Obstetrics and Gynecology, Howard C

Total Page:16

File Type:pdf, Size:1020Kb

Obstetrics and Gynecology, Howard C Red Cell Alloimmunization Chapter 34 KeNNeth J. MOISe Jr Nomenclature 770 Indications 774 Hemolytic Disease of the Fetus Historic Perspectives 770 Diagnostic Methods 776 and Newborn Due to Non-RhD Incidence 771 Clinical Management 778 Antibodies 781 Pathophysiology 771 First Affected Pregnancy 778 Rhc 781 Rhesus Alloimmunization and Fetal/ Previously Affected Fetus or Infant 778 RhC, RhE, and Rhe 782 Neonatal Hemolytic Disease of the Intrauterine Transfusion 778 Duffy 782 Newborn 772 Technique 778 Kidd 782 Genetics 772 Complications and Outcome 780 Kell 782 Prevention of RhD Hemolytic Disease Neonatal Transfusions 780 in the Fetus and Newborn 773 Neurologic Outcome 780 History 773 Other Treatment Modalities 780 Preparations 773 Future Therapeutic Options 781 KEY ABBREVIATIONS these antibodies across the placenta during pregnancy results in fetal anemia, hyperbilirubinemia, and ultimately hydrops American Association of Blood Banks AABB fetalis. Before the advent of obstetric ultrasound, the perinatal American College of Obstetricians and ACOG effects of maternal red cell alloimmunization could be recog- Gynecologists nized only after birth in the affected neonate. Thus the neonatal Cytomegalovirus CMV consequences of maternal red cell alloimmunization came to be Circulating cell-free fetal DNA ccffDNA known as hemolytic disease of the newborn (HDN). Because the Deoxyribonucleic acid DNA peripheral blood smear of these infants demonstrated a large Diphosphatidylglycerol DPG percentage of circulating immature red cells known as erythro­ Fetal blood sampling FBS blasts, the newborn entity was also known as erythroblastosis Fetomaternal hemorrhage FMH fetalis. Today, ultrasound and fetal blood sampling (FBS) make Grams per deciliter g/dL the detection of the severely anemic fetus a reality. For this Hemolytic disease of the fetus and HDFN reason, the term hemolytic disease of the fetus and newborn newborn (HDFN) would appear more appropriate to describe this Hemolytic disease of the newborn HDN disorder. Intraperitoneal transfusion IPT International unit(s) IU Intrauterine transfusion IUT HISTORIC PERSPECTIVES Intravascular transfusion IVT The first case of HDFN was probably described by a midwife Intravenous immune globulin IVIG in 1609 in the French literature: a twin gestation in which the Kleihauer-Betke KB first fetus was stillborn and the second twin developed jaundice Middle cerebral artery MCA and died soon after birth.1 In 1932, Diamond2 proposed that Microgram µg the clinical entities of erythroblastosis fetalis, icterus gravis neo- Rhesus immune globulin RhIG natorum, and hydrops fetalis represented different manifesta- Single nucleotide polymorphisms SNPs tions of the same disease. Seven years later, Levine and Stetson3 described an antibody in a woman who gave birth to a stillborn fetus. The patient experienced a severe hemolytic transfusion reaction after later receiving her husband’s blood. In 1940, Landsteiner and Weiner4 injected red blood cells from rhesus NOMENCLATURE monkeys into rabbits. The antibody isolated from these rabbits Exposure to foreign red cell antigens invariably results in the was used to test human blood samples from whites, and agglu- production of anti–red cell antibodies in a process known as tination was noted in 85% of individuals. The following year red cell alloimmunization, formerly termed isoimmuniza- Levine and colleagues5 were able to demonstrate a causal rela- tion. The expression sensitization can be used interchange- tionship between Rhesus D (RhD) antibodies in RhD-negative ably with Rhesus alloimmunization. The active transport of women and HDFN in their offspring. 