Functional Analysis of Spectinomycin Biosynthetic Genes from Streptomyces Spectabilis ATCC 27741

Total Page:16

File Type:pdf, Size:1020Kb

Functional Analysis of Spectinomycin Biosynthetic Genes from Streptomyces Spectabilis ATCC 27741 J. Microbiol. Biotechnol. (2003), 13(6), 906–911 Functional Analysis of Spectinomycin Biosynthetic Genes from Streptomyces spectabilis ATCC 27741 JO, YOU-YOUNG1, SUN-HEE KIM1, YOUNG-YELL YANG1, CHOONG-MIN KANG2, 3 1 JAE-KYUNG SOHNG , AND JOO-WON SUH 1Department of Biological Science, Institute of Bioscience and Biotechnology, Myong Ji University, Yongin 449-728, Korea 2Childrens Hospital, Harvard Medical School, Boston, MA 02467, U.S.A. 3Department of Chemistry, SunMoon University, Asansi, Chungnam 337-840, Korea Received: May 23, 2003 Accepted: July 15, 2003 Abstract The function of genes related to spectinomycin Spectinomycin is an aminoglycoside antibiotic produced biosynthesis (spcD, speA, speB, spcS2) from Streptomyces by several Streptomyces species such as Streptomyces spectabilis ATCC 27741, a spectinomycin producer, was analyzed. flavopersicus [17], Streptomyces hygroscopicus [31], and Each gene was subcloned from a spectinomycin biosynthetic Streptomyces spectabilis [15]. The antibiotic has a unique gene cluster and overexpressed in E. coli BL21 (DE3) using tricyclic structure in which a single sugar component, pET vector. After incubating each purified protein with its actinospectose, is linked to the diaminocyclitol moiety possible substrates, the final products were analyzed using (actinamine) by β-glycosidic and hemiketal bonds [4, 30]. high-performance liquid chromatography (HPLC). From these It blocks the translocation step of protein synthesis by results, spcD, speA, and speB have been identified to be inhibiting the binding of the elongation factor G to the dTDP-glucose synthase, myo-inositol monophosphatase, and ribosome [3]. It possesses a broad spectrum of activities myo-inositol dehydrogenase, respectively. In addition, the against many Gram-positive as well as Gram-negative results suggest that the spcS2 gene product functions downstream bacteria [29]. Specifically, it possesses potent activity of the speB gene product in the biosynthetic pathway of against Neisseria gonorrhoeae, the gonorrhoea bacteria spectinomycin. Taken together, the present study elucidates that have acquired resistance to penicillin and may be an the early steps of the biosynthetic pathway for 6-deoxyhexose alternate drug in such cases or for patients allergic to β- (6-DOH) part (actinospectose) and aminocyclitol part (actinamine) lactams [20]. However, the whole biosynthetic pathway of spectinomycin. for spectinomycin has not yet been elucidated, although Key words: Spectinomycin biosynthetic gene cluster, dTDP- there have been reports on the glycosylation process of glucose synthase, myo-inositol monophosphatase, myo-inositol the two subunits of spectinomycin [16] and the partial dehydrogenase biochemical pathway using cell-free extract and labeling [5, 28]. Therefore, to study the spectinomycin biosynthetic pathways, a 45 kb DNA fragment containing the genes required for Many useful antibiotics from actinomycetes (macrolides, spectinomycin biosynthesis was isolated from Streptomyces β peptide antibiotics, -lactams, etc.) have been studied by spectabilis ATCC 27741, as previously described [7], and cloning their biosynthetic genes, analyzing the regulatory this study focuses on the functional analysis of the genes mechanisms, and creating recombinant antibiotics. However, participating in the early steps of the biosynthetic pathway due to the difficulties in purification and chemical synthesis, of each spectinomycin subunit using biochemical methods, research on biosynthesis and genetic engineering of since a stable transformation system is not