose Glucose ... ... 259 100 Uracil 2. 90 368 127 49 Cytosine 2.29 335 114 44 Adenine 4.20 538 128 49 Guanine 3.98 386 97a :37 Thymine: Electrophoresis 5.50 78.4 12.6 4.9 Ion exchange 4.45 46.7 10.6 4.1 The activity of the uracil, a specific RNA constituent, indicates a synthesis of this substance to the extent of 96 per cent of that of the RNA originally present. The activity of the thymine, a specific DNA constituent, indicates a maximal synthesis of thymine and DNA of about 4 per cent of that of the DNA originally present. These data show that under conditions of normal growth or of death by unbal- anced growth there appears to be a very low level of thymine synthesis. However, this is insufficient to permit balanced growth in the absence of exogenous thymine. During unbalanced growth on radioactive glucose the bacteria excreted ultra- violet-absorbing materials into the medium. These were isolated by adsorption on, and elution from, charcoal-celite,' followed by paper chromatography of the major fractions in n-butanol-H20. Six white crystalline solids were isolated, of which 888 BIOCHEMISTRY: COHEN AND BARNER PROC. N. A. S. three have beeni positively identified as uracil, orotic acid, and hypoxanithine. The probable identities of the three substances were established by spectra in acid, neu- tral, and alkaline solutions and by Rf values in a variety of solvent mixtures. The radioactivities of the compounds permitted estimations of the carbon contents of the compounds, which were compared with those calculated from the extinction coefficients of known substances. These data are given in Table 3. Since the substances isolated from the media possessed activities equivalent per carbon atom to that of the glucose fed, it is clear that they were synthesized and excreted during unbalanced growth and are not autolytic products derived from the unlabeled cell.
Recommended publications
  • Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications
    International Journal of Molecular Sciences Review Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications Daniel Fernández-Villa 1, Maria Rosa Aguilar 1,2 and Luis Rojo 1,2,* 1 Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; [email protected] (D.F.-V.); [email protected] (M.R.A.) 2 Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-915-622-900 Received: 18 September 2019; Accepted: 7 October 2019; Published: 9 October 2019 Abstract: Bacterial, protozoan and other microbial infections share an accelerated metabolic rate. In order to ensure a proper functioning of cell replication and proteins and nucleic acids synthesis processes, folate metabolism rate is also increased in these cases. For this reason, folic acid antagonists have been used since their discovery to treat different kinds of microbial infections, taking advantage of this metabolic difference when compared with human cells. However, resistances to these compounds have emerged since then and only combined therapies are currently used in clinic. In addition, some of these compounds have been found to have an immunomodulatory behavior that allows clinicians using them as anti-inflammatory or immunosuppressive drugs. Therefore, the aim of this review is to provide an updated state-of-the-art on the use of antifolates as antibacterial and immunomodulating agents in the clinical setting, as well as to present their action mechanisms and currently investigated biomedical applications. Keywords: folic acid antagonists; antifolates; antibiotics; antibacterials; immunomodulation; sulfonamides; antimalarial 1.
    [Show full text]
  • A National Strategy for the Elimination of Hepatitis B and C: Phase Two Report
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://www.nap.edu/24731 SHARE A National Strategy for the Elimination of Hepatitis B and C: Phase Two Report DETAILS 296 pages | 6 x 9 | PAPERBACK ISBN 978-0-309-45729-3 | DOI: 10.17226/24731 CONTRIBUTORS GET THIS BOOK Gillian J. Buckley and Brian L. Strom, Editors; Committee on a National Strategy for the Elimination of Hepatitis B and C; Board on Population Health and Public Health Practice; Health and Medicine FIND RELATED TITLES Division; National Academies of Sciences, Engineering, and Medicine Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. A National Strategy for the Elimination of Hepatitis B and C: Phase Two Report Gillian J. Buckley and Brian L. Strom, Editors Committee on a National Strategy for the Elimination of Hepatitis B and C Board on Population Health and Public Health Practice Health and Medicine Division A Report of Copyright © National Academy of Sciences. All rights reserved. A National Strategy for the Elimination of Hepatitis B and C: Phase Two Report THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This activity was supported by the American Association for the Study of Liver Diseases, the Infectious Diseases Society of America, the National Viral Hepatitis Roundtable, and the U.S.