770 Chapter 34 Red Cell Alloimmunization 771 The advent of therapy for HDFN began in 1945 with the 35 description by Wallerstein6 of the technique of neonatal exchange 7 transfusion. Later Liley proposed the use of amniotic fluid bili- 30 31 rubin assessment as an indirect measure of the degree of fetal hemolysis. Sir William Liley’s major contribution to the story of rhesus disease was the introduction of the fetal intraperitoneal 25 transfusion (IPT).8 He learned from a visiting fellow who had 24 returned from Africa that the infusion of red blood cells into the 20 peritoneal cavity of children with sickle-cell disease produced 19 normal-appearing red blood cells on peripheral blood smear. 15 Liley realized that he had previously inadvertently entered the Percentage 15 peritoneal cavity of fetuses at the time of amniocentesis, based 10 on the marked contrast in the yellow hue of the ascitic fluid as 10 compared with amniotic fluid. He postulated that purposeful entry into the fetal peritoneal cavity could be accomplished. 5 After three unsuccessful attempts that resulted in fetal demises, 1/7 the fourth fetus was delivered at 34 weeks’ gestation after 0 undergoing two successful IPTs. Early attempts at IPT used EMDKC fluoroscopy for needle guidance. With the introduction of real- FIG 34-1 Incidence of maternal anti–red cell antibodies associated with time ultrasound in the early 1980s, IPT became a safer proce- hemolytic disease of the fetus and newborn (HDFN) at a tertiary care dure as fluoroscopy was abandoned. Charles Rodeck9 is credited institution between 2007 and 2011. E, M, D, K, and C are antibodies. with the first intravascular fetal transfusion (IVT) using a feto- (Modified from Smith HM, Shirey RS, Thoman SK, Jackson JB. Preva- lence of clinically significant red blood cell alloantibodies in pregnant scope to guide the transfusion needle into a placental plate women at a large tertiary care facility. Immunohematology. 2013;29: vessel. Just 1 year later, investigators in Denmark performed the 127-130.) first ultrasound-guided IVT using the intrahepatic portion of the umbilical vein.10 thought. In this paradigm, maternal RhD-positive red cells gain The 1990s saw the introduction of genetic techniques using access to the circulation of the RhD-negative fetus at the time amniocentesis to determine fetal red cell typing.11 The turn of of delivery. As many as one fourth of RhD-negative babies the century brought the noninvasive detection of fetal anemia have been shown to be immunized in early life as a result through Doppler ultrasound of the fetal middle cerebral artery of their delivery.16,17 The immune response of an Rh-negative (MCA) and the use of fetal typing through cell-free DNA in individual to RhD-positive red cells has been characterized into maternal plasma.12,13 one of three groups: (1) responders, (2) hyporesponders, and (3) nonresponders. About 60% to 70% of individuals are responders who develop an antibody to relatively small volumes INCIDENCE of red cells; in these individuals, the probability of immunization The advent of the routine administration of antenatal and increases with escalating volumes of cells. A small percentage of postpartum rhesus immune globulin (RhIG) has resulted in responders can be called hyperresponders in that they will be a marked reduction in cases of red cell alloimmunization immunized by very small quantities of red cells. The second secondary to the RhD antigen. The Centers for Disease Control group of individuals (10% to 20%), hyporesponders, can be and Prevention (CDC) last required the reporting of rhesus immunized only by exposure to very large volumes of cells. alloimmunization as a medical complication of pregnancy on Finally, the 10% to 20% of individuals who remain appear to U.S. birth certificates in the year 2002.14 In that year, the most be nonresponders. recent for which epidemiologic data are available, the incidence In most cases of red cell alloimmunization, a fetomaternal was reported to be 6.7 cases of rhesus alloimmunization per hemorrhage (FMH) occurs in the antenatal period or, more 1000 live births. commonly, at the time of delivery. If a maternal ABO blood Clearly, a shift to other red cell antibodies associated type incompatibility exists between the mother and her fetus, with