available for S. aminoglycoside antibiotics has been very slow, until recently spectabilis. when the biosynthetic gene clusters for streptomycin, Objectives of this study were to investigate whether 1) spectinomycin, bluensomycin, kasugamycin, and butirosin spcD encodes dTDP-glucose synthase, 2) speA encodes were discovered [1,7,8,9,14,18,26]. myo-inositol monophosphatase, and 3) SpeB can convert myo-inositol to scyllo-inosose. Furthermore, it was found *Corresponding author Phone: 82-31-330-6190; Fax: 82-31-335-8249; that spcS2 plays a role following speB in the biosynthetic E-mail: [email protected] pathway of spectinomycin. FUNCTIONAL ANALYSIS OF SPECTINOMYCIN BIOSYNTHETIC GENES 907 MATERIALS AND METHODS pETspcS2 were grown in LB medium supplemented with µ - 1 o 50 g ml ampicillin at 37 C until OD600 of 0.6 was reached, Bacterial Strains then induced with 1 mM isopropyl β-D-thiogalactoside Spectinomycin biosynthetic genes were isolated from (IPTG), and allowed to grow at 28oC for 3 additional S. spectabilis ATCC 27741, a spectinomycin producer. hours. pETspeA and pETspeB were grown in LB medium α - + µ - 1 o E. coli DH5 F' [F'/endA1 hsdR17 (rKmK ) supE44thi-1 supplemented with 50 g ml kanamycin at 37 C until r ∆ φ recA1 gyrA (Nal ) relA1 (lacZYA-argF) U169 ( 80dlac OD600 of 0.6 was reached, then induced with 1 mM IPTG ∆(lacZ)M15)] was used as a host strain for transformation and allowed to grow at 37oC for 3 additional hours [25]. of plasmid harboring spectinomycin biosynthetic genes. E. The cells were harvested by centrifugation and resuspended - - + coli BL21 (DE3) [F , dcm, ompT, hsdS (rBmB ), gal] (ATCC in the binding buffer (5 mM imidazole, 0.5 mM NaCl, 47092) was used to overexpress the transformants. The 20 mM Tris-HCl, pH 7.9). Resuspended cells were lysed pET21a plasmid (Novagen, Germany) was used to express by sonication (Branson sonifer 450 sonicator), and cell debris spcD and spcS2 genes, and pET28a (Novagen, Germany) was removed by centrifugation [10]. Each soluble protein was used for speA and speB. All E. coli cells were grown was purified with a single nickel-affinity chromatography by on LB agar or broth media supplemented with 50 µg ml- 1 using HisBind resin (Novagen, Germany). Protein concentration ampicillin or kanamycin (Sigma-Aldrich corp., U.S.A.). was determined by the Bradford [2] method, and the molecular weights were determined by SDS-PAGE [11]. General Methods General procedures for manipulating DNA were carried Enzymatic Assay for SpcD and SpeA out according to Sambrook et al. [24]. DNA was isolated For the functional analysis of SpcD, a reaction mixture from agarose gels (BentechBio Co., Ltd. Korea) with the (300 µl) containing 50 mM Tris-HCl (pH 8.0), 12 mM Qiagen kit (Chartworth, U.S.A.). Plasmid was purified MgCl2, 6 mM dTTP (deoxythymidyltriphosphate), 24 mM using a Wizard plasmid kit (Promega, U.S.A.) following D-glucose-1-phosphate, 1.8 U of inorganic pyrophosphatase, the manufacturer’s instructions. and 1 µg of purified SpcD was incubated at 37oC for 0, 30, or 60 min, then the reaction was terminated by adding Cloning of spcD and speA Genes 50 mM potassium phosphate (pH 3.0) [12]. The reaction PCR Amplification. For the functional analysis of spcD, product was analyzed by HPLC with a N(CH3)2-1101-N speA, speB, and spcS2 gene products, each gene was column (0.46×10 cm) using a stepwise gradient of 50 to amplified using PCR from the cosmid template containing 600 mM potassium phosphate buffer (pH 4.0) at 30oC. The the spectinomycin biosynthetic cluster [7]. Oligoprimers flow-rate was 1.5 ml min- 1, and the products peaks were included the restriction enzyme sites (underlined) to facilitate detected by a UV detector at 254 nm. Standard reagents, subcloning. The sequences of each primer used in the dTTP, and dTDP-glucose were purchased from