2.1 NATURAL ENVIRONMENT Olympic Peninsula Landscapes, And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Isotopes, Inc. Radiocarbon Measurements V Milton A
[RADIOCARBON, VOL. 8, 1966, P. 161-203] ISOTOPES, INC. RADIOCARBON MEASUREMENTS V MILTON A. TRAUTMAN and ERIC H. WILLIS Isotopes, Inc., Westwood, New Jersey INTRODUCTION This list presents dates on samples measured at Isotopes, Inc., dur- ing the years 1963 to 1965 and measurements made previously for which sample data has been recently received. The many results which do not appear are withheld pending additional information or at the request of our clients. Procedures employed in sample pretreatment, preparation of CO2, and method of counting are generally unchanged, as are our methods of age calculation. Suitable bone samples are now pretreated by the method of Berger, Harney and Libby (1964). In May, 1965, the three counters and associated electronics previ- ously described (Isotopes I, II, III) were retired after producing well over 2000 radiocarbon dates, geophysical measurements, and ultralow- level C14 measurements. A completely new laboratory was activated em- ploying four new counters. Shielding consists of 31 cm of selected low- background steel, 10 cm paraffin and 2.5 cm "aged" lead. Each counter has its own multianode annular anticoincidence geiger counter. Elec- tronics were designed and fabricated at Isotopes, Inc. The counters have an active volume of 1 L and when operated at a normal pressure of 3 atm, yield background counts of slightly over 2 counts j min, Aox x 0.95 is ca. 18.7 at 24° C. C13/C12 ratios are measured periodically by our mass spectrometry section, but not routinely on samples unless requested by clients. ACKNOWLEDGMENTS It is recognized that data obtained at Isotopes, Inc. -
Jefferson County Hazard Identification and Vulnerability Assessment 2011 2
Jefferson County Department of Emergency Management 81 Elkins Road, Port Hadlock, Washington 98339 - Phone: (360) 385-9368 Email: [email protected] TABLE OF CONTENTS PURPOSE 3 EXECUTIVE SUMMARY 4 I. INTRODUCTION 6 II. GEOGRAPHIC CHARACTERISTICS 6 III. DEMOGRAPHIC ASPECTS 7 IV. SIGNIFICANT HISTORICAL DISASTER EVENTS 9 V. NATURAL HAZARDS 12 • AVALANCHE 13 • DROUGHT 14 • EARTHQUAKES 17 • FLOOD 24 • LANDSLIDE 32 • SEVERE LOCAL STORM 34 • TSUNAMI / SEICHE 38 • VOLCANO 42 • WILDLAND / FOREST / INTERFACE FIRES 45 VI. TECHNOLOGICAL (HUMAN MADE) HAZARDS 48 • CIVIL DISTURBANCE 49 • DAM FAILURE 51 • ENERGY EMERGENCY 53 • FOOD AND WATER CONTAMINATION 56 • HAZARDOUS MATERIALS 58 • MARINE OIL SPILL – MAJOR POLLUTION EVENT 60 • SHELTER / REFUGE SITE 62 • TERRORISM 64 • URBAN FIRE 67 RESOURCES / REFERENCES 69 Jefferson County Hazard Identification and Vulnerability Assessment 2011 2 PURPOSE This Hazard Identification and Vulnerability Assessment (HIVA) document describes known natural and technological (human-made) hazards that could potentially impact the lives, economy, environment, and property of residents of Jefferson County. It provides a foundation for further planning to ensure that County leadership, agencies, and citizens are aware and prepared to meet the effects of disasters and emergencies. Incident management cannot be event driven. Through increased awareness and preventive measures, the ultimate goal is to help ensure a unified approach that will lesson vulnerability to hazards over time. The HIVA is not a detailed study, but a general overview of known hazards that can affect Jefferson County. Jefferson County Hazard Identification and Vulnerability Assessment 2011 3 EXECUTIVE SUMMARY An integrated emergency management approach involves hazard identification, risk assessment, and vulnerability analysis. This document, the Hazard Identification and Vulnerability Assessment (HIVA) describes the hazard identification and assessment of both natural hazards and technological, or human caused hazards, which exist for the people of Jefferson County. -
Pre-Vashon Interglacial Deposit Investigation