    [Show full text]
  • Pharmacology
    Step I Pharmacology 'WSMU~ is a ~aint program 0~the lfederatlan° a"• State Meaieal Boaras a~the I!Jntitea States • lne, and the Natianal Baara a1 Medieal Examiners. USMLE·Step 1 Pharmacology Lecture Notes 2006-2007 Edition KAPLA~. I meulca • USMLE is a joint program of the Federation of State Medical Boards of the United States, Inc. and the National Board of Medical Examiners. ©2006 Kaplan, Inc. All rights reserved. No part of this book may be reproduced in any form, by photostat, microfilm, xerography or any other means, or incorporated into any information retrieval system, electronic or mechanical, without the written permission of Kaplan, Inc. Not for resale. Author Lionel P. Rayman, Pharm.D., Ph.D. Department of Pathology Forensic Toxicology Laboratory University of Miami School of Medicine Miami, FL Contributing Authors Director of Medical Curriculum Sonia Reichert, M.D. Craig Davis, Ph.D. Associate Professor Editorial Director University of South Carolina School of Medicine Department of Pharmacology, Physiology, and Neuroscience Kathlyn McGreevy Columbia, SC Production Manager Maris Victor Nora, Pharm.D., Ph.D. Michael Wolff Associate Professor Rush Medical College Production Editor Chicago.Tl. William Ng Anthony Trevor, Ph.D. Cover Design Professor Emeritus Joanna Myllo Department of Cellular and Molecular Pharmacology University of California Cover Art San Francisco, CA Christine Schaar Steven R. Harris, Ph.D. Associate Dean for Basic Sciences Associate Professor of Pharmacology Pikeville College School of Osteopathic Medicine
    [Show full text]
  • Key Enzymes in Cancer: Mechanism of Action and Inhibition with Anticancer Agents
    University of Texas Rio Grande Valley ScholarWorks @ UTRGV Chemistry Faculty Publications and Presentations College of Sciences 2018 Key Enzymes in Cancer: Mechanism of Action and Inhibition With Anticancer Agents Debasish Bandyopadhyay The University of Texas Rio Grande Valley, [email protected] Gabriel Lopez The University of Texas Rio Grande Valley Stephanie Cantu The University of Texas Rio Grande Valley Samantha Balboa The University of Texas Rio Grande Valley Annabel Garcia The University of Texas Rio Grande Valley See next page for additional authors Follow this and additional works at: https://scholarworks.utrgv.edu/chem_fac Part of the Chemistry Commons, and the Life Sciences Commons Recommended Citation Debasish Bandyopadhyay, Gabriel Lopez, Stephanie Cantu, Samantha Balboa, Annabel Garcia, Christina Silva, Diandra Valdes. In Chemistry Research and Applications (Vol. 2): Organic and Medicinal Chemistry, Chapter 9; Key Enzymes in Cancer: Mechanism of Action and Inhibition with Anticancer Agents. 2018, Nova Science Publishers, Inc., Hauppauge, New York, USA (ISBN: 978-1-53614-855-8). This Book is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in Chemistry Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact [email protected], [email protected]. Authors Debasish Bandyopadhyay, Gabriel Lopez, Stephanie Cantu, Samantha Balboa, Annabel Garcia, Christina Silva, and Diandra Valdes This book is available at ScholarWorks @ UTRGV: https://scholarworks.utrgv.edu/chem_fac/131 In: Organic and Medicinal Chemistry, Volume 2 ISBN: 978-1-53614-855-8 Editor: Bimal Krishna Banik © 2019 Nova Science Publishers, Inc.