Sigma- experiments were as follows; for spcD gene, forward primer Aldrich Corp (U.S.A.). To determine the substrate specificity was 5'-GCCGAATTCATGCG CGGAATCATACTT-3'; and of SpcD, dCTP, dATP, and dGTP were tested as substrates reverse primer was 5'-ATTCTCGAGCAACAGCGCCTC- and the products from the reaction were analyzed by the CTCGTC-3', for speA gene, forward primer was 5'-GCC- method described above. GAATTCATGTCTTTGGCACATGCC-3' and reverse primer For the functional analysis of SpeA, a reaction mixture µ was 5'-TTCTCGAGGGCATGGCCCACCAG-3'. For speB (300 l) containing 20 mM Tris-HCl (pH 7.5), 3 mM MgCl2, gene, forward primer was 5'-GCCGAATTCGTGCAGAA- 0.7 mM myo-inositol-1-phosphate, and 10 mg SpeA cell AGAACGTGTC-3' and reverse primer was 5'-ATTCTC- extract was incubated at 37oC for 0, 30, or 60 min, and the GAGCATTCCTTTGAAGTT-3'. For spcS2 gene, forward reaction was then terminated by freezing at -20oC [13]. As primer was 5'-ATTGAATTCATGTCAGCGGTACGCAGT- a control experiment to eliminate the effect of the E. coli’s 3' and reverse primer was 5'-ATTAAGCTTTGCCCGG- primary metabolism of myo-inositol monophosphatase, the cell CCCCTCTC-3'. PCR reactions were performed using the extract from E. coli cells harboring only the vector plasmid EX Taq DNA polymerase (Takara, Japan). The genes was reacted instead of the SpeA cell extract. The reaction TM amplified by PCR were sequenced to confirm the absence product was analyzed by HPLC with a mBondapak C18 of mutation during PCR reactions. column (0.46×10 cm) using 20% acetonitrile. The flow-rate Construction, Overexpression, and Purification of was 1.0 ml min- 1, and the product peaks were detected by a Recombinant Proteins. Each PCR-amplified spcD and UV detector at 254 nm. The standard reagent used was the spcS2 gene was cloned into the E. coli expression vector commercial myo-inositol (Sigma-Aldrich Corp., U.S.A.). pET21a, and speA and speB genes were cloned into pET28a to give pETspcD, pETspcS2, pETspeA, and pETspeB, Enzymatic Assay for SpeB and SpcS2 respectively. These plasmids were transformed into E. coli For the functional analysis of SpeB, a reaction mixture BL21
Recommended publications
  • Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces Spp
    microorganisms Article Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces spp. 1, 2, 3 1 Zhenlong Cheng y, Sean McCann y, Nicoletta Faraone , Jody-Ann Clarke , E. Abbie Hudson 2, Kevin Cloonan 2, N. Kirk Hillier 2,* and Kapil Tahlan 1,* 1 Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; [email protected] (Z.C.); [email protected] (J.-A.C.) 2 Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; [email protected] (S.M.); [email protected] (E.A.H.); [email protected] (K.C.) 3 Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada; [email protected] * Correspondence: [email protected] (N.K.H.); [email protected] (K.T.) These authors contributed equally. y Received: 13 October 2020; Accepted: 9 November 2020; Published: 11 November 2020 Abstract: The Streptomyces produce a great diversity of specialized metabolites, including highly volatile compounds with potential biological activities. Volatile organic compounds (VOCs) produced by nine Streptomyces spp., some of which are of industrial importance, were collected and identified using gas chromatography–mass spectrometry (GC-MS). Biosynthetic gene clusters (BGCs) present in the genomes of the respective Streptomyces spp. were also predicted to match them with the VOCs detected. Overall, 33 specific VOCs were identified, of which the production of 16 has not been previously reported in the Streptomyces. Among chemical classes, the most abundant VOCs were terpenes, which is consistent with predicted biosynthetic capabilities. In addition, 27 of the identified VOCs were plant-associated, demonstrating that some Streptomyces spp.