HDFN has occurred as a result of the decreasing inci- anti-A and/or anti-B antibodies lyse the fetal cells in the mater- dence of RhD alloimmunization. In a series of over 8000 nal circulation and destroy the RhD antigen.18,19 Even if this pregnant patients between 2007 and 2011, a positive screen protective effect is not present,only 13% of deliveries of RhD- for an antibody associated with HDFN was found in 1.2% of positive fetuses result in RhD alloimmunization in RhD- samples.15 Anti-E was the most common antibody encountered; negative women who do not receive RhIG. The vast majority RhD antibody accounted for only 19% of the significant anti- of RhD-alloimmunized women produce an immunoglobulin G bodies (Fig. 34-1). (IgG) response as their initial antibody. Responders may represent a group of individuals who had their initial exposure to the RhD antigen at birth because of FMH.17 After a sensitizing event, PATHOPHYSIOLOGY the human antiglobulin anti-D titer can usually be detected after Although the placenta was once thought to be an absolute 5 to 16 weeks. However, approximately half of alloimmunized barrier to the transfer of cells between the maternal and fetal patients are sensibilized. In this scenario, an antibody screen will compartments, we now appreciate that the placental interface be negative, but memory B lymphocytes are present that can allows for the bidirectional movement of both intact cells and create an anti-D antibody response. When faced with the chal- free DNA. The putative “grandmother theory” of rhesus red cell lenge of a subsequent pregnancy involving an RhD-positive alloimmunization probably occurs more commonly than first fetus, the anti-D titer becomes detectable. 772 Section V Complicated Pregnancy Chapter 34 Red Cell Alloimmunization The anti-D immune response is the best characterized of the 1p34 anti–red cell antibodies associated with HDFN. In one third of D gene CE gene cases, only subclass IgG1 is produced; in the remainder of cases, 20 D gene CE gene a combination of IgG1 and IgG3 subclasses is found. Anti-D Homozygous IgG is a nonagglutinating antibody that does not bind com- RhD Positive plement.
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Mcleod Neuroacanthocytosis Syndrome
    NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health. Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993- 2017. McLeod Neuroacanthocytosis Syndrome Hans H Jung, MD Department of Neurology University Hospital Zurich Zurich, Switzerland [email protected] Adrian Danek, MD Neurologische Klinik Ludwig-Maximilians-Universität München, Germany ed.uml@kenad Ruth H Walker, MD, MBBS, PhD Department of Neurology Veterans Affairs Medical Center Bronx, New York [email protected] Beat M Frey, MD Blood Transfusion Service Swiss Red Cross Schlieren/Zürich, Switzerland [email protected] Christoph Gassner, PhD Blood Transfusion Service Swiss Red Cross Schlieren/Zürich, Switzerland [email protected] Initial Posting: December 3, 2004; Last Update: May 17, 2012. Summary Clinical characteristics. McLeod neuroacanthocytosis syndrome (designated as MLS throughout this review) is a multisystem disorder with central nervous system (CNS), neuromuscular, and hematologic manifestations in males. CNS manifestations are a neurodegenerative basal ganglia disease including (1) movement disorders, (2) cognitive alterations, and (3) psychiatric symptoms. Neuromuscular manifestations include a (mostly subclinical) sensorimotor axonopathy and muscle weakness or atrophy of different degrees. Hematologically, MLS is defined as a specific blood group phenotype (named after the first proband, Hugh McLeod) that results from absent expression of the Kx erythrocyte antigen and weakened expression of Kell blood group antigens. The hematologic manifestations are red blood cell acanthocytosis and compensated hemolysis. Allo-antibodies in the Kell and Kx blood group system can cause strong reactions to transfusions of incompatible blood and severe anemia in newborns of Kell-negative mothers.
