Copyrighted Material

Total Page:16

File Type:pdf, Size:1020Kb

Copyrighted Material P1: SFK/UKS P2: SFK/UKS QC: SFK/UKS T1: SFK Color: 1C ind BLBK321-Paidas September 7, 2010 15:9 Trim: 244mm X 172mm Index Note: Italicized f and t refer to figures and tables, respectably. Abciximab, 207 anti-A, 29 ABO blood group, 28–9 anti-B, 29 ABO hemolytic disease, 29 anti-c, 28 acetaminophen, 45 anticoagulant therapy, 111–43 acidosis, 197 antiplatelet agents, 141 acquired thrombophilia, 68–74. See also low molecular weight heparin, 127–30, inherited thrombophilia 140–41 diagnosis of, 68, 72t for mechanical heart valve incidence of, 68 thromboprophylaxis, 138–43 obstetrical complications, 73 unfractionated heparin, 127, 140–41 pathogenecity, 71 for venous thromboembolism, 111–18 pathophysiology of, 71 for venous thromboembolism in pregnancy, activated partial thromboplastin time (aPTT), 118–36 127, 173 vitamin K antagonists, 139–40 activated protein C (APC), 6, 74–9, 191 anti-D immunoglobulin, 33 activated recombinant factor VII (rFVIIa), 165 antenatal, 33 activation markers, 7 dose regime, 35 acute fatty liver of pregnancy (AFLP), 187 indications for RhD-negative mothers, 35 acute leukemia, 20 antifibrinolytic drugs, 202 ADAMST13 deficiency, 44 anti-Kell, 28 adenosine diphosphate (ADP), 60, 61–2 f antiphospholipid antibody syndrome (APAS), adherent placenta, 169–70 68–74 alpha-delta storage pool deficiency, 165 clinical consequences, 72–3 Alport syndrome, 60 diagnosis of, 68, 72t amegakaryocytic thrombocytopenia, 60 incidence of, 68 amniotic fluid embolism (AFE), 184–5 obstetrical complications, 73 anaphylaxis, 211 pathogenicity, 71 anemia, 2–3, 12–13. See also red cell disorders pathophysiology of, 71 aplastic, 20 antiplatelet agents, 141 diagnosis, 21–4 antithrombin etiology, 14 changes in pregnancy, 5t of infection, 19 deficiency, 75–6t, 84–6 iron-deficiency, 13–15, 14t, 21–2 in disseminated intravascular coagulation, management in pregnancy, 24–5 189, 191 megaloblastic, 15–16, 23–4 replacement, in preeclampsia, 86–9 parasitic disease, 18 COPYRIGHTEDaplastic anemia, 20 MATERIAL pathophysiology during pregnancy, 13–14 argatroban, 131 postpartum hemorrhage and, 168 arterial embolization, 177–8 prevalence, 12 Ascaris lumbricoides,18 red cell membrane disorders, 19–20 Asherson’s syndrome, 74 renal, 19 aspirin, 88, 91, 92–9t sickle cell disease, 17–18 atonic uterus, 176 thalassemia, 16–17, 23 anemia-induced coagulopathy, 197 B lymphocytes, 4 Ankylostoma duodenale,18 Bacillus cereus, 210 antenatal anti-D prophylaxis, 33 Bakri balloon, 175 216 P1: SFK/UKS P2: SFK/UKS QC: SFK/UKS T1: SFK Color: 1C ind BLBK321-Paidas September 7, 2010 15:9 Trim: 244mm X 172mm Index 217 balloon tamponade, 175–6 coagulation, 5 basophil count, 4 coagulopathy, 199–206 Bernard-Soulier syndrome, 60 antifibrinolytic drugs, 202 beta thalassemia, 17 blood component therapy, 200 bleeding disorders, inherited, 153–9 blood transfusion support in, 199–200 antenatal care, 158 clinical/laboratory evidence of, 199 care during labor, 158–9 cryoprecipitate, 201 in gynecology, 161–5 dilutional, 199 hemophilia, 156–7 rFVIIa therapy for, 202–6 platelet function disorders, 164–5 fresh frozen plasma, 201 and pregnancy, 157–8 massive blood transfusion in, 199–200, 