    [Show full text]
  • Ep 2434019 A1
    (19) & (11) EP 2 434 019 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 28.03.2012 Bulletin 2012/13 C12N 15/82 (2006.01) C07K 14/395 (2006.01) C12N 5/10 (2006.01) G01N 33/50 (2006.01) (2006.01) (2006.01) (21) Application number: 11160902.0 C07K 16/14 A01H 5/00 C07K 14/39 (2006.01) (22) Date of filing: 21.07.2004 (84) Designated Contracting States: • Kamlage, Beate AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 12161, Berlin (DE) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • Taman-Chardonnens, Agnes A. 1611, DS Bovenkarspel (NL) (30) Priority: 01.08.2003 EP 03016672 • Shirley, Amber 15.04.2004 PCT/US2004/011887 Durham, NC 27703 (US) • Wang, Xi-Qing (62) Document number(s) of the earlier application(s) in Chapel Hill, NC 27516 (US) accordance with Art. 76 EPC: • Sarria-Millan, Rodrigo 04741185.5 / 1 654 368 West Lafayette, IN 47906 (US) • McKersie, Bryan D (27) Previously filed application: Cary, NC 27519 (US) 21.07.2004 PCT/EP2004/008136 • Chen, Ruoying Duluth, GA 30096 (US) (71) Applicant: BASF Plant Science GmbH 67056 Ludwigshafen (DE) (74) Representative: Heistracher, Elisabeth BASF SE (72) Inventors: Global Intellectual Property • Plesch, Gunnar GVX - C 6 14482, Potsdam (DE) Carl-Bosch-Strasse 38 • Puzio, Piotr 67056 Ludwigshafen (DE) 9030, Mariakerke (Gent) (BE) • Blau, Astrid Remarks: 14532, Stahnsdorf (DE) This application was filed on 01-04-2011 as a • Looser, Ralf divisional application to the application mentioned 13158, Berlin (DE) under INID code 62.
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020.
    [Show full text]
  • The Use of Natural Product Substrates for the Synthesis of Libraries of Biologically Active, New Chemical Entities
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Graduate School Professional Papers 2010 The seU of Natural Product Substrates for the Synthesis of Libraries of Biologically Active, New Chemical Entities Joshua Bryant Phillips The University of Montana Let us know how access to this document benefits ouy . Follow this and additional works at: https://scholarworks.umt.edu/etd Recommended Citation Phillips, Joshua Bryant, "The sU e of Natural Product Substrates for the Synthesis of Libraries of Biologically Active, New Chemical Entities" (2010). Graduate Student Theses, Dissertations, & Professional Papers. 1100. https://scholarworks.umt.edu/etd/1100 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE USE OF NATURAL PRODUCT SUBSTRATES FOR THE SYNTHESIS OF LIBRARIES OF BIOLOGICALLY ACTIVE, NEW CHEMICAL ENTITIES by Joshua Bryant Phillips B.S. Chemistry, Northern Arizona University, 2002 B.S. Microbiology (health pre-professional), Northern Arizona University, 2002 Presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy Chemistry The University of Montana June 2010 Phillips, Joshua Bryant Ph.D., June 2010 Chemistry THE USE OF NATURAL PRODUCT SUBSTRATES FOR THE SYNTHESIS OF LIBRARIES OF BIOLOGICALLY ACTIVE, NEW CHEMICAL ENTITIES Advisor: Dr. Nigel D. Priestley Chairperson: Dr. Bruce Bowler ABSTRACT Since Alexander Fleming first noted the killing of a bacterial culture by a mold, antibiotics have revolutionized medicine, being able to treat, and often cure life-threatening illnesses and making surgical procedures possible by eliminating the possibility of opportunistic infection.
    [Show full text]
  • Front Matter
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY VOLUME 1 * NUMBER 6 * JUNE 1972 EDITORIAL BOARD GLADYS L. HOBBY, Editor-in-Chief (1975) Infectious Disease Research Institute, East Orange, N.J. WALTER D. CELMER, Editor (1975) EDWARD W. HOOK, Editor (1976) Pfizer hIc., Grotoln, Coiml. University of Virginia, Charlottesville JOEL G. FLAKS, Editor (1976) LEON H. SCHMIDT, Editor (1974) University ofPennsylvania, Phliladelphia Southern Research Institute, Birminglham, Ala. Fred Allison, Jr. (1973) H. Grisebach (1974) T. J. Perun (1974) Theodore Anderson (1973) Jack Gwaltney (1974) K. E. Price (1973) Robert Austrian (1974) Fred Hahn (1973) C. Reilly (1972) John Bennett (1973) William Hewitt (1974) R. W. Rickards (1974) Joe Bertino (1974) Richard Hornick (1974) R. W. Riddell (1974) E. Borowski (1973) Milton Huppert (1974) Richard Roberts (1973) D. Buyske (1974) George Gee Jackson (1974) L. Sabath (1973) Yves Chabbert (1974) Keith Jensen (1974) Arthur K. Saz (1973) Patricia Charache (1974) E. H. Kass (1973) F. C. Sciavolino (1973) Ernest Chick (1973) Donald Kaye (1973) Piero Sensi (1974) Leighton E. Cluff (1974) WVm. Kirby (1973) David Smith (1974) Frank Collins (1973) Vernon Knight (1974) Earle Spaulding (1974) John Corcoran (1974) M. Glenn Koenig (1973) Gene Stollerman (1974) Julian Davies (1973) Calvin Kunin (1972) R. Sutherland (1973) Bernard Davis (1973) Mark Lepper (1972) Morton N. Swartz (1973) Arnold L. Demain (1973) Robert G. Loudon (1974) Ralph Tompsett (1973) Roger DesPrez (1973) Thomas H. Maran (1974) John P. Utz (1973) Liebor Ebringer (1974) Lester Mitscher (1974) D. Vazquez (1974) H. L. Ennis (1974) S. Mitsuhashi (1974) G. H. Wagman (1974) Maxwell Finland (1973) R. B. Morin (1973) Kenneth S.
