Donovan Et Al. 2015
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BONY FISHES 602 Bony Fishes
click for previous page BONY FISHES 602 Bony Fishes GENERAL REMARKS by K.E. Carpenter, Old Dominion University, Virginia, USA ony fishes constitute the bulk, by far, of both the diversity and total landings of marine organisms encoun- Btered in fisheries of the Western Central Atlantic.They are found in all macrofaunal marine and estuarine habitats and exhibit a lavish array of adaptations to these environments. This extreme diversity of form and taxa presents an exceptional challenge for identification. There are 30 orders and 269 families of bony fishes presented in this guide, representing all families known from the area. Each order and family presents a unique suite of taxonomic problems and relevant characters. The purpose of this preliminary section on technical terms and guide to orders and families is to serve as an introduction and initial identification guide to this taxonomic diversity. It should also serve as a general reference for those features most commonly used in identification of bony fishes throughout the remaining volumes. However, I cannot begin to introduce the many facets of fish biology relevant to understanding the diversity of fishes in a few pages. For this, the reader is directed to one of the several general texts on fish biology such as the ones by Bond (1996), Moyle and Cech (1996), and Helfman et al.(1997) listed below. A general introduction to the fisheries of bony fishes in this region is given in the introduction to these volumes. Taxonomic details relevant to a specific family are explained under each of the appropriate family sections. The classification of bony fishes continues to transform as our knowledge of their evolutionary relationships improves. -
Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra. -
Steve Cunningham Donate Features Shark Dentitions to CMM Collection Folmer/Cunningham Donate Collection Miocene Diatoms on Miocene Shark Teeth Kent Donation
The ECPHORA The Newsletter of the Calvert Marine Museum Fossil Club Volume 35 Number 1 March 2020 Mike Folmer and Steve Cunningham Donate Features Shark Dentitions to CMM Collection Folmer/Cunningham Donate Collection Miocene Diatoms on Miocene Shark Teeth Kent Donation Inside Vice-President’s Column Stingray Dental Plate Poor Judgment Pristine Monster Meg Club Events Crustacean Coprolites Toothy Dental Plate Australian Paleo Superlatives Fossil Club Minutes Largest Coprolite Shark Model Hung Mystery Bone Excavations along the The fossil shark teeth comprising these compilation dentitions were Cliffs collected by Mike Folmer and arranged by Steve Cunningham. These Araeodelphis Skull Found teeth of Striatolamia macrota were collected from an Eocene site in Unusual Sternum Virginia. We received a number of comparable arrangements from Mike Tarpon Vertebra and Steve. Many thanks for your generosity to CMM! Pathological Whale Atlas Saturday, April 25th, 2020. Club meeting 1pm followed at 2:30 by a public lecture in the Harms Gallery. Dr. Kay Behrensmeyer will speak on fossils in the making. A detailed view of some of the small lateral teeth. CALVERT MARINE MUSEUM www.calvertmarinemuseum.com 2 The Ecphora March 2020 Miocene Diatoms on Since I have so many fossils in my collection, I offered to clean, gold-coat, and do SEM on a few Miocene Shark Teeth shark teeth, not knowing what to expect. I was very surprised to find what appear to be inorganic imprints left behind by microorganisms in the serrations of a tooth (I did not see them on smooth parts of the tooth or on smooth-edged teeth). After a quick literature search, I believe that what I saw is an assortment of diatoms. -
V a Tion & Management of Reef Fish Sp a Wning Aggrega Tions
handbook CONSERVATION & MANAGEMENT OF REEF FISH SPAWNING AGGREGATIONS A Handbook for the Conservation & Management of Reef Fish Spawning Aggregations © Seapics.com Without the Land and the Sea, and their Bounties, the People and their Traditional Ways would be Poor and without Cultural Identity Fijian Proverb Why a Handbook? 1 What are Spawning Aggregations? 2 How to Identify Spawning Aggregations 2 Species that Aggregate to Spawn 2 Contents Places Where Aggregations Form 9 Concern for Spawning Aggregations 10 Importance for Fish and Fishermen 10 Trends in Exploited Aggregations 12 Managing & Conserving Spawning Aggregations 13 Research and Monitoring 13 Management Options 15 What is SCRFA? 16 How can SCRFA Help? 16 SCRFA Work to Date 17 Useful References 18 SCRFA Board of Directors 20 Since 2000, scientists, fishery managers, conservationists and politicians have become increasingly aware, not only that many commercially important coral reef fish species aggregate to spawn (reproduce) but also that these important reproductive gatherings are particularly susceptible to fishing. In extreme cases, when fishing pressure is high, aggregations can dwindle and even cease to form, sometimes within just a few years. Whether or not they will recover and what the long-term effects on the fish population(s) might be of such declines are not yet known. We do know, however, that healthy aggregations tend to be associated with healthy fisheries. It is, therefore, important to understand and better protect this critical part of the life cycle of aggregating species to ensure that they continue to yield food and support livelihoods. Why a Handbook? As fishing technology improved in the second half of the twentieth century, engines came to replace sails and oars, the cash economy developed rapidly, and human populations and demand for seafood grew, the pressures on reef fishes for food, and especially for money, increased enormously. -