    [Show full text]
  • Immuno 2014 No. 1
    Journal of Blood Group Serology and Molecular Genetics VOLUME 30, N UMBER 1, 2014 Immunohematology Journal of Blood Group Serology and Molecular Genetics Volume 30, Number 1, 2014 CONTENTS R EPORT 1 Indirect antiglobulin test-crossmatch using low-ionic-strength saline–albumin enhancement medium and reduced incubation time: effectiveness in the detection of most clinically significant antibodies and impact on blood utilization C.L. Dinardo, S.L. Bonifácio, and A. Mendrone, Jr. R EV I EW 6 Raph blood group system M. Hayes R EPORT 11 I-int phenotype among three individuals of a Parsi community from Mumbai, India S.R. Joshi C A SE R EPORT 14 Evans syndrome in a pediatric liver transplant recipient with an autoantibody with apparent specificity for the KEL4 (Kpb) antigen S.A. Koepsell, K. Burright-Hittner, and J.D. Landmark R EV I EW 18 JMH blood group system: a review S.T. Johnson R EPORT 24 Demonstration of IgG subclass (IgG1 and IgG3) in patients with positive direct antiglobulin tests A. Singh, A. Solanki, and R. Chaudhary I N M EMOR ia M 28 George Garratty, 1935–2014 Patricia A. Arndt and Regina M. Leger 30 A NNOUNCEMENTS 34 A DVERT I SEMENTS 39 I NSTRUCT I ONS FOR A UTHORS E D I TOR - I N -C H I EF E D I TOR ia L B OA RD Sandra Nance, MS, MT(ASCP)SBB Philadelphia, Pennsylvania Patricia Arndt, MT(ASCP)SBB Paul M. Ness, MD Pomona, California Baltimore, Maryland M A N AG I NG E D I TOR James P.
    [Show full text]
  • Introduction to the Rh Blood Group.Pdf
    Introduction to the Rhesus Blood Group Justin R. Rhees, M.S., MLS(ASCP)CM, SBBCM University of Utah Department of Pathology Medical Laboratory Science Program Objectives 1. Describe the major Rhesus (Rh) blood group antigens in terms of biochemical structure and inheritance. 2. Describe the characteristics of Rh antibodies. 3. Translate the five major Rh antigens, genotypes, and haplotypes from Fisher-Race to Wiener nomenclature. 4. State the purpose of Fisher-Race, Wiener, Rosenfield, and ISBT nomenclatures. Background . How did this blood group get its name? . 1937 Mrs. Seno; Bellevue hospital . Unknown antibody, unrelated to ABO . Philip Levine tested her serum against 54 ABO-compatible blood samples: only 13 were compatible. Rhesus (Rh) blood group 1930s several cases of Hemolytic of the Fetus and Newborn (HDFN) published. Hemolytic transfusion reactions (HTR) were observed in ABO- compatible transfusions. In search of more blood groups, Landsteiner and Wiener immunized rabbits with the Rhesus macaque blood of the Rhesus monkeys. Rhesus (Rh) blood group 1940 Landsteiner and Wiener reported an antibody that reacted with about 85% of human red cell samples. It was supposed that anti-Rh was the specificity causing the “intragroup” incompatibilities observed. 1941 Levine found in over 90% of erythroblastosis fetalis cases, the mother was Rh-negative and the father was Rh-positive. Rhesus macaque Rhesus (Rh) blood group Human anti-Rh and animal anti- Rh are not the same. However, “Rh” was embedded into blood group antigen terminology. The
    [Show full text]
  • 3407 M16141436 19 3.Pdf