    [Show full text]
  • Activation of Apoptosis Pathways by Different Classes of Anticancer Drugs
    Research Laboratory of Children's Hospital, University of Ulm Chairman: Prof. Dr. Klaus-Michael Debatin Activation of apoptosis pathways by different classes of anticancer drugs Dissertation for the applying for a Doctor Degree of Medicine (Dr. med.) Faculty of Medicine, University of Ulm Presented by Jiahao Liu Born in Hubei, P. R. China 2001 Amtierender Dekan: Prof. Dr. R. Marre 1. Berichterstatter: Prof. Dr. K. M. Debatin 2. Berichterstatter: Prof. Dr. Dr. Dr. A. Grünert Tag der Promotion: 26. 10. 2001 To my family: Chen Longgui & Liu Chang 1 Contents Contents 1 Abbreviations 4 1. Introduction 1.1. Apoptosis: definitions and mechanisms 6 1.1.1. Cell biology of apoptosis 6 1.1.2. Execution of programmed cell death by caspases 7 1.1.3. Two main pathways of apoptosis 8 1.2. Cytotoxic anticancer drugs and apoptosis 9 1.3. Aims and summary of the project 11 2. Materials and Methods 2.1. Materials 14 2.1.1. Reagents and equipment for cell culture 14 2.1.2. Reagents and equipment for flow cytometric analysis 14 2.1.3. Reagents and equipment for western blot 15 2.1.4. Anticancer drugs 16 2.1.5. Antibodies 17 2.2. Methods 19 2.2.1. Cell culture 19 2.2.2. Cell preservation and reconstitution 19 2.2.3. Cell stimulation 19 2.2.4. Inhibitor studies 20 2.2.5. Flow cytometry 20 2.2.5.1. Analysis of annexin V and PI positive cells 20 2.2.5.2. Quantification of DNA fragmentation 21 ∆Ψ 2.2.5.3.
    [Show full text]
  • Evaluation of Acid Ceramidase As Response Predictor and Therapeutic Target in Neoadjuvant Chemoradiotherapy for Rectal Cancer
    Evaluation of Acid Ceramidase as Response Predictor and Therapeutic Target in Neoadjuvant Chemoradiotherapy for Rectal Cancer Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Medicine by David Lewis Bowden November 2018 Dedication To my family – you are my inspiration and motivation, thank you for all your love and support. x R A E J x i Declaration The work presented in this thesis was carried out in the Institute of Translational Medicine at the University of Liverpool and facilitated by the Madel research fellowship, supported by Health Education North West. The material contained within this thesis has not been, nor is currently being presented wholly, or in part, for any other degree or qualification. I declare that all the work presented in this thesis has been carried out by me except where indicated below: • Histopathological assessment of tumour regression grading and immunohistochemical expression of acid ceramidase was performed by Dr Michael Wall (FRCPath, Countess of Chester Hospital) • Tissue microarray construction and sectioning was performed by Mr Michael Neill (Liverpool Bio-Innovation Hub Biobank) David Bowden ii Acknowledgements I am indebted to everyone who has helped me with this research. Thank you. I would firstly like to thank my supervisors: Mr Dale Vimalachandran, Dr Neil Kitteringham, Dr Jason Parsons and Mr Paul Sutton. Your doors have always been open and your guidance and advice invaluable. Thank you particularly for your patience. One of the more laborious aspects of the work undertaken was in the assessment of histopathological tumour response and immunohistochemical expression of acid ceramidase on the tissue microarrays.
    [Show full text]
  • Discovery of a Paenibacillus Isolate for Biocontrol of Black Rot in Brassicas
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Discovery of a Paenibacillus isolate for biocontrol of black rot in brassicas A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Hoda Ghazalibiglar Lincoln University 2014 DECLARATION This dissertation/thesis (please circle one) is submitted in partial fulfilment of the requirements for the Lincoln University Degree of ________________________________________ The regulations for the degree are set out in the Lincoln University Calendar and are elaborated in a practice manual known as House Rules for the Study of Doctor of Philosophy or Masters Degrees at Lincoln University. Supervisor’s Declaration I confirm that, to the best of my knowledge: • the research was carried out and the dissertation was prepared under my direct supervision; • except where otherwise approved by the Academic Administration Committee of Lincoln University, the research was conducted in accordance with the degree regulations and house rules; • the dissertation/thesis (please circle one)represents the original research work of the candidate; • the contribution made to the research by me, by other members of the supervisory team, by other members of staff of the University and by others was consistent with normal supervisory practice.