Swimming Energetics and Thermal Ecology of Adult Bonefish (Albula Vulpes): a Combined Laboratory and Field Study in Eleuthera, the Bahamas
Environ Biol Fish (2015) 98:2133–2146 DOI 10.1007/s10641-015-0420-6 Swimming energetics and thermal ecology of adult bonefish (Albula vulpes): a combined laboratory and field study in Eleuthera, The Bahamas Liane B. Nowell & Jacob W. Brownscombe & Lee F. G. Gutowsky & Karen J. Murchie & Cory D. Suski & Andy J. Danylchuk & Aaron Shultz & Steven J. Cooke Received: 26 July 2014 /Accepted: 4 May 2015 /Published online: 17 July 2015 # Springer Science+Business Media Dordrecht 2015 Abstract Knowledge of the swimming energetics and and the optimal temperature for scope for activity thermal ecology of sub-tropical and tropical coastal (7.5 mgO2/min/kg) was 26.7 °C. We also estimated the species is extremely limited, yet this information is thermal profile of bonefish in the wild using surgically critical for understanding animal–environment relation- implanted thermal loggers. Of the 138 implanted fish, ships in the face of climate change. Using the ecologi- eight were recaptured with functional loggers. After cally and economically important sportfish, bonefish 220 days more than 55 % of recaptured tagged fish (Albula vulpes), we determined the critical swimming had expelled their thermal loggers. Thermal profiles ⋅ ⋅ speed (Ucrit), metabolic rates (MO2max and MO2routine), revealed that bonefish did not exceed laboratory- scope for activity, and cost of transport (COTnet)acrossa determined critical temperatures (i.e., 14.5 °C minima range of temperatures using a swim tunnel. For both and 37.9 °C maxima) and spent the majority of their critical swimming speed and scope for activity, optimal time at their critical swimming speed optimal tempera- (Topt) and critical (Tcrit) temperatures were determined. -
The Need for Sustainable Management of Coral Reef Fish Spawning Aggregations
Secretariat of the Pacific Community Seventh Heads of Fisheries Meeting (28 Feb.–4 March 2011, Noumea, New Caledonia) Working Paper 7 Original: English The need for sustainable management of coral reef fish spawning aggregations Yvonne Sadovy PhD The University of Hong-Kong and Eric Clua Coral Reef Initiative for the South Pacific (CRISP), SPC www.spc.int/fame/ SPC/HOF7/Working Paper 7 Page 1 The need for sustainable management of coral reef fish spawning aggregations 1. Many commercially important species of reef fishes exhibit the habit of ‘aggregation-spawning’ whereby all mating takes place in large temporary gatherings of conspecifics. Sometimes fish also migrate in large numbers to spawning sites. These mating-related gatherings and movements are often highly predictable in time and location and hence, once discovered, are often the basis of important seasonal fisheries. Yet, as we have come to discover over the last two decades, such reproductive gatherings are highly vulnerable to over-fishing and, if severely compromised by fishing, may cease to form completely. If this happens adults will no longer produce the eggs and larvae that form the basis of fisheries at non-reproductive times of the year, and the fishery is likely to collapse. Collapse would represent the loss of significant fisheries with important and sometimes serious implications for the human communities that depend on such fishes. Moreover, aggregations can represent significant biomass and movements of animals, and are formed by many species, highlighting the ecosystem importance of these biological events. 2. Species that predictably aggregate to spawn, or gather in large spawning migrations, include a diverse range of fishes of much importance as food and commercial benefit in the Pacific. -
The New Adaption Gallery
Introduction In 1991, a group of Heritage Center staff began meeting informally after work to discuss a Heritage Center expansion. This “committee” was formalized in 1992 by Jim Sperry, Superintendent of the State Historical Society of North Dakota, and became known as the Space Planning About Center Expansion (SPACE) committee. The committee consisted of several Historical Society staff and John Hoganson representing the North Dakota Geological Survey. Ultimately, some of the SPACE committee ideas were rejected primarily because of anticipated high cost such as a planetarium, arboretum, and day care center but many of the ideas have become reality in the new Heritage Center expansion. In 2009, the state legislature appropriated $40 million for a $52 million Heritage Center expansion. The State Historical Society of North Dakota Foundation was given the task to raise the difference. On November 23, 2010 groundbreaking for the expansion took place. Planning for three new galleries began in earnest: the Governor’s Gallery (for large, temporary, travelling exhibits), Innovation Gallery: Early Peoples, and Adaptation Gallery: Geologic Time. The Figure 1. Partial Stratigraphic column of North Dakota showing Figure 2. Plate tectonic video. North Dakota's position is indicated by the the age of the Geologic Time Gallery displays. red symbol. JULY 2014 1 Orientation Featured in the Orientation area is an interactive touch table that provides a timeline of geological and evolutionary events in North Dakota from 600 million years ago to the present. Visitors activate the timeline by scrolling to learn how the geology, environment, climate, and life have changed in North Dakota through time. -
Reproductive Development of Female Bonefish (Albula Spp.)