    Immunohematology JOURNAL OF BLOOD GROUP SEROLOGY AND EDUCATION V OLUME 19, NUMBER 3, 2003 Immunohematology JOURNAL OF BLOOD GROUP SEROLOGY AND EDUCATION V OLUME 19, NUMBER 3, 2003 CONTENTS 73 DNA analysis for donor screening of Dombrock blood group antigens J.R. STORRY, C.M.WESTHOFF,D.CHARLES-PIERRE,M.RIOS,K.HUE-ROYE,S.VEGE,S.NANCE, AND M.E. REID 77 Studies on the Dombrock blood group system in non-human primates C. MOGOS,A.SCHAWALDER,G.R. HALVERSON, AND M.E. REID 83 Murine monoclonal antibodies can be used to type RBCs with a positive DAT G.R. HALVERSON,P.HOWARD,H.MALYSKA,E.TOSSAS, AND M.E. REID 86 Rh antigen and phenotype frequencies and probable genotypes for the four main ethnic groups in Port Harcourt, Nigeria Z.A. JEREMIAH AND F.I. BUSERI 89 Antibodies detected in samples from 21,730 pregnant women S. JOVANOVIC-SRZENTIC,M.DJOKIC,N.TIJANIC,R.DJORDJEVIC,N.RIZVAN,D.PLECAS, AND D. FILIMONOVIC 93 BOOK REVIEWS S. GERALD SANDLER,MD THERESA NESTER,MD 95 COMMUNICATIONS Letter to the Editors Letter From the Editors Irregular RBC antibodies in the Ortho Dedication sera of Brazilian pregnant women 97 IN MEMORIAM BERTIL CEDEGREN,MD 98 99 ANNOUNCEMENTS ADVERTISEMENTS 103 INSTRUCTIONS FOR AUTHORS EDITOR-IN-CHIEF MANAGING EDITOR Delores Mallory, MT(ASCP)SBB Mary H. McGinniss,AB, (ASCP)SBB Rockville, Maryland Bethesda, Maryland TECHNICAL EDITOR SENIOR MEDICAL EDITOR Christine Lomas-Francis, MSc Scott Murphy, MD New York, New York Philadelphia, Pennsylvania ASSOCIATE MEDICAL EDITORS S. Gerald Sandler, MD Geralyn Meny, MD Ralph Vassallo, MD Washington, District of Columbia Philadelphia, Pennsylvania Philadelphia, Pennsylvania EDITORIAL BOARD Patricia Arndt, MT(ASCP)SBB W.
    [Show full text]
  • ABO, Rh and Kell) and Ncovid-19 Susceptibility – a Retrospective Observational Study
    Relationship between blood group phenotypes (ABO, Rh and Kell) and nCOVID-19 susceptibility – A retrospective observational study. Sudhir Bhandari SMS Medical College and Hospitals, Jaipur, Rajasthan, India Ajeet Singh Shaktawat SMS Medical College and Hospitals, Jaipur, Rajasthan, India Amit Tak ( [email protected] ) SMS Medical College and Hospitals, Jaipur, Rajasthan, India https://orcid.org/0000-0003-2509-2311 Bhoopendra Patel Government Medical College, Barmer, Rajasthan, India Jyotsna Shukla SMS Medical College and Hospitals, Jaipur, Rajasthan, India Sanjay Singhal SMS Medical College and Hospitals, Jaipur, Rajasthan, India Kapil Gupta SMS Medical College and Hospitals, Jaipur, Rajasthan, India Jitendra Gupta SMS Medical College and Hospitals, Jaipur, Rajasthan, India Shivankan Kakkar SMS Medical College and Hospitals, Jaipur, Rajasthan, India Amitabh Dube SMS Medical College and Hospitals, Jaipur, Rajasthan, India Sunita Dia Medstar Washington Hospital Center, Washington DC 20010, USA. Mahendra Dia North Carolina State University, Raleigh, NC 27695-7609, USA. Todd C Wehner North Carolina State University, Raleigh, NC 27695-7609, USA. Research Article Keywords: ABO blood grouping, coronavirus disease, COVID-19, multinomial test Page 1/13 Posted Date: July 10th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-39611/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/13 Abstract Since the outbreak of coronavirus disease-19 research has been continued to explore multiple facets of the disease. The objective of the present study is to evaluate the relationship between blood group phenotypes and COVID-19 susceptibility. In this hospital based, retrospective observational study 132 COVID-19 patients were enrolled from SMS Medical College and attached Hospitals, Jaipur, India after the proper approval from the institutional ethics committee.