201–2 prenatal diagnostic, 158 platelets, 200 von Willebrand disease, 153–6, 162–3 colloids, 172 blood component therapy, 200 complete blood count (CBC), 21 blood groups, 28 compression ultrasound leg vein imaging, blood loss, 170–71 116–17 blood transfusion, 195–214 congenital amegakaryocytic thrombocytopenia, acute transfusion reactions, 210–11 60 acute hemolytic reaction, 210 consumption coagulopathy, 197 allergic reactions, 211 contaminated blood, transfusion of, 210 anaphylaxis, 211 cordocentesis, 52 febrile non-hemolytic transfusion cryoprecipitate, 201 reactions, 211 crystalloids, 171–2, 190 fluid overload, 210–11 CT pulmonary angiography, 115, 126 transfusion contaminated blood, 210 cytokines, 183–4 administration, 209 cytotoxic drugs, 20 blood warmers, 209 cytotrophoblasts, 67 compatibility procedures, 208 complications, 212 dalteparin, 97t, 130 delayed hemolytic transfusion reaction, 212 danaparoid, 131 post-transfusion purpura, 213 D-dimer, 112, 115, 122, 189 transfusion associate graft-versus-host decidualization, 68 disease, 212 deep vein thrombosis (DVT), 111 transfusion-related acute-lung injury, 212 clinical prediction rules, 117t complications of, 209–10 diagnostic tools, 116–17, 121–4 group and cross match, 208 clinical assessment, 116 infections from, 213–14 compression ultrasound leg vein imaging, infection screening, 213 116–17, 122 malaria, 213–14 venography, 116, 122 variant Creutzfeldt-Jacob disease, 213–14 in pregnant women, 122–4 infusion rates for blood components, 208–9 delayed hemolytic transfusion reaction (DHTR), infusion times for blood components, 208–9 212 intrauterine, 37–8 delta storage pool deficiency, 165 intravenous access, 209 desmopressin acetate (DDAVP), 155–6, 163 massive, 200 dextran, 190 in non-emergency situations, 207 Diego antigen system, 31t in planned surgery, 207–8 dilutional coagulopathy, 199 planning, 208 discrete membranous subaortic stenosis, support, 199–200 severity assessment, 198 blood warmers, 209 disseminated intravascular coagulation (DIC), 182–92 caesarian section, 55, 169 acute fatty liver of pregnancy, 187 cardiolipin antibodies, 5t amniotic fluid embolism and, 184–5 catastrophic antiphospholipid syndrome blood and blood products, 190–91 (CAPS), 74 clinical diagnosis of, 187–8 chlorpheniramine, 211 eclampsia and, 185 chondromalacia punctata, 129 etiological factors, 184 chondroplasia punctata, 140 fluid choices, 189 chorioamnionitis, 174 general principles, 183–4 chronic myeloid leukemia, 20 intrauterine death and, 186 citrate phosphate dextrose, 38 intrauterine infections and, 186–7 P1: SFK/UKS P2: SFK/UKS QC: SFK/UKS T1: SFK Color: 1C ind BLBK321-Paidas September 7, 2010 15:9 Trim: 244mm X 172mm 218 Index disseminated (Cont.) fluid resuscitation, 171, 198–9 laboratory diagnosis of, 188–9 folate, 3 anti-thrombin levels, 189 folate deficiency, 15–16 D-dimer, 189 folic acid, 19 fibrin degradation product, 188–9 fondaparinux, 46, 131–2 fibrinogen, 188 fresh frozen plasma (FFP), 158t, 173, 190, 201, partial thromboplastin time, 188 209 PF 1+2 assay, 189 FV Leiden mutation, 185 platelet count, 188 thrombin time, 188 gelatin, 190 management of, 189 genital tract trauma, 169 pathophysiology, 183–4 Gerbich antigen system, 32t placental abruption