    [Show full text]
  • Apramycin Sulfate Salt (A2024)
    APRAMYCIN SULFATE ProductInformation Sigma Prod. No. A-2024 NH2 CAS NUMBER: 65710-07-8 X H2SO4 OH S PHYSICAL PROPERTIES: HO S S Absolute stereochemistry: Rotation (+) O R Appearance: Faint yellow powder R OH H H Molecular formula: C21H41N5O11 • x H2SO4 H N 2 NH2 H2N O O Molecular weight: 539.58 (free base) R S R S R S R S R S R HO R H O O N H H CH3 OH OH DESCRIPTION: Apramycin is an aminoglycoside antibiotic produced by a strain of Streptomyces tenebrarius. The compound is used as the sulfate in veterinary practice.1,2 STABILITY / STORAGE AS SUPPLIED: Store desiccated at 2-8EC. SOLUBILITY / SOLUTION STABILITY: Aqueous solutions at 25 mg/mL are faint yellow. No solution stability data are currently available. APPLICATIONS: 1. An oral composition of 20 g apramycin sulfate, 1 g pyridoxal HCl, 10 g sodium alginate, 10 g glycine and about 30 powdered apples were fed to calves and swine in order to treat diarrhea. Pyridoxal HCl was added to enhance the bactericidal activity of apramycin sulfate.3 2. Under the Federal Food, Drug and Cosmetics Act, feed containing 150 g apramycin per ton may be used to control colibacillosis.4 3. Apramycin is a potent inhibitor of protein synthesis in bacteria in vivo and in vitro. To a limited extent, it induces translation errors in cell-free systems from Escherichia coli supplemented with poly(U). Apramycin also inhibits the translocation step of protein synthesis in vivo (e.g., in protoplasts of Bacillus megaterium), and in vitro (e.g., in cell-free systems from E.
    [Show full text]
  • Characterization of Impurities in Commercial Spectinomycin by Liquid Chromatography with Electrospray Ionization Tandem Mass Spectrometry
    The Journal of Antibiotics (2014) 67, 511–518 & 2014 Japan Antibiotics Research Association All rights reserved 0021-8820/14 www.nature.com/ja ORIGINAL ARTICLE Characterization of impurities in commercial spectinomycin by liquid chromatography with electrospray ionization tandem mass spectrometry Yan Wang, Mingjuan Wang, Jin Li, Shangchen Yao, Jing Xue, Wenbo Zou and Changqin Hu Analysis of commercial spectinomycin samples with ion-pairing reversed-phase LC coupled with electrospray ionization tandem MS (LC/ESI-MS/MS) indicates that eight additional compounds are present, including actinamine, (4R)-dihydrospectinomycin, (4S)-dihydrospectinomycin and dihydroxyspectinomycin, as well as four new impurities reported, to our knowledge, for the first time. The structures of these compounds were elucidated by comparing their fragmentation patterns with known structures, and NMR was employed to characterize and distinguish (4R)-dihydrospectinomycin and (4S)-dihydrospectinomycin. Identification of dihydrospectinomycin isomers is necessary because (4R)-dihydrospectinomycin is a minor active pharmaceutical ingredient of spectinomycin, whereas (4S)-dihydrospectinomycin is considered to be an impurity (impurity C) by the European Pharmacopoeia (Ph. Eur.). The Journal of Antibiotics (2014) 67, 511–518; doi:10.1038/ja.2014.32; published online 16 April 2014 Keywords: (4R)-dihydrospectinomycin; (4S)-dihydrospectinomycin; liquid chromatography with tandem MS; spectinomycin; structural characterization INTRODUCTION electrochemical detection that has no volatile
    [Show full text]
  • Tackling Antibiotic Resistance with Compounds of Natural Origin: a Comprehensive Review
    biomedicines Review Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review Francisco Javier Álvarez-Martínez 1 , Enrique Barrajón-Catalán 1,* and Vicente Micol 1,2 1 Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; [email protected] (F.J.Á.-M.); [email protected] (V.M.) 2 CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), 28220 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-965222586 Received: 18 September 2020; Accepted: 9 October 2020; Published: 11 October 2020 Abstract: Drug-resistant bacteria pose a serious threat to human health worldwide. Current antibiotics are losing efficacy and new antimicrobial agents are urgently needed. Living organisms are an invaluable source of antimicrobial compounds. The antimicrobial activity of the most representative natural products of animal, bacterial, fungal and plant origin are reviewed in this paper. Their activity against drug-resistant bacteria, their mechanisms of action, the possible