    [Show full text]
  • Comprehensive Red Blood Cell and Platelet Antigen Prediction from Whole Genome Sequencing: Proof of Principle
    BLOOD GROUP GENOMICS Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle William J. Lane,1,2 Connie M. Westhoff,3 Jon Michael Uy,1 Maria Aguad,1 Robin Smeland-Wagman,1 Richard M. Kaufman,1 Heidi L. Rehm,1,2,4,5 Robert C. Green,2,5,6 and Leslie E. Silberstein7 for the MedSeq Project* rediction of red blood cell (RBC) and platelet BACKGROUND: There are 346 serologically defined (PLT) antigens using DNA assays has the poten- red blood cell (RBC) antigens and 33 serologically tial to augment or replace traditional serologic defined platelet (PLT) antigens, most of which have antigen typing in many situations. DNA-based known genetic changes in 45 RBC or six PLT genes that P typing methods are more easily automated, amenable to correlate with antigen expression. Polymorphic sites multiplexing, and do not require expensive and some- associated with antigen expression in the primary times difficult to obtain serologic immunoglobulin literature and reference databases are annotated according to nucleotide positions in cDNA. This makes antigen prediction from next-generation sequencing data ABBREVIATIONS: CDS 5 coding DNA sequence; NGS 5 challenging, since it uses genomic coordinates. next-generation sequencing; SNP(s) 5 single-nucleotide STUDY DESIGN AND METHODS: The conventional polymorphism(s); WGS 5 whole genome sequencing. cDNA reference sequences for all known RBC and PLT From the 1Department of Pathology, the 6Division of Genetics, genes that correlate with antigen expression were Department of Medicine, and the 7Division of Transfusion aligned to the human reference genome. The alignments Medicine, Department of Pathology, Brigham and Women’s allowed conversion of conventional cDNA nucleotide Hospital; and 2Harvard Medical School, Boston, Massachusetts; positions to the corresponding genomic coordinates.
    [Show full text]
  • Inclusion of Additional Reference Reagents in the Existing Collection of WHO International Reference Reagents for Blood Group Genotyping
    WHO/BS/2019.2371 ENGLISH ONLY EXPERT COMMITTEE ON BIOLOGICAL STANDARDIZATION Geneva, 21 to 25 October 2019 Inclusion of Additional Reference Reagents in the Existing Collection of WHO International Reference Reagents for Blood Group Genotyping Report of the international collaborative study to evaluate eighteen additional candidates for addition to the existing collection of four WHO International Reference Reagents for blood group genotyping Evgeniya Volkova1, Emilia Sippert1, Meihong Liu1, Teresita Mercado1, Gregory A Denomme2, Orieji Illoh1, Zhugong Liu1, Maria Rios1*, and the Collaborative Study Group3 1 Office of Blood Research and Review, CBER/FDA, Silver Spring, MD, USA. 2 Blood Research Institute and Diagnostic Laboratories, Versiti/BloodCenter of Wisconsin, Milwaukee, WI, USA. * Principal contact: [email protected] 3 Members of the Collaborative Study Group are listed in Appendix 1. NOTE: This document has been prepared for the purpose of inviting comments and suggestions on the proposals contained therein, which will then be considered by the Expert Committee on Biological Standardization (ECBS). Comments MUST be received by 27 September 2019 and should be addressed to the World Health Organization, 1211 Geneva 27, Switzerland, attention: Technologies, Standards and Norms (TSN). Comments may also be submitted electronically to the Responsible Officer: Dr Ivana Knezevic at email: [email protected]. © World Health Organization 2019 All rights reserved. This draft is intended for a restricted audience only, i.e. the individuals and organizations having received this draft. The draft may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means outside these individuals and organizations (including the organizations' concerned staff and member organizations) without the permission of the World Health Organization.