and, 185–6 gestational thrombocytopenia, 41, 47t,57 role of antithrombin III in, 191 Gestosis Index (GI), 86–7 use of activated protein C, 191 Group B streptococci, 210 use of rVIIa in, 192 group O blood, 29 disseminated intravascular coagulopathy (DIC), gynecologic surgery, 137–8 20 Dombrock antigen system, 32t HAMP gene, 15 Duffy antigen system, 31t Hartmann’s solution, 190 Hb-E beta thalassemia, 17 eclampsia, 185 HELLP syndrome, 20, 44, 47t, 173, 185 elevated factor VII, 75t helminths, 18 elevated factor VIII, 75t hematocrit, 2 elevated factor XI, 75t hematologic changes, pregnancy-associated, 1–8 ELISA assays, 113–14 activation markers, 7 enoxaparin, 91, 96–7t anemia in pregnancy, 2–3 Eptifibatide, 207 coagulation, 5 ergometrine, 170, 174 factorX,6 erythrocytes, 2 folate requirements, 3 erythropoietin, 2 hemostatic changes in pregnancy, 5t Escherichia coli, 210 iron requirements, 3 plasma volume, 1–2 factor IX, 156 platelet counts, 4 factor V deficiency, 158t protein S, 6 factor V Leiden (FVL), 74–9, 75–6t protein Z, 6–7 factor VI deficiency, 158t red blood cells, 2 factor VIII, 155 resistance to activated protein C, 6 factor X, 6 thrombocytopenia, 4 factor X deficiency, 158t white blood cells, 4 factor Xa, 6 hematological malignancies, 20 factor XI deficiency, 158t hemoglobin, 2–3, 15 factor XIII deficiency, 158t hemoglobinopathies, 16–18 Fanconi anemia, 59 sickle cell anemia, 17–18 febrile reactions, 211 thalassemia, 16–17 ferritin, 13, 15 hemolytic disease of the newborn (HDN), 28–38 fetal blood sampling, 54 ABO hemolytic disease, 29 fetal intervention for, idiopathic, 57 blood groups and, 28 fetal platelet typing, 51–2 characteristics of, 28 fetal thrombocytopenia, 46–8. See also maternal incidence of, 28 thrombocytopenia isoimmunization and, 28–9 characteristics of, 59t pattern and severity, 28–9 genetic disorders associated with, 58–60 Rhesus hemolytic disease, 30–38 gestational, 57 hemolytic uremic syndrome, 43–5, 47t immunologic causes, 57 hemophilia, 156–7. See also inherited bleeding infectious etiologies, 58 disorders neonatal alloimmune thrombocytopenia, antenatal care, 157 48–57 care during labor, 157 fever, 211 causes of, 156 fibrin degradation products (FDP), 183, 188–9 prenatal diagnosis of, 156–7 fibrinogen, 5t, 188 hemophiliacs, 202 P1: SFK/UKS P2: SFK/UKS QC: SFK/UKS T1: SFK Color: 1C ind BLBK321-Paidas September 7, 2010 15:9 Trim: 244mm X 172mm Index 219 hemorrhage, postpartum, 167–79 antithrombin deficiency, 84–6 balloon tamponade for, 175–6 factor V Leiden resistance, 74–9 blood loss estimation, 170–71 hyperhomocysteinemia, 81–3 consequences of, 168 methyltetrahydrofolate reductase mutations, definition of, 167–8 81–3 etiology, 168–9 PAI-1 4G/5G mutation, 89–90 evaluation of, 195–6 protein C deficiency, 83–4 immediate management of, 171–4 protein S deficiency, 83 incidence of, 167 prothrombin gene mutation, 79–81 management of, 195–6, 206–7 inhibitor-1, 5t medical management of, 174–5 internal iliac artery ligation (IAL), 177 mortality rate, 167 intrauterine death, 186 obstetric hemorrhage, 195 intrauterine infections, 186–7 prevention of, 169–70 intrauterine transfusion, 37–8 recurrence of, 168 intravenous
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Mcleod Neuroacanthocytosis Syndrome
    NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health. Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993- 2017. McLeod Neuroacanthocytosis Syndrome Hans H Jung, MD Department of Neurology University Hospital Zurich Zurich, Switzerland [email protected] Adrian Danek, MD Neurologische Klinik Ludwig-Maximilians-Universität München, Germany ed.uml@kenad Ruth H Walker, MD, MBBS, PhD Department of Neurology Veterans Affairs Medical Center Bronx, New York [email protected] Beat M Frey, MD Blood Transfusion Service Swiss Red Cross Schlieren/Zürich, Switzerland [email protected] Christoph Gassner, PhD Blood Transfusion Service Swiss Red Cross Schlieren/Zürich, Switzerland [email protected] Initial Posting: December 3, 2004; Last Update: May 17, 2012. Summary Clinical characteristics. McLeod neuroacanthocytosis syndrome (designated as MLS throughout this review) is a multisystem disorder with central nervous system (CNS), neuromuscular, and hematologic manifestations in males. CNS manifestations are a neurodegenerative basal ganglia disease including (1) movement disorders, (2) cognitive alterations, and (3) psychiatric symptoms. Neuromuscular manifestations include a (mostly subclinical) sensorimotor axonopathy and muscle weakness or atrophy of different degrees. Hematologically, MLS is defined as a specific blood group phenotype (named after the first proband, Hugh McLeod) that results from absent expression of the Kx erythrocyte antigen and weakened expression of Kell blood group antigens. The hematologic manifestations are red blood cell acanthocytosis and compensated hemolysis. Allo-antibodies in the Kell and Kx blood group system can cause strong reactions to transfusions of incompatible blood and severe anemia in newborns of Kell-negative mothers.
    [Show full text]
  • Immuno 2014 No. 1
    Journal of Blood Group Serology and Molecular Genetics VOLUME 30, N UMBER 1, 2014 Immunohematology Journal of Blood Group Serology and Molecular Genetics Volume 30, Number 1, 2014 CONTENTS R EPORT 1 Indirect antiglobulin test-crossmatch using low-ionic-strength saline–albumin enhancement medium and reduced incubation time: effectiveness in the detection of most clinically significant antibodies and impact on blood utilization C.L. Dinardo, S.L. Bonifácio, and A. Mendrone, Jr. R EV I EW 6 Raph blood group system M. Hayes R EPORT 11 I-int phenotype among three individuals of a Parsi community from Mumbai, India S.R. Joshi C A SE R EPORT 14 Evans syndrome in a pediatric liver transplant recipient with an autoantibody with apparent specificity for the KEL4 (Kpb) antigen S.A. Koepsell, K. Burright-Hittner, and J.D. Landmark R EV I EW 18 JMH blood group system: a review S.T. Johnson R EPORT 24 Demonstration of IgG subclass (IgG1 and IgG3) in patients with positive direct antiglobulin tests A. Singh, A. Solanki, and R. Chaudhary I N M EMOR ia M 28 George Garratty, 1935–2014 Patricia A. Arndt and Regina M. Leger 30 A NNOUNCEMENTS 34 A DVERT I SEMENTS 39 I NSTRUCT I ONS FOR A UTHORS E D I TOR - I N -C H I EF E D I TOR ia L B OA RD Sandra Nance, MS, MT(ASCP)SBB Philadelphia, Pennsylvania Patricia Arndt, MT(ASCP)SBB Paul M. Ness, MD Pomona, California Baltimore, Maryland M A N AG I NG E D I TOR James P.