    [Show full text]
  • History of the Department of Microbiology 1868 – 2009
    June 2015 HISTORY OF THE DEPARTMENT OF MICROBIOLOGY 1868 – 2009 University of Illinois at Urbana-Champaign 1 A HISTORY OF THE DEPARTMENT OF MICROBIOLOGY 1868 – 2009 This 141 year history of the Department of Microbiology includes an article (Chapter 1), written and published in 1959 by the Department, which covers the period 1868 to 1959. I joined the Department in 1953, and my recounting of the Department’s history includes personal observations as well as anecdotes told to me by H. O. Halvorson and others. Later I realized what a unique experience it had been to join a first-class department, and I resolved to play a role in maintaining its research stature. Ralph Wolfe 2 Department of Microbiology History of the Headship: 1950 – 1959 Halvor Halvorson 1960 – 1963 Kim Atwood 1963 – 1972 Leon Campbell 1972 – 1982 Ralph DeMoss 1982 – 1987 Samuel Kaplan 1987 – 1990 Jordan Konisky 1990 – 1991 Ralph Wolfe (Acting Head) 1991 – 1997 Charles Miller 1997 – 2002 John Cronan 2003 – 2004 Jeffrey Gardner (Acting Head) 2005 – Present John Cronan 3 Organization of the History of the Department In Chapters 2 to 6 the data are divided into Academic Decades, each containing the following sections: Section I, an overview of the decade; Section II, some events for each year of the decade; Section III, a summary of the research interests, honors received, publications, and invited off-campus lectures or seminars for each faculty member. These data have been obtained from the annual reports of the faculty submitted to the departmental secretary. 4 CHAPTER 1 1868 – 1959 During this time period the name of the Department was Department of Bacteriology (Anecdotes by Ralph Wolfe) A SHORT HISTORY OF THE DEPARTMENT OF BACTERIOLOGY H.
    [Show full text]
  • University of Cincinnati
    UNIVERSITY OF CINCINNATI Date:__09/27/2004_________________ I, _Katherine L. Lillard___________________________, hereby submit this work as part of the requirements for the degree of: Doctor of Philosophy in: Molecular Genetics, Biochemistry, and Microbiology It is entitled: The BLM helicase functions in alternative lengthening of telomeres. This work and its defense approved by: Chair: Joanna Groden____________ Iain Cartwright__________ Carolyn Price____________ James Stringer___________ Kathleen Dixon___________ THE BLM HELICASE FUNCTIONS IN ALTERNATIVE LENGTHENING OF TELOMERES A dissertation submitted to the Division of Research and Advanced Studies Of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (Ph.D.) In the Department of Molecular Genetics, Biochemistry & Microbiology Of the College of Medicine 2004 by Kate Lillard-Wetherell B.S., University of Texas at Austin, 1998 Committee Chair: Joanna Groden, Ph.D. ABSTRACT Somatic cells from persons with the inherited chromosome breakage syndrome Bloom syndrome (BS) feature excessive chromosome breakage, intra-and inter- chromosomal homologous exchanges and telomeric associations. The gene mutated in BS, BLM, encodes a RecQ-like ATP-dependent 3’-to-5’ helicase that presumably functions in some types of DNA transactions. As the absence of BLM is associated with excessive recombination, in vitro experiments have tested the ability of BLM to suppress recombination and/or resolve recombination intermediates. In vitro, BLM promotes branch migration of Holliday junctions, resolves D-loops and unwinds G-quadruplex DNA. A function for BLM in maintaining telomeres is suggested by the latter, since D- loops and perhaps G-quadruplex structures are thought to be present at telomeres. In the present study, the association of BLM with telomeres was investigated.