    [Show full text]
  • Red Blood Cell Antigen Genotyping
    Red Blood Cell Antigen Genotyping Testing is useful in determining allelic variants predicting red blood cell (RBC) antigen phenotypes for patients with recent history of transfusion or with conflicting serological antibody results due to partial, variant, or weak expression antigens. Also Tests to Consider useful as an aid in management of hemolytic disease of the fetus and newborn (HDFN). Typical Testing Strategy Disease Overview Phenotype Testing Evaluates specific RBC antigen presence by serology Prevalence and/or Incidence Results can aid in selecting antigen negative RBC units Erythrocyte alloimmunization occurs in up to 58% of sickle cell patients, up to 35% in other transfusion-dependent patients, and in approximately 0.8% of all pregnant Antigen Testing, RBC Phenotype women. Extended 0013020 Method: Hemagglutination Serological testing includes K, Fya, Fyb, Jka, Symptoms Jkb, S, s (k, cellano, testing performed if indicated) to assess maternal or paternal RBC Transfusion reactions or HDFN can occur due to alloimmunization: phenotype status. Antigen Testing, Rh Phenotype 0013019 Intravascular hemolysis: hemoglobinuria, jaundice, shock Extravascular hemolysis: fever and chills Method: Hemagglutination HDFN: fetal hemolytic anemia, hepatosplenomegaly, jaundice, erythroblastosis, Antigen testing for D, C, E, c, and e to assess neurological damage, hydrops fetalis maternal, paternal, or newborn Rh phenotype status Clinical presentation is variable and dependent upon the specific antibody and recipient factors Genotype Testing May help
    [Show full text]
  • Copyrighted Material
    P1: SFK/UKS P2: SFK/UKS QC: SFK/UKS T1: SFK Color: 1C ind BLBK321-Paidas September 7, 2010 15:9 Trim: 244mm X 172mm Index Note: Italicized f and t refer to figures and tables, respectably. Abciximab, 207 anti-A, 29 ABO blood group, 28–9 anti-B, 29 ABO hemolytic disease, 29 anti-c, 28 acetaminophen, 45 anticoagulant therapy, 111–43 acidosis, 197 antiplatelet agents, 141 acquired thrombophilia, 68–74. See also low molecular weight heparin, 127–30, inherited thrombophilia 140–41 diagnosis of, 68, 72t for mechanical heart valve incidence of, 68 thromboprophylaxis, 138–43 obstetrical complications, 73 unfractionated heparin, 127, 140–41 pathogenecity, 71 for venous thromboembolism, 111–18 pathophysiology of, 71 for venous thromboembolism in pregnancy, activated partial thromboplastin time (aPTT), 118–36 127, 173 vitamin K antagonists, 139–40 activated protein C (APC), 6, 74–9, 191 anti-D immunoglobulin, 33 activated recombinant factor VII (rFVIIa), 165 antenatal, 33 activation markers, 7 dose regime, 35 acute fatty liver of pregnancy (AFLP), 187 indications for RhD-negative mothers, 35 acute leukemia, 20 antifibrinolytic drugs, 202 ADAMST13 deficiency, 44 anti-Kell, 28 adenosine diphosphate (ADP), 60, 61–2 f antiphospholipid antibody syndrome (APAS), adherent placenta, 169–70 68–74 alpha-delta storage pool deficiency, 165 clinical consequences, 72–3 Alport syndrome, 60 diagnosis of, 68, 72t amegakaryocytic thrombocytopenia, 60 incidence of, 68 amniotic fluid embolism (AFE), 184–5 obstetrical complications, 73 anaphylaxis, 211 pathogenicity, 71 anemia,
    [Show full text]
  • Blood Group Antigens: Principles and Practice