    [Show full text]
  • Introduction to the Rh Blood Group.Pdf
    Introduction to the Rhesus Blood Group Justin R. Rhees, M.S., MLS(ASCP)CM, SBBCM University of Utah Department of Pathology Medical Laboratory Science Program Objectives 1. Describe the major Rhesus (Rh) blood group antigens in terms of biochemical structure and inheritance. 2. Describe the characteristics of Rh antibodies. 3. Translate the five major Rh antigens, genotypes, and haplotypes from Fisher-Race to Wiener nomenclature. 4. State the purpose of Fisher-Race, Wiener, Rosenfield, and ISBT nomenclatures. Background . How did this blood group get its name? . 1937 Mrs. Seno; Bellevue hospital . Unknown antibody, unrelated to ABO . Philip Levine tested her serum against 54 ABO-compatible blood samples: only 13 were compatible. Rhesus (Rh) blood group 1930s several cases of Hemolytic of the Fetus and Newborn (HDFN) published. Hemolytic transfusion reactions (HTR) were observed in ABO- compatible transfusions. In search of more blood groups, Landsteiner and Wiener immunized rabbits with the Rhesus macaque blood of the Rhesus monkeys. Rhesus (Rh) blood group 1940 Landsteiner and Wiener reported an antibody that reacted with about 85% of human red cell samples. It was supposed that anti-Rh was the specificity causing the “intragroup” incompatibilities observed. 1941 Levine found in over 90% of erythroblastosis fetalis cases, the mother was Rh-negative and the father was Rh-positive. Rhesus macaque Rhesus (Rh) blood group Human anti-Rh and animal anti- Rh are not the same. However, “Rh” was embedded into blood group antigen terminology. The
    [Show full text]
  • 3407 M16141436 19 3.Pdf
    Immunohematology JOURNAL OF BLOOD GROUP SEROLOGY AND EDUCATION V OLUME 19, NUMBER 3, 2003 Immunohematology JOURNAL OF BLOOD GROUP SEROLOGY AND EDUCATION V OLUME 19, NUMBER 3, 2003 CONTENTS 73 DNA analysis for donor screening of Dombrock blood group antigens J.R. STORRY, C.M.WESTHOFF,D.CHARLES-PIERRE,M.RIOS,K.HUE-ROYE,S.VEGE,S.NANCE, AND M.E. REID 77 Studies on the Dombrock blood group system in non-human primates C. MOGOS,A.SCHAWALDER,G.R. HALVERSON, AND M.E. REID 83 Murine monoclonal antibodies can be used to type RBCs with a positive DAT G.R. HALVERSON,P.HOWARD,H.MALYSKA,E.TOSSAS, AND M.E. REID 86 Rh antigen and phenotype frequencies and probable genotypes for the four main ethnic groups in Port Harcourt, Nigeria Z.A. JEREMIAH AND F.I. BUSERI 89 Antibodies detected in samples from 21,730 pregnant women S. JOVANOVIC-SRZENTIC,M.DJOKIC,N.TIJANIC,R.DJORDJEVIC,N.RIZVAN,D.PLECAS, AND D. FILIMONOVIC 93 BOOK REVIEWS S. GERALD SANDLER,MD THERESA NESTER,MD 95 COMMUNICATIONS Letter to the Editors Letter From the Editors Irregular RBC antibodies in the Ortho Dedication sera of Brazilian pregnant women 97 IN MEMORIAM BERTIL CEDEGREN,MD 98 99 ANNOUNCEMENTS ADVERTISEMENTS 103 INSTRUCTIONS FOR AUTHORS EDITOR-IN-CHIEF MANAGING EDITOR Delores Mallory, MT(ASCP)SBB Mary H. McGinniss,AB, (ASCP)SBB Rockville, Maryland Bethesda, Maryland TECHNICAL EDITOR SENIOR MEDICAL EDITOR Christine Lomas-Francis, MSc Scott Murphy, MD New York, New York Philadelphia, Pennsylvania ASSOCIATE MEDICAL EDITORS S. Gerald Sandler, MD Geralyn Meny, MD Ralph Vassallo, MD Washington, District of Columbia Philadelphia, Pennsylvania Philadelphia, Pennsylvania EDITORIAL BOARD Patricia Arndt, MT(ASCP)SBB W.