REPRODUCTIVE DEVELOPMENT OF FEMALE BONEFISH (ALBULA SPP.) FROM THE BAHAMAS by Cameron Alexander Luck A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Science In Partial Fulfilment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida December 2018 Copyright 2018 by Cameron Luck ii ACKNOWLEDGEMENTS I sincerely appreciate the guidance of my advisor Dr. Matthew Ajemian for his continued support throughout this endeavor as well as the input from my committee members: Dr. Sahar Mejri, Dr. Aaron Adams, and Dr. Paul Wills. I am extremely grateful for the collaboration and support of Justin Lewis. Field collections would have been impossible without his local knowledge, willingness to be available, passion for bonefish, and incredible work ethic. I am also grateful for the words of wisdom and comedic relief often provided by fellow graduate students, lab members, and interns of the Fish Ecology and Conservation Lab: Grace Roskar, Breanna Degroot, Steve Lombardo, Rachel Shaw, Mike McCallister, Alex Allen, and many others. This project was financially supported by Bonefish & Tarpon Trust (BTT) and National Fish and Wildlife Foundation (NFWF). We are grateful for the lodging and water access provided by East End Lodge, Andros South, and Hank’s Place. The experimental protocol for this study received approval from Florida Atlantic University’s Institutional Animal Care and Use Committee (Animal Use Protocol #A16-34). iv ABSTRACT Author: Cameron Luck Title: Reproductive Development of Female Bonefish (Albula spp.) from the Bahamas Institution: Florida Atlantic University Thesis Advisor: Dr. Matthew J. Ajemian Degree: Master of Science Year: 2018 Bonefish (Albula spp.) support an economically important sport fishery, yet little is known regarding the reproductive biology of this genus. -
5Th Indo-Pacific Fish Conference
)tn Judo - Pacifi~ Fish Conference oun a - e II denia ( vernb ~ 3 - t 1997 A ST ACTS Organized by Under the aegis of L'Institut français Société de recherche scientifique Française pour le développement d'Ichtyologie en coopération ' FI Fish Conference Nouméa - New Caledonia November 3 - 8 th, 1997 ABSTRACTS LATE ARRIVAL ZOOLOGICAL CATALOG OF AUSTRALIAN FISHES HOESE D.F., PAXTON J. & G. ALLEN Australian Museum, Sydney, Australia Currently over 4000 species of fishes are known from Australia. An analysis ofdistribution patterns of 3800 species is presented. Over 20% of the species are endemic to Australia, with endemic species occuiring primarily in southern Australia. There is also a small component of the fauna which is found only in the southwestern Pacific (New Caledonia, Lord Howe Island, Norfolk Island and New Zealand). The majority of the other species are widely distributed in the western Pacific Ocean. AGE AND GROWTH OF TROPICAL TUNAS FROM THE WESTERN CENTRAL PACIFIC OCEAN, AS INDICATED BY DAILY GROWm INCREMENTS AND TAGGING DATA. LEROY B. South Pacific Commission, Nouméa, New Caledonia The Oceanic Fisheries Programme of the South Pacific Commission is currently pursuing a research project on age and growth of two tropical tuna species, yellowfm tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus). The daily periodicity of microincrements forrned with the sagittal otoliths of these two spceies has been validated by oxytetracycline marking in previous studies. These validation studies have come from fishes within three regions of the Pacific (eastem, central and western tropical Pacific). Otolith microincrements are counted along transverse section with a light microscope. -
Rhodopsin Gene Evolution in Early Teleost Fishes