    Blood Group Antigens: principles and practice Peyman Eshghi Prof. of Pediatric Hematology & Oncology 3-95 References 1. NATHAN AND OSKI’S HEMATOLOGY AND ONCOLOGY OF INFANCY AND CHILDHOOD, 8 th ed.,2015 2. Christopher D. Hillyer,et al.,Handbook of PEDIATRIC TRANSFUSION MEDICINE,2004 3. Rossi’sPrinciplesofTransfusionMedicine,5th ed.,2015 • More than 250 Ags • Erythrocyte antigens are polymorphic inherited structural characteristics located on proteins, glycoproteins, or glycolipids on the outside surface of the RBC membrane. • Erythrocyte antigens are clinically important in the immune destruction of RBCs in allogeneic blood transfusions, maternal-fetal blood group incompatibility, autoimmune hemolytic anemia, and organ transplantation Carbohydrate blood groups •ABO •LEWIS •P •Hh • The fucosyltransferase (and thus the H antigen) is present in all persons except those with the rare Bombay (Oh) phenotype • The genes for the A and B blood group antigens are codominant • Antigens A&B are not fully developed until 2 to 4 years of age:ABO hemolytic disease of the newborn (HDN) is usually a mild disease • Isohemagglutinins from group A and B individuals are predominantly immunoglobulin M (IgM) that do not usually cross the placenta and cause HDN. • However, as group O serum contains IgG isohemagglutins, ABO HDN is most frequently seen in non–group O infants of group O mothers. Molecular basis of ABH • Three genes control the expression of the ABO antigens: • ABO, Hh, and Se. • The H gene attaches L-fucose to the RBC membrane-anchored polypeptide • On red cells, platelets ,and endothelium ,ABH is primarily expressed on type 2 chain or lactosamine based structures. • The secretor gene (Se) controls the individual’s ability to secrete soluble • Genitourinary and gastrointestinal tissues, are rich in type1 chain ABH antigens : depends on secretor gen FUT2 • The classic Bombay phenotype: is an H-deficient nonsecretor(hh,se/se), with an absence of both type1 and type2 chain ABH antigens.
    [Show full text]
  • International Society of Blood Transfusion Working Party on Red Cell Immunogenetics and Blood Group Terminology: Cancun Report (2012)
    Vox Sanguinis (2014) 107, 90–96 © 2013 International Society of Blood Transfusion SHORT REPORT DOI: 10.1111/vox.12127 International Society of Blood Transfusion Working Party on red cell immunogenetics and blood group terminology: Cancun report (2012) J. R. Storry,1 L. Castilho,2 G. Daniels,3 W. A. Flegel,4 G. Garratty,5 M. de Haas,6 C. Hyland,7 C. Lomas-Francis,8 J. M. Moulds,9 N. Nogues,10 M. L. Olsson,11 J. Poole,3 M. E. Reid,8 P. Rouger,12 E. van der Schoot,4 M. Scott,3 Y. Tani,13 L.-C. Yu,14 S. Wendel,15 C. Westhoff,8 V. Yahalom16 & T. Zelinski17 1Clinical Immunology and Transfusion Medicine, University and Regional Laboratories, Lund, Sweden 2University of Campinas/Hemocentro, Campinas, Brazil 3Bristol Institute for Transfusion Sciences and IBGRL, NHSBT, Bristol, UK 4Clinical Center, Department of Transfusion Medicine, Bethesda, MD, USA 5American Red Cross Blood Services, Pomona, CA, USA 6Sanquin Blood Supply, Diagnostic Services, Amsterdam, the Netherlands 7Australian Red Cross Blood Services, Brisbane, Australia 8New York Blood Center, New York, NY, USA 9LifeShare Blood Centers, Shreveport, LA, USA 10Banc de Sang i Teixits, Barcelona, Spain 11Department of Laboratory Medicine, Division of Haematology and Transfusion Medicine, Lund University, Sweden 12Centre national de Reference pour les Groupes sanguines, Paris, France 13Japanese Red Cross Kinki Block Blood Center, Ibaraki, Japan 14Mackay Memorial Hospital and National Taiwan University, Taipei, Taiwan 15Blood Bank, Hospital Sirio-Libanes, Sao~ Paulo, Brazil 16NBGRL Magen David Adom, Ramat Gan, Israel 17Rh Laboratory, Winnipeg, Manitoba, Canada The International Society of Blood Transfusion Working Party on red cell immuno- genetics and blood group terminology convened during the International congress in Cancun, July 2012.
    [Show full text]