    [Show full text]
  • ABO, Rh and Kell) and Ncovid-19 Susceptibility – a Retrospective Observational Study
    Relationship between blood group phenotypes (ABO, Rh and Kell) and nCOVID-19 susceptibility – A retrospective observational study. Sudhir Bhandari SMS Medical College and Hospitals, Jaipur, Rajasthan, India Ajeet Singh Shaktawat SMS Medical College and Hospitals, Jaipur, Rajasthan, India Amit Tak ( [email protected] ) SMS Medical College and Hospitals, Jaipur, Rajasthan, India https://orcid.org/0000-0003-2509-2311 Bhoopendra Patel Government Medical College, Barmer, Rajasthan, India Jyotsna Shukla SMS Medical College and Hospitals, Jaipur, Rajasthan, India Sanjay Singhal SMS Medical College and Hospitals, Jaipur, Rajasthan, India Kapil Gupta SMS Medical College and Hospitals, Jaipur, Rajasthan, India Jitendra Gupta SMS Medical College and Hospitals, Jaipur, Rajasthan, India Shivankan Kakkar SMS Medical College and Hospitals, Jaipur, Rajasthan, India Amitabh Dube SMS Medical College and Hospitals, Jaipur, Rajasthan, India Sunita Dia Medstar Washington Hospital Center, Washington DC 20010, USA. Mahendra Dia North Carolina State University, Raleigh, NC 27695-7609, USA. Todd C Wehner North Carolina State University, Raleigh, NC 27695-7609, USA. Research Article Keywords: ABO blood grouping, coronavirus disease, COVID-19, multinomial test Page 1/13 Posted Date: July 10th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-39611/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/13 Abstract Since the outbreak of coronavirus disease-19 research has been continued to explore multiple facets of the disease. The objective of the present study is to evaluate the relationship between blood group phenotypes and COVID-19 susceptibility. In this hospital based, retrospective observational study 132 COVID-19 patients were enrolled from SMS Medical College and attached Hospitals, Jaipur, India after the proper approval from the institutional ethics committee.
    [Show full text]
  • Comprehensive Red Blood Cell and Platelet Antigen Prediction from Whole Genome Sequencing: Proof of Principle
    BLOOD GROUP GENOMICS Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle William J. Lane,1,2 Connie M. Westhoff,3 Jon Michael Uy,1 Maria Aguad,1 Robin Smeland-Wagman,1 Richard M. Kaufman,1 Heidi L. Rehm,1,2,4,5 Robert C. Green,2,5,6 and Leslie E. Silberstein7 for the MedSeq Project* rediction of red blood cell (RBC) and platelet BACKGROUND: There are 346 serologically defined (PLT) antigens using DNA assays has the poten- red blood cell (RBC) antigens and 33 serologically tial to augment or replace traditional serologic defined platelet (PLT) antigens, most of which have antigen typing in many situations. DNA-based known genetic changes in 45 RBC or six PLT genes that P typing methods are more easily automated, amenable to correlate with antigen expression. Polymorphic sites multiplexing, and do not require expensive and some- associated with antigen expression in the primary times difficult to obtain serologic immunoglobulin literature and reference databases are annotated according to nucleotide positions in cDNA. This makes antigen prediction from next-generation sequencing data ABBREVIATIONS: CDS 5 coding DNA sequence; NGS 5 challenging, since it uses genomic coordinates. next-generation sequencing; SNP(s) 5 single-nucleotide STUDY DESIGN AND METHODS: The conventional polymorphism(s); WGS 5 whole genome sequencing. cDNA reference sequences for all known RBC and PLT From the 1Department of Pathology, the 6Division of Genetics, genes that correlate with antigen expression were Department of Medicine, and the 7Division of Transfusion aligned to the human reference genome. The alignments Medicine, Department of Pathology, Brigham and Women’s allowed conversion of conventional cDNA nucleotide Hospital; and 2Harvard Medical School, Boston, Massachusetts; positions to the corresponding genomic coordinates.
    [Show full text]
  • Inclusion of Additional Reference Reagents in the Existing Collection of WHO International Reference Reagents for Blood Group Genotyping
    WHO/BS/2019.2371 ENGLISH ONLY EXPERT COMMITTEE ON BIOLOGICAL STANDARDIZATION Geneva, 21 to 25 October 2019 Inclusion of Additional Reference Reagents in the Existing Collection of WHO International Reference Reagents for Blood Group Genotyping Report of the international collaborative study to evaluate eighteen additional candidates for addition to the existing collection of four WHO International Reference Reagents for blood group genotyping Evgeniya Volkova1, Emilia Sippert1, Meihong Liu1, Teresita Mercado1, Gregory A Denomme2, Orieji Illoh1, Zhugong Liu1, Maria Rios1*, and the Collaborative Study Group3 1 Office of Blood Research and Review, CBER/FDA, Silver Spring, MD, USA. 2 Blood Research Institute and Diagnostic Laboratories, Versiti/BloodCenter of Wisconsin, Milwaukee, WI, USA. * Principal contact: [email protected] 3 Members of the Collaborative Study Group are listed in Appendix 1. NOTE: This document has been prepared for the purpose of inviting comments and suggestions on the proposals contained therein, which will then be considered by the Expert Committee on Biological Standardization (ECBS). Comments MUST be received by 27 September 2019 and should be addressed to the World Health Organization, 1211 Geneva 27, Switzerland, attention: Technologies, Standards and Norms (TSN). Comments may also be submitted electronically to the Responsible Officer: Dr Ivana Knezevic at email: [email protected]. © World Health Organization 2019 All rights reserved. This draft is intended for a restricted audience only, i.e. the individuals and organizations having received this draft. The draft may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means outside these individuals and organizations (including the organizations' concerned staff and member organizations) without the permission of the World Health Organization.