development of resistance against them, their role in current medicine and their future perspectives are discussed. Electronic databases such as PubMed, Scopus and ScienceDirect were used to search scientific contributions until September 2020, using relevant keywords. Natural compounds of heterogeneous origins have been shown to possess antimicrobial capabilities, including against antibiotic-resistant bacteria. The most commonly found mechanisms of antimicrobial action are related to protein biosynthesis and alteration of cell walls and membranes. Various natural compounds, especially phytochemicals, have shown synergistic capacity with antibiotics. There is little literature on the development of specific resistance mechanisms against natural antimicrobial compounds.
    [Show full text]
  • 16S Ribosomal Methylation: Emerging Aminoglycoside Resistance
    Yohei Doi, MD, PhD Division of Infectious Diseases University of Pittsburgh School of Medicine Background on aminoglycosides Resistance mechanisms New aminoglycosides Streptomycin, produced by a species of Streptomyces, was the first aminoglycoside discovered All subsequent aminoglycosides were derived from Streptomyces spp. (-mycin) or from Micromonospora spp. (-micin) Active against various groups of bacteria . Not active against anaerobes Mandell: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 7th ed. Amino-glycoside amino-containing or non- amino-containing sugars six-membered ring with amino group substituents = aminocyclitol kanamycin Generic Name Source Year Reported Streptomycin Streptomyces griseus 1944 Neomycin Streptomyces fradiae 1949 Kanamycin Streptomyces kanamyceticus 1957 Paromomycin Streptomyces fradiae 1959 Gentamicin Micromonospora purpurea and Micromonospora echinospora 1963 Tobramycin Streptomyces tenebrarius 1967 Amikacin Streptomyces kanamyceticus 1972 Netilmicin Micromonospora inyoensis 1975 Spectinomycin Streptomyces spectabilis 1961 Sisomicin Micromonospora inyoensis 1970 Dibekacin Streptomyces kanamyceticus 1971 Isepamicin Micromonospora purpurea 1978 Mandell: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 7th ed. Aminoglycosides are used for treatment of various conditions: . Streptomycin – tuberculosis . Paromomycin – cryptosporidiosis, amoebiasis, leishmaniasis . Spectinomycin – gonorrhea . Gentamicin/streptomycin – synergy with β-lactams
    [Show full text]
  • Hangtaimycin, a Peptide Secondary Metabolite Discovered from Streptomyces Spectabilis CPCC 200148 by Chemical Screening
    The Journal of Antibiotics (2016) 69, 835–838 & 2016 Japan Antibiotics Research Association All rights reserved 0021-8820/16 www.nature.com/ja NOTE Hangtaimycin, a peptide secondary metabolite discovered from Streptomyces spectabilis CPCC 200148 by chemical screening Lijie Zuo, Bingya Jiang, Zhibo Jiang, Wei Zhao, Shufen Li, Hongyu Liu, Bin Hong, Liyan Yu, Limin Zuo and Linzhuan Wu The Journal of Antibiotics (2016) 69, 835–838; doi:10.1038/ja.2016.29; published online 9 March 2016 Streptomyces spectabilis is well known for the production of the revealed a major peak with UV-visible absorption profile different aminocyclitol antibiotic spectinomycin that is used clinically for from any of the above known secondary metabolites (Supplementary infections caused by Neisseria gonorrhoeae.1,2 Strains of S. spectabilis Figure S3), suggesting that it contained an unidentified secondary were also reported to produce streptovaricin (an ansamycin), metabolite. The hyphenated HRMS of the peak displayed a molecular metacycloprodigiosin (a tri-pyrrole), spectomycin (a tetrahydro- ion m/z 936.45150 ([M+H]+), which established the molecular + anthracene), bafilomycin (a macrolide), desertomycin (a macrolide), formula C50H61N7O11 (calculated at 936.45018 for [M+H] ) for the spectinabilin and SNF4435 (nitrophenyl pyrone), and TDD (trypto- unidentified secondary metabolite, with 24° of unsaturation and an phan–dehydrobutyrine diketopiperazine, a dipeptide).3–9 Therefore, odd number of nitrogen atoms (Supplementary Figure S4). It was S. spectabilis is capable of synthesizing secondary metabolites with believed to be a new compound after a formula search in SciFinder, structure diversity. which resulted in four compounds with their UV-absorption profiles S. spectabilis CPCC 200148 is a soil isolate from Hangzhou of different from the unidentified secondary metabolite.