Investigation of a Pre-Vashon Interglacial Fine-Grained Organic-Rich Sedimentary Deposit, South Lake Union, Seattle, Washington Cody Gibson A report prepared in partial fulfillment of the requirements for the degree of Master of Science Earth and Space Sciences: Applied Geosciences University of Washington March 2017 Project Mentors: Kathy Troost, University of Washington Matt Smith, GeoEngineers Inc. Internship Coordinator: Kathy Troost Reading Committee: Kathy Troost Juliet Crider MESSAGe Technical Report Number: 56 ©Copyright Cody Gibson i Executive Summary This study evaluates a fine-grained interglacial deposit found in the subsurface of the South Lake Union (SLU) area, Seattle, Washington. The nearly one-square-km SLU study area is defined as north of Denny Way, south of Aloha Street, east of Aurora Avenue, and west of Interstate 5. The evaluation required an in-depth study of over 600 existing geotechnical and environmental boring logs found for the study area. My evaluation consisted of mapping the distribution, determining the depositional environment, and characterizing the organic-rich pre-Vashon deposits. The fine-grained organic-rich deposits correlate to the Olympia formation, which occurred prior to the last glaciation of the Puget Sound Lowland known as the Vashon. To characterize the subsurface conditions in SLU, I assigned the materials described on the boring logs to one of 3 basic layers: pre-Vashon, Olympia Formation (Qob), and Vashon. In the SLU, the Qob consists of grey silt with interbeds of sand and gravel, and has an abundance of organic debris including woody debris such as well-preserved logs and branches, fresh-water diatoms, and fresh-water aquatic deposits such as peat. -
History & Culture
Tatoosh Island & Lighthouse Washington Cape Flattery 10 Neah Bay Vancouver Island State Route 112 8 Victoria Neah Bay Au to and Hobuck Beach 9 Makah Makah Strait of Juan de Fuca Bay Reservation P The Strait of Sooes Ri assenger-Only Sekiu 112 Point Clallam Shi Shi Beach ve Bay 5 r 6 Point of er Clallam Bay the Arches Sekiu F DE o Riv erries UAN k J FUCA Ho Ozette Indian Hoko-Ozette Pillar Point Cape Pysht Alava Reservation Road HIGHWAY r Pysht River Crescent Ozette ve Bay Island 7 Big Ri The Working Forest 2 Freshwater West Twin Striped 113 4 3 Bay Ediz Hook Sand Point Dickey River Peak Port Lake Lake Beaver Lake East Twin Lyre River Angeles ITINERARY #1 Ozette River Joyce 112 Olympic Salt Creek Lake Sappho er Pleasant Fairholm 1 National er 101 rk 101 Lake Crescent Riv Park Fo Riv Lake HISTORY & CULTURE ckey Beaver To Seattle Sol Duc Riv er Sutherland Di East ckey Di ah River Heart O’ the orth Fork Calaw S N Summer Hills Ranger y y Onl Station Summer Only Mora Olympic National Forest S Hurricane Ranger Sol Duc Hot Springs Ridge 1. ElwhaStation River Interpretive Center This self-guided Scenterol Duc Falls presents an overview of the largest Highway 112 has Rialto Beach Forks Elwha Ri U.S. Forest Service and Quileute Indian 110 National Park Service River ve damRese removalrvation and restoration project in the Unitedk Calaw ahStates occurring on the nearby Elwha River.r Nature trails lead Information Station South For Olympic National Park La Push Bogachiel Map Legend from the parking lot to views ofState the Park Elwha River gorge and the former Elwha Dam site. -
Geology of Blaine-Birch Bay Area Whatcom County, WA Wings Over
Geology of Blaine-Birch Bay Area Blaine Middle Whatcom County, WA School / PAC l, ul G ant, G rmor Wings Over Water 2020 C o n Nest s ero Birch Bay Field Trip Eagles! H March 21, 2020 Eagle "Trees" Beach Erosion Dakota Creek Eagle Nest , ics l at w G rr rfo la cial E te Ab a u ant W Eagle Nest n d California Heron Rookery Creek Wave Cut Terraces Kingfisher G Nests Roger's Slough, Log Jam Birch Bay Eagle Nest G Beach Erosion Sea Links Ponds Periglacial G Field Trip Stops G Features Birch Bay Route Birch Bay Berm Ice Thickness, 2,200 M G Surficial Geology Alluvium Beach deposits Owl Nest Glacial outwash, Fraser-age in Barn k Glaciomarine drift, Fraser-age e e Marine glacial outwash, Fraser-age r Heron Center ll C re Peat deposits G Ter Artificial fill Terrell Marsh Water T G err Trailhead ell M a r k sh Terrell Cr ee 0 0.25 0.5 1 1.5 2 ± Miles 2200 M Blaine Middle Glacial outwash, School / PAC Geology of Blaine-Birch Bay Area marine, Everson ll, G Gu Glaciomarine Interstade Whatcom County, WA morant, C or t s drift, Everson ron Nes Wings Over Water 2020 Semiahmoo He Interstade Resort G Blaine Semiahmoo