    [Show full text]
  • National Institute of Genetics Japan
    ISSN 0077-4995 NATIONAL INSTITUTE OF GENETICS JAPAN ANNUAL REPORT No. 39 1988 Published by THE NATIONAL INSTITUTE OF GENETICS Misima, Sizuoka-ken, Japan 1989 Annual Report of the National Institute of Genetics No. 39, 1988 Published by The National Institute of Genetics, Japan 1989 CONTENTS General statement .............................................. 1 Staff 7 Council and Advisory Committee '" .. .. 10 Association for propagation of the knowledge of genetics 12 Projects of research for 1988 13 Research activities in 1988 18 1. Molecular Genetics Promoter selectivity of E. coli RNA polymerase: Cloning and characterization ofE. coli promoters. KUBOTA, M., YAMAZAKI, Y., FUJITA, N. and ISHIHAMA, A. 18 Promoter selectivity of E. coli RNA polymerase: Subunit (j) plays an essential role in stringent control. IGARASHI, K., FUJITA, N., OKAMOTO, H. and ISHIHAMA, A. 19 RNA polymerase sigma-related protein in Escherichia coli: Puri­ fication and characterization of proteins which crossreact with anti-sigma peptide antibodies. UESHIMA, R., FUJITA, N. and ISHIHAMA, A. 20 RNA polymerase and transcription signals of Micrococcus luteus. NAKAYAMA, M., FUJITA, N., OSAWA, S. and ISHIHAMA, A. '" 20 Molecular mechanism of influenza virus RNA transcription. I. Analysis of promoters for viral RNA polymerase. ISHIHAMA, A., PARVIN, J. D., PALESE, P., KRYSTAL, M., HONDA, A., KATO, A., UEDA, S., YOKOIYAMA, A., YAMAZAKI, Y., YAMA- NAKA, K. and NAGATA, K. 21 Molecular mechanism of influenza virus RNA transcription. II. Matrix protein epitopes involved in transcription inhibition. HANKINS, R. W., NAGATA, K., BUCHER, D. J., and ISHIHAMA, A 22 Molecular mechanism of influenza virus RNA transcription. III. Binding mode of influenza virus nucleoprotein to RNA. YAMANAKA, K., OGASAWARA, N., YOSHIKAWA, H., NAGATA, K.
    [Show full text]
  • The Role of Nucleolin in B-Cell Lymphomas and Fas-Mediated Apoptotic Signaling
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2013 The Role of Nucleolin in B-cell Lymphomas and Fas-Mediated Apoptotic Signaling Jillian F. Wise Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Cancer Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Wise, Jillian F., "The Role of Nucleolin in B-cell Lymphomas and Fas-Mediated Apoptotic Signaling" (2013). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 339. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/339 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. The Role of Nucleolin in B-cell Lymphomas and Fas-Mediated Apoptotic Signaling by Jillian F Wise, BS Approved: ___________________________________________________ Felipe
    [Show full text]
  • University of Cincinnati
    UNIVERSITY OF CINCINNATI _____________ , 20 _____ I,______________________________________________, hereby submit this as part of the requirements for the degree of: ________________________________________________ in: ________________________________________________ It is entitled: ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ Approved by: ________________________ ________________________ ________________________ ________________________ ________________________ BLM is a Suppressor of DNA Recombination A dissertation submitted to the Division of Research and Advanced Studies Of the University of Cincinnati In partial fulfillment of the Requirements for the degree of Doctorate of Philosophy (Ph.D.) In the Department of Molecular Genetics, Microbiology, and Biochemistry Of the College of Arts and Sciences 2002 by Joel E. Straughen B.S., The Ohio State University, 1985 M.D., University of Cincinnati, 2002 Committee Chair: Joanna Groden, Ph.D. i ABSTRACT Bloom’s syndrome (BS) is a rare, recessive chromosome breakage disorder characterized by small stature, sun sensitivity, facial erythema, immunodeficiency, female subfertility, male infertility, and a predisposition to a variety of cancers. When this body of work was started, the gene for Bloom’s syndrome (BLM)hadyettobe identified. This work presents characterization of the genomic region at BLM and the identification of BLM. With the cloning
    [Show full text]