    [Show full text]
  • Introduction (Pdf)
    Dictionary of Natural Products on CD-ROM This introduction screen gives access to (a) a general introduction to the scope and content of DNP on CD-ROM, followed by (b) an extensive review of the different types of natural product and the way in which they are organised and categorised in DNP. You may access the section of your choice by clicking on the appropriate line below, or you may scroll through the text forwards or backwards from any point. Introduction to the DNP database page 3 Data presentation and organisation 3 Derivatives and variants 3 Chemical names and synonyms 4 CAS Registry Numbers 6 Diagrams 7 Stereochemical conventions 7 Molecular formula and molecular weight 8 Source 9 Importance/use 9 Type of Compound 9 Physical Data 9 Hazard and toxicity information 10 Bibliographic References 11 Journal abbreviations 12 Entry under review 12 Description of Natural Product Structures 13 Aliphatic natural products 15 Semiochemicals 15 Lipids 22 Polyketides 29 Carbohydrates 35 Oxygen heterocycles 44 Simple aromatic natural products 45 Benzofuranoids 48 Benzopyranoids 49 1 Flavonoids page 51 Tannins 60 Lignans 64 Polycyclic aromatic natural products 68 Terpenoids 72 Monoterpenoids 73 Sesquiterpenoids 77 Diterpenoids 101 Sesterterpenoids 118 Triterpenoids 121 Tetraterpenoids 131 Miscellaneous terpenoids 133 Meroterpenoids 133 Steroids 135 The sterols 140 Aminoacids and peptides 148 Aminoacids 148 Peptides 150 β-Lactams 151 Glycopeptides 153 Alkaloids 154 Alkaloids derived from ornithine 154 Alkaloids derived from lysine 156 Alkaloids
    [Show full text]
  • Streptomyces Secondary Metabolites
    Chapter 6 Streptomyces Secondary Metabolites MohammedMohammed Harir, Harir, Hamdi Bendif,Hamdi Bendif, Miloud Bellahcene, Zohra Fortas Miloud Bellahcene, Zohra Fortas and Rebecca Pogni and Rebecca Pogni Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.79890 Abstract Actinobacteria are found spread widely in nature and particular attention is given to their role in the production of various bioactive secondary metabolites. Tests on soil samples show that there can be a diversity of actinomycetes depending on the climate, the area it is growing in, how dry the soil is, and the quality of the soil. However, it was agreed after tests in Yunnan, China, that the genus Streptomyces sp. is most important in ecological function, representing up to 90% of all soil actinomycetes, and therefore helping to show the important characteristics needed of the soil actinomycete population. Streptomycete compounds are used for other biological activities, not just for antibiotics. It has been found that metabolites can be broadly divided into four classes: (1) regulatory activi- ties in compounds, these include consideration of growth factors, morphogenic agents and siderophores, and plants promoting rhizobia; (2) antagonistic agents, these include antiprotozoans, antibacterials, antifungals, as well as antivirals; (3) agrobiologicals, these include insecticides, pesticides, and herbicides; and (4) pharmacological agents, these include neurological agents, immunomodulators, antitumorals, and enzyme inhibitors. It is found that Streptomyces hygroscopicus is one of the very best examples because it secretes in excess of 180 secondary metabolites to locate simultaneous bioactivities for a given compound.
    [Show full text]