Field Trip March 21, 2020 Eagle "Trees" Semiahmoo Park G Glaciomarine drift, Everson Beach Erosion Interstade Dakota Creek Eagle Nest Glac ial Abun E da rra s, Blaine nt ti c l W ow Eagle Nest a terf California Creek Heron Glacial outwash, Rookery Glaciomarine drift, G Field Trip Stops marine, Everson Everson Interstade Semiahmoo Route Interstade Ice Thickness, 2,200 M Kingfisher Surficial GNeeoslotsgy Wave Cut Alluvium Glacial Terraces Beach deposits outwash, Roger's Glacial outwash, Fraser-age Slough, SuGmlaacsio mSataridnee drift, Fraser-age Log Jam Marine glacial outwash, Fraser-age Peat deposits Beach Eagle Nest Artificial fill deposits Water Beach Erosion 0 0.25 0.5 1 1.5 2 Miles ± Chronology of Puget Sound Glacial Events Sources: Vashon Glaciation Animation; Ralph Haugerud; Milepost Thirty-One, Washington State Dept. -
Pacific Lamprey 2020 Regional Implementation Plan Washington
Pacific Lamprey 2020 Regional Implementation Plan for the Washington Coast/Puget Sound Regional Management Units Submitted to the Conservation Team August 12, 2020 Primary Authors Primary Editors M.Plumb U.S. Fish and Wildlife Service This page left intentionally blank I. Status and Distribution of Pacific lamprey in the RMUs A. General Description of the RMUs The Puget Sound/Strait of Juan de Fuca Region is bordered by the Strait of Juan de Fuca to the west, the Cascade Range to the east, Puget Sound systems to the south, and the U.S.–Canada border to the north (Figure 1). The Puget Sound/Strait of Juan de Fuca Region includes all Washington river basins flowing into the Puget Sound, Hood Canal, and Strait of Juan de Fuca. The major river basins in the Puget Sound initiate from the Cascade Range and flow west, discharging into Puget Sound, with the exception of the Fraser River system, which flows northwest into British Columbia. All of the major river basins in Hood Canal and the Strait of Juan de Fuca originate in the Olympic Mountains. This region is comprised of 20 4th field HUCs ranging in size from 435-6,604 km2 (Table 1). The Washington Coast Region is bordered by the Pacific Ocean to the West, Cape Flattery to the North, Olympic Mountain Range and Willapa Hills to the East, and the Columbia River to the South (Figure 2). This region includes all Washington river basins flowing directly into the Pacific Ocean. The Washington Coast Region includes the Hoh-Quillayute, Queets-Quinault, Upper and Lower Chehalis, Grays Harbor, and Willapa Bay sub-regions, or 4th field HUCs, ranging in size from 1,471-3,393 km2 (Table 2). -
Bicycling the O Lympic Peninsula
Eastern Clallam County Bicycle Map Be Visible • Be Alert • Wear a Helmet • Have Fun RCW 46.61.755 states: Signal before turns and lane Be visible day or night. Be courteous. Choose the best way to turn left: Ride defensively. Be aware of other Ride predictably. changes. Wear bright clothes. Traffic laws apply to persons ❚ LIKE a CAR—scan behind, yield, signal vehicles. Leave adequate space between you and riding bicycles. Audibly alert pedestrians as Check behind and ahead before RCW 46.61.780 states: you approach. and when safe, move into the left lane Do not pass on the right. parked cars. and turn left. Obey all traffic signs, signals and turning. At night you must have a Be careful of opening car doors. laws. Ride in the same direction white headlight and taillight Yield to pedestrians in the ❚ LIKE a PEDESTRIAN—dismount and CAUTION: Always watch for cars as traffic. Yield to vehicles with the or red rear reflector. crosswalk. walk your bike across the intersection stopping or turning. Do not weave in and out of parked cars right-of-way. in the crosswalk. and traffic. Twin Salt Creek County Park Crescent Bay Strait of Juan de Fuca Agate Bay d R r e Lyre River Pvt. Beach To iv gate R n d Clallam Bay i R w r T e d Pvt. t iv s R and Sekiu R Field Creek Lower Elwha Klallam e re r y e Crescent School W L . v i Striped Indian Reservation W R (Parking in South Whiskey Creek e r Peak End of Bus Route y end of lot beside gate L Salt Creek . -
A G~Ographic Dictionary of Washington
