Design and Analysis of Optimal Operational Orbits Around Venus for the Envision Mission Proposal
Total Page:16
File Type:pdf, Size:1020Kb
Design and Analysis of Optimal Operational Orbits around Venus for the EnVision Mission Proposal Marta Rocha Rodrigues de Oliveira Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisors: Prof. Paulo Jorge Soares Gil Prof. Richard Ghail Examination Committee Chairperson: Filipe Szolnoky Ramos Pinto Cunha Supervisor: Paulo Jorge Soares Gil Member of the Committee: João Manuel Gonçalves de Sousa Oliveira November 2015 ii Acknowledgments I would like to express my sincere gratitude to my supervisors Professor Paulo Gil from Instituto Superior Tecnico´ and Professor Richard Ghail from Imperial College London. Without their help, counsel, and generous transmission of knowledge, this thesis would not have been possible. I must also thank the EnVision team for the unique opportunity of working with such an exciting Venus project and contributing to an outstanding ESA proposal. Furthermore, I would like to express my appreciation to Dr. Edward Wright and to the NAIF team from JPL for the exceptional support provided. For the very welcomed inspiration, I must thank my friends, in particular the ISU community who encouraged me to pursue my work when I was reaching a breaking point. This thesis is dedicated to my parents and my sister, who give meaning and purpose to all my pursuits. iii iv Resumo Na explorac¸ao˜ espacial, as missoes˜ planetarias´ em orbita´ sao˜ essenciais para obter informac¸ao˜ so- bre os planetas como um todo, e ajudar a resolver questoes˜ cient´ıficas pendentes. Em particular, os planetas mais parecidos com a Terra temˆ sido um alvo privilegiado das principais agenciasˆ espaci- ais internacionais. EnVision e´ uma proposta de missao˜ que tem como objectivo justamente estudar um desses planetas. Projectada para Venus´ e concorrente da proxima´ oportunidade de lanc¸amento da ESA, a proposta ja´ passou pela selectiva revisao˜ tecnica´ para a oportunidade de lanc¸amento M4, e sera´ agora apresentada para a M5, incorporando o feedback da ESA. O objectivo principal e´ estudar proces- sos geologicos´ e atmosfericos,´ nomeadamente processos de superf´ıcie, dinamicaˆ interior do planeta e atmosfera, para determinar as razoes˜ pelas quais a Terra e Venus´ evolu´ıram de forma radicalmente diferente apesar das semelhanc¸as dos dois planetas. Nesta tese, propomos a estudar e melhorar o desenho da orbita´ operacional a` volta de Venus´ para a missao˜ EnVision. As restric¸oes˜ e requisitos cient´ıficos que afectam a orbita´ vao˜ ser examinados a fim de desenvolver um modelo computacional adaptado aos objectivos da missao.˜ Finalmente, a optimizac¸ao˜ da orbita´ operacional e´ feita para os parametrosˆ com maior influenciaˆ no planeamento da missao.˜ Palavras-chave: orbita´ operacional, design de orbitas,´ requisitos cient´ıficos, observac¸ao˜ de alvos, optimizac¸ao˜ de orbita,´ algoritmos geneticos.´ v vi Abstract In space exploration, planetary orbiter missions are essential to gain insight into planets as a whole, and to help uncover unanswered scientific questions. In particular, the planets closest to the Earth have been a privileged target of the world’s leading space agencies. EnVision is a mission proposal with the objective of studying one of these planets. Designed for Venus and competing for ESA’s next launch opportunity, the proposal already went through the selective technical review for the M4 launch opportunity, and will now be submitted for the M5 call, incorporating feedback from ESA. The main goal is to study geological and atmospheric processes, namely surface processes, interior dynamics and atmosphere, to determine the reasons behind Venus and Earth’s radically different evolution despite the planets’ similarities. In this thesis, we propose to study and improve the design of the operational orbit around Venus for the EnVision mission proposal. The constraints and scientific requirements that affect the orbit will be examined in order to develop a computational model adapted to the mission objectives. Finally, the orbit optimization is applied for the parameters with more influence in the mission planning. Keywords: operational orbit, orbit design, scientific requirements, targets coverage, orbit opti- mization, genetic algorithms. vii viii Contents Acknowledgments........................................... iii Resumo.................................................v Abstract................................................. vii List of Tables.............................................. xi List of Figures............................................. xiv List of Acronyms............................................ xvii List of Symbols.............................................1 1 Introduction 1 1.1 Thesis Objective.........................................1 1.2 Studying a Planet from Orbit..................................1 1.2.1 Spacecraft Subsystems.................................1 1.2.2 Operational Orbit(s)...................................3 1.2.3 Popular Target Planets: Earth’s Analogs........................4 1.3 Studying Venus from Orbit....................................4 1.3.1 Venus’ Challenges....................................4 1.3.2 Venus’ Orbiter Missions.................................5 1.3.3 A Key Orbiter Mission to Venus: Venus Express....................5 1.4 Studying Venus with the EnVision Mission...........................6 1.4.1 In the Footsteps of Venus Express...........................6 1.4.2 Spacecraft, Payload and Mission Scenario......................6 1.5 Thesis Approach.........................................7 2 Operational Orbit Design Fundamentals8 2.1 Design of an Operational Orbit.................................8 2.1.1 Problem Formulation...................................8 2.1.2 Orbit Representation...................................8 2.1.3 Orbit Propagation.................................... 11 2.1.4 Orbit Propagation with Perturbations.......................... 12 2.1.5 Ground Tracks...................................... 14 2.2 Design of an Operational Orbit around Venus......................... 17 ix 2.2.1 Venus Fundamentals and Venus Centered Frames.................. 17 2.2.2 Venus Specific Dynamics................................ 19 3 Orbit Computation for EnVision 21 3.1 EnVision Orbit Requirements and Constraints......................... 21 3.1.1 Mission Time Frame................................... 21 3.1.2 Mission Constraints................................... 23 3.2 Orbit Computation........................................ 26 3.2.1 Orbit Dynamics with Provisional Parameters...................... 26 3.2.2 VenSAR Fundamentals................................. 30 3.2.3 Targets Observation Computation........................... 33 3.2.4 Observation Computation Test with Provisional Orbit Parameters.......... 34 4 Orbit Optimization Method 36 4.1 Orbit Optimization Approach.................................. 36 4.1.1 Problem Formulation................................... 36 4.1.2 Optimization Method Selection............................. 37 4.2 Genetic Algorithm Fundamentals................................ 38 5 Targets Observation Optimization 41 5.1 Genetic Algorithm Implementation............................... 41 5.1.1 Fitness Function..................................... 41 5.1.2 Implementation Procedure............................... 42 5.1.3 Algorithm Tests and Validation............................. 44 5.2 Mission Overview with the Optimal Operational Orbit..................... 53 6 Achievements and Future Work 59 Bibliography............................................... 63 x List of Tables 1.1 Successful orbiter missions to Venus..............................5 2.1 Summary of the Classical Orbit Elements............................ 10 2.2 Alternate Orbit Elements..................................... 11 2.3 Venus Facts Summary....................................... 17 3.1 EnVision Target Sites....................................... 24 3.2 VenSAR operating modes parameters and coverage...................... 25 3.3 Provisional orbit parameters................................... 26 5.1 Fitness function test Conditions................................. 45 5.2 Fittest solution Fi = −0:653 for fitness function test conditions................ 45 5.3 Test conditions for short durations................................ 48 5.4 Fittest solution Fi = −0:727 for short durations test conditions................ 48 5.5 Fittest solution Fi = −0:181 for short durations test conditions corrected for regular nadir geometry.............................................. 48 5.6 Test conditions for EnVision boundaries and equally weighted fitness terms......... 51 5.7 Fittest solution Fi = −0:495 for EnVision boundaries and equally weighted fitness terms.. 51 5.8 Fittest solution Fi = −0:700 for an optimal orbit solution.................... 53 xi xii List of Figures 1.1 Example of a Spacecraft Trade Off Tree............................3 1.2 Preliminary operational configuration of EnVision’s orbiter..................7 2.1 Classical Orbital Elements....................................9 2.2 Elliptical Orbit Parameters.................................... 10 2.3 summary of the Alternate Orbit Elements............................ 11 2.4 Declination β and geographical longitude λ........................... 13 2.5 Ground track of the International Space Station (ISS) - position of the ISS given by Wol- framAlpha at 13:45 of 01/12/2014 computed from orbital elements determined 8.4 hours before................................................ 15 2.6 Cross section of the orbited