    [Show full text]
  • Red Blood Cell Antigen Genotyping
    Red Blood Cell Antigen Genotyping Testing is useful in determining allelic variants predicting red blood cell (RBC) antigen phenotypes for patients with recent history of transfusion or with conflicting serological antibody results due to partial, variant, or weak expression antigens. Also Tests to Consider useful as an aid in management of hemolytic disease of the fetus and newborn (HDFN). Typical Testing Strategy Disease Overview Phenotype Testing Evaluates specific RBC antigen presence by serology Prevalence and/or Incidence Results can aid in selecting antigen negative RBC units Erythrocyte alloimmunization occurs in up to 58% of sickle cell patients, up to 35% in other transfusion-dependent patients, and in approximately 0.8% of all pregnant Antigen Testing, RBC Phenotype women. Extended 0013020 Method: Hemagglutination Serological testing includes K, Fya, Fyb, Jka, Symptoms Jkb, S, s (k, cellano, testing performed if indicated) to assess maternal or paternal RBC Transfusion reactions or HDFN can occur due to alloimmunization: phenotype status. Antigen Testing, Rh Phenotype 0013019 Intravascular hemolysis: hemoglobinuria, jaundice, shock Extravascular hemolysis: fever and chills Method: Hemagglutination HDFN: fetal hemolytic anemia, hepatosplenomegaly, jaundice, erythroblastosis, Antigen testing for D, C, E, c, and e to assess neurological damage, hydrops fetalis maternal, paternal, or newborn Rh phenotype status Clinical presentation is variable and dependent upon the specific antibody and recipient factors Genotype Testing May help
    [Show full text]
  • Blood Group Antigens: Principles and Practice
    Blood Group Antigens: principles and practice Peyman Eshghi Prof. of Pediatric Hematology & Oncology 3-95 References 1. NATHAN AND OSKI’S HEMATOLOGY AND ONCOLOGY OF INFANCY AND CHILDHOOD, 8 th ed.,2015 2. Christopher D. Hillyer,et al.,Handbook of PEDIATRIC TRANSFUSION MEDICINE,2004 3. Rossi’sPrinciplesofTransfusionMedicine,5th ed.,2015 • More than 250 Ags • Erythrocyte antigens are polymorphic inherited structural characteristics located on proteins, glycoproteins, or glycolipids on the outside surface of the RBC membrane. • Erythrocyte antigens are clinically important in the immune destruction of RBCs in allogeneic blood transfusions, maternal-fetal blood group incompatibility, autoimmune hemolytic anemia, and organ transplantation Carbohydrate blood groups •ABO •LEWIS •P •Hh • The fucosyltransferase (and thus the H antigen) is present in all persons except those with the rare Bombay (Oh) phenotype • The genes for the A and B blood group antigens are codominant • Antigens A&B are not fully developed until 2 to 4 years of age:ABO hemolytic disease of the newborn (HDN) is usually a mild disease • Isohemagglutinins from group A and B individuals are predominantly immunoglobulin M (IgM) that do not usually cross the placenta and cause HDN. • However, as group O serum contains IgG isohemagglutins, ABO HDN is most frequently seen in non–group O infants of group O mothers. Molecular basis of ABH • Three genes control the expression of the ABO antigens: • ABO, Hh, and Se. • The H gene attaches L-fucose to the RBC membrane-anchored polypeptide • On red cells, platelets ,and endothelium ,ABH is primarily expressed on type 2 chain or lactosamine based structures. • The secretor gene (Se) controls the individual’s ability to secrete soluble • Genitourinary and gastrointestinal tissues, are rich in type1 chain ABH antigens : depends on secretor gen FUT2 • The classic Bombay phenotype: is an H-deficient nonsecretor(hh,se/se), with an absence of both type1 and type2 chain ABH antigens.