' ' ., • I ,•,, ... I II•''• -. .. ' . '' . ... .; - . .II. • ~ ~ ,..,..\f •• ... • - WASHINGTON GEOLOGICAL SURVEY HENRY LANDES, State Geologist BULLETIN No. 17 A G~ographic Dictionary of Washington By HENRY LANDES OLYMPIA FRAN K M, LAMBORN ~PUBLIC PRINTER 1917 BOARD OF GEOLOGICAL SURVEY. Governor ERNEST LISTER, Chairman. Lieutenant Governor Louis F. HART. State Treasurer W.W. SHERMAN, Secretary. President HENRY SuzzALLO. President ERNEST 0. HOLLAND. HENRY LANDES, State Geologist. LETTER OF TRANSMITTAL. Go,:ernor Ernest Lister, Chairman, and Members of the Board of Geological Survey: GENTLEMEN : I have the honor to submit herewith a report entitled "A Geographic Dictionary of Washington," with the recommendation that it be printed as Bulletin No. 17 of the Sun-ey reports. Very respectfully, HENRY LAKDES, State Geologist. University Station, Seattle, December 1, 1917. TABLE OF CONTENTS. Page CHAPTER I. GENERAL INFORMATION............................. 7 I Location and Area................................... .. ... .. 7 Topography ... .... : . 8 Olympic Mountains . 8 Willapa Hills . • . 9 Puget Sound Basin. 10 Cascade Mountains . 11 Okanogan Highlands ................................ : ....' . 13 Columbia Plateau . 13 Blue Mountains ..................................... , . 15 Selkirk Mountains ......... : . : ... : .. : . 15 Clhnate . 16 Temperature ......... .' . .. 16 Rainfall . 19 United States Weather Bureau Stations....................... 38 Drainage . 38 Stream Gaging Stations. 42 Gradient of Columbia River. 44 Summary of Discharge -
Draft CCP, Chapters 3-6, November 2012 (Pdf 3.0
Physical Environment Chapter 3 © Mary Marsh Chapter 6 Chapter 5 Chapter 4 Chapter 3 Chapter 2 Chapter 1 Environmental Human Biological Physical Alternatives, Goals, Introduction and Appendices Consequences Environment Environment Environment Objectives, and Strategies Background Dungeness National Wildlife Refuge Draft CCP/EA Chapter 3. Physical Environment 3.1 Climate and Climate Change 3.1.1 General Climate Conditions The climate at Dungeness National Wildlife Refuge (NWR) is a mild, mid-latitude, west coast marine type. Because of the moderating influence of the Pacific Ocean, extremely high or low temperatures are rare. Summers are generally cool and dry while winters are mild but moist and cloudy with most of the precipitation falling between November and January (USDA 1987, WRCC 2011a). Annual precipitation in the region is low due to the rain shadow cast by the Olympic Mountains and the extension of the Coastal Range on Vancouver Island (Figure 3-1). Snowfall is rare or light. During the latter half of the summer and in the early fall, fog banks from over the ocean and the Strait of Juan de Fuca cause considerable fog and morning cloudiness (WRCC 2011a). Climate Change Trends The greenhouse effect is a natural phenomenon that assists in regulating and warming the temperature of our planet. Just as a glass ceiling traps heat inside a greenhouse, certain gases in the atmosphere, called greenhouse gases (GHG), absorb and emit infrared radiation from sunlight. The primary greenhouse gases occurring in the atmosphere include carbon dioxide (CO2), water vapor, methane, and nitrous oxide. CO2 is produced in the largest quantities, accounting for more than half of the current impact on the Earth’s climate. -
The Resource
Chapter II THE RESOURCE LOCATOR MAP OF CLALLAM COUNTY DESCRIPTION OF PLANNING AREA • NARRATIVE • PHYSICAL FEATURES • CHARACTERISTIC LANDSCAPES HISTORIC RESOURCES • NATIONAL REGISTER OF HISTORIC PLACES • WASHINGTON STATE REGISTER OF HISTORIC PLACES APPENDICES • APPENDIX A – GENERALIZED FUTURE LAND USE MAP • APPENDIX B – PHYSIOGRAPHIC ZONES MAP • APPENDIX C – CHARACTERISTIC LANDSCAPES MAP LOCATOR OF MAP CLALLAM COUNTY Chapter II, Page 1 DESCRIPTION OF THE PLANNING AREA NARRATIVE Clallam County lies across the northern half of Washington’s Olympic Peninsula, the northwest corner of the Pacific Northwest. Its western and northern boundaries are the Pacific Ocean and Strait of Juan de Fuca shorelines. The southern boundary cuts through Olympic National Park, the nearly million-acre wilderness interior of the Peninsula. The high mountains, rugged coastlines, deep forest, miles of unspoiled rivers, clean air and water, and mild marine climate offer a most unusual combination of environmental amenities. When the cultural, educational, and social amenities available in the cities and towns are considered, along with the range of living styles from small town to rural to backwoods, the county becomes a uniquely desirable place to live and work. The county is rich in natural resources. The Olympic Peninsula is one of the most productive timber-growing areas in the country, and 60 percent of Clallam County’s land area is in commercial timberland. The ocean waters once contained a vast fishery. Salmon have been the most significant species for commercial and sports fishermen, but twenty-four other commercially significant species are also landed. Some species of salmon have now become listed as threatened or endangered. -
Dungeness River Targeted Watershed Initiative FINAL REPORT
Dungeness River Targeted Watershed Initiative FINAL REPORT For E.P.A. Targeted Watershed Grant WS‐97098101‐0 Prepared By: Jamestown S’Klallam Tribe December 2009 FIGURES Figure 1. Dungeness Watershed on the Olympic Peninsula, Washington. ................................. 4 Figure 2. Dungeness Bay shellfish closure areas. ........................................................................ 6 Figure 3. Phase 1 MST (Ribotyping) sampling locations.............................................................. 9 Figure 4. Phase 2 MST (Bacteroides Target Specific PCR) sampling locations. ......................... 10 Figure 5. Mycoremediation Demonstration Site. ...................................................................... 11 Figure 6. Construction of Mycoremediation Demonstration Site............................................. 12 Figure 7. Schematic of Biofilitration Cells, with native plants and fungi in the Treatment cell and native plants only in the Control. Inflow water is split with equal volumes and fed to the two cells (not to scale). ........................................................ 13 Figure 8. Ground‐breaking excavation at the rain garden site, Helen Haller Elementary School, Sequim, WA.................................................................................................... 15 Figure 9. TWG fresh water monitoring stations and DOH marine monitoring stations. .......... 18 Figure 10. Fecal Coliform Concentration (CFU/100 ml) over 6‐Month Time Period (mean +/‐ standard deviation)................................................................................... -
Delineation of the Dungeness River Channel Migration Zone
Delineation of the Dungeness River Channel Migration Zone River Mouth to Canyon Creek Byron Rot Pam Edens Jamestown S’Klallam Tribe October 1, 2008 Acknowledgements This report was greatly improved from comments given by Patricia Olson, Department of Ecology, Tim Abbe, Entrix Corp, Joel Freudenthal, Yakima County Public Works, Bob Martin, Clallam County Emergency Services, and Randy Johnson, Jamestown S'Klallam Tribe. This project was not directly funded as a specific grant, but as one of many tribal tasks through the federal Pacific Coastal Salmon fund. We thank the federal government for their support of salmon recovery. Cover: Roof of house from Kinkade Island in January 2002 flood (Reach 6), large CMZ between Hwy 101 and RR Bridge (Reach 4, April 2007), and Dungeness River Channel Migration Zone map, Reach 6. ii Table of Contents Introduction………………………………………………………….1 Legal requirement for CMZ’s……………………………………….1 Terminology used in this report……………………………………..2 Geologic setting…………………………………………………......4 Dungeness flooding history…………………………………………5 Data sources………………………………………………………....6 Sources of error and report limitations……………………………...7 Geomorphic reach delineation………………………………………8 CMZ delineation methods and results………………………………8 CMZ description by geomorphic reach…………………………….12 Conclusion………………………………………………………….18 Literature cited……………………………………………………...19 iii Introduction The Dungeness River flows north 30 miles and drops 3800 feet from the Olympic Mountains to the Strait of Juan de Fuca. The upper watershed south of river mile (RM) 10 lies entirely within private and state timberlands, federal national forests, and the Olympic National Park. Development is concentrated along the lower 10 miles, where the river flows through relatively steep (i.e. gradients up to 1%), glacial and glaciomarine deposits (Drost 1983, BOR 2002).