    [Show full text]
  • International Society of Blood Transfusion Working Party on Red Cell Immunogenetics and Blood Group Terminology: Cancun Report (2012)
    Vox Sanguinis (2014) 107, 90–96 © 2013 International Society of Blood Transfusion SHORT REPORT DOI: 10.1111/vox.12127 International Society of Blood Transfusion Working Party on red cell immunogenetics and blood group terminology: Cancun report (2012) J. R. Storry,1 L. Castilho,2 G. Daniels,3 W. A. Flegel,4 G. Garratty,5 M. de Haas,6 C. Hyland,7 C. Lomas-Francis,8 J. M. Moulds,9 N. Nogues,10 M. L. Olsson,11 J. Poole,3 M. E. Reid,8 P. Rouger,12 E. van der Schoot,4 M. Scott,3 Y. Tani,13 L.-C. Yu,14 S. Wendel,15 C. Westhoff,8 V. Yahalom16 & T. Zelinski17 1Clinical Immunology and Transfusion Medicine, University and Regional Laboratories, Lund, Sweden 2University of Campinas/Hemocentro, Campinas, Brazil 3Bristol Institute for Transfusion Sciences and IBGRL, NHSBT, Bristol, UK 4Clinical Center, Department of Transfusion Medicine, Bethesda, MD, USA 5American Red Cross Blood Services, Pomona, CA, USA 6Sanquin Blood Supply, Diagnostic Services, Amsterdam, the Netherlands 7Australian Red Cross Blood Services, Brisbane, Australia 8New York Blood Center, New York, NY, USA 9LifeShare Blood Centers, Shreveport, LA, USA 10Banc de Sang i Teixits, Barcelona, Spain 11Department of Laboratory Medicine, Division of Haematology and Transfusion Medicine, Lund University, Sweden 12Centre national de Reference pour les Groupes sanguines, Paris, France 13Japanese Red Cross Kinki Block Blood Center, Ibaraki, Japan 14Mackay Memorial Hospital and National Taiwan University, Taipei, Taiwan 15Blood Bank, Hospital Sirio-Libanes, Sao~ Paulo, Brazil 16NBGRL Magen David Adom, Ramat Gan, Israel 17Rh Laboratory, Winnipeg, Manitoba, Canada The International Society of Blood Transfusion Working Party on red cell immuno- genetics and blood group terminology convened during the International congress in Cancun, July 2012.
    [Show full text]
  • An Introduction to Blood Groups
    1405153490_4_001.qxd 8/16/06 9:21 AM Page 1 An introduction to blood groups CHAPTER 1 What is a blood group? In 1900, Landsteiner showed that people could be divided into three groups (now called A, B, and O) on the basis of whether their red cells clumped when mixed with separated sera from people. A fourth group (AB) was soon found. This is the origin of the term ‘blood group’. A blood group could be defined as, ‘An inherited character of the red cell surface, detected by a specific alloantibody’. Do blood groups have to be present on red cells? This is the usual meaning, though platelet- and neutrophil-specific antigens might also be called blood groups. In this book only red cell surface antigens are considered. Blood groups do not have to be red cell specific, or even blood cell specific, and most are also detected on other cell types. Blood groups do have to be detected by a specific antibody: polymorphisms suspected of being present on the red cell surface, but only detected by other means, such as DNA sequencing, are not blood groups. Furthermore, the antibodies must be alloantibod- ies, implying that some individuals lack the blood group. Blood group antigens may be: • proteins; • glycoproteins, with the antibody recognising primarily the polypeptide backbone; • glycoproteins, with the antibody recognising the carbohydrate moiety; • glycolipids, with the antibody recognising the carbohydrate portion. Blood group polymorphisms may be as fundamental as representing the presence or absence of the whole macromolecule (e.g. RhD), or as minor as a single amino acid change (e.g.
    [Show full text]