RESEARCH ARTICLE Rhodopsin gene evolution in early teleost fishes 1 2 1 Jhen-Nien Chen , Sarah Samadi , Wei-Jen ChenID * 1 Institute of Oceanography, National Taiwan University, Taipei, Taiwan, 2 Institute de SysteÂmatique, E volution, Biodiversite (ISYEB), MuseÂum National d'Histoire Naturelle±CNRS, Sorbonne UniversiteÂ, EPHE, Paris, France * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Rhodopsin mediates an essential step in image capture and is tightly associated with visual adaptations of aquatic organisms, especially species that live in dim light environments (e.g., the deep sea). The rh1 gene encoding rhodopsin was formerly considered a single- copy gene in genomes of vertebrates, but increasing exceptional cases have been found in teleost fish species. The main objective of this study was to determine to what extent the OPEN ACCESS visual adaptation of teleosts might have been shaped by the duplication and loss of rh1 Citation: Chen J-N, Samadi S, Chen W-J (2018) genes. For that purpose, homologous rh1/rh1-like sequences in genomes of ray-finned Rhodopsin gene evolution in early teleost fishes. PLoS ONE 13(11): e0206918. https://doi.org/ fishes from a wide taxonomic range were explored using a PCR-based method, data mining 10.1371/journal.pone.0206918 of public genetic/genomic databases, and subsequent phylogenomic analyses of the Editor: Michael Schubert, Laboratoire de Biologie retrieved sequences. We show that a second copy of the fish-specific intron-less rh1 is pres- du DeÂveloppement de Villefranche-sur-Mer, ent in the genomes of most anguillids (Elopomorpha), Hiodon alosoides (Osteoglossomor- FRANCE pha), and several clupeocephalan lineages. -
Checklist of the Marine Fishes from Metropolitan France
Checklist of the marine fishes from metropolitan France by Philippe BÉAREZ* (1, 8), Patrice PRUVOST (2), Éric FEUNTEUN (2, 3, 8), Samuel IGLÉSIAS (2, 4, 8), Patrice FRANCOUR (5), Romain CAUSSE (2, 8), Jeanne DE MAZIERES (6), Sandrine TERCERIE (6) & Nicolas BAILLY (7, 8) Abstract. – A list of the marine fish species occurring in the French EEZ was assembled from more than 200 references. No updated list has been published since the 19th century, although incomplete versions were avail- able in several biodiversity information systems. The list contains 729 species distributed in 185 families. It is a preliminary step for the Atlas of Marine Fishes of France that will be further elaborated within the INPN (the National Inventory of the Natural Heritage: https://inpn.mnhn.fr). Résumé. – Liste des poissons marins de France métropolitaine. Une liste des poissons marins se trouvant dans la Zone Économique Exclusive de France a été constituée à partir de plus de 200 références. Cette liste n’avait pas été mise à jour formellement depuis la fin du 19e siècle, © SFI bien que des versions incomplètes existent dans plusieurs systèmes d’information sur la biodiversité. La liste Received: 4 Jul. 2017 Accepted: 21 Nov. 2017 contient 729 espèces réparties dans 185 familles. C’est une étape préliminaire pour l’Atlas des Poissons marins Editor: G. Duhamel de France qui sera élaboré dans le cadre de l’INPN (Inventaire National du Patrimoine Naturel : https://inpn. mnhn.fr). Key words Marine fishes No recent faunistic work cov- (e.g. Quéro et al., 2003; Louisy, 2015), in which the entire Northeast Atlantic ers the fish species present only in Europe is considered (Atlantic only for the former). -
Teleost Radiation Teleost Monophyly
Teleost Radiation Teleostean radiation - BIG ~ 20,000 species. Others put higher 30,000 (Stark 1987 Comparative Anatomy of Vertebrates) About 1/2 living vertebrates = teleosts Tetrapods dominant land vertebrates, teleosts dominate water. First = Triassic 240 my; Originally thought non-monophyletic = many independent lineages derived from "pholidophorid" ancestry. More-or-less established teleostean radiation is true monophyletic group Teleost Monophyly • Lauder and Liem support this notion: • 1. Mobile premaxilla - not mobile like maxilla halecostomes = hinged premaxilla modification enhancing suction generation. Provides basic structural development of truly mobile premaxilla, enabling jaw protrusion. Jaw protrusion evolved independently 3 times in teleostean radiation 1) Ostariophysi – Cypriniformes; 2) Atherinomorpha and 2) Percomorpha – especially certain derived percomorphs - cichlids and labroid allies PREMAXILLA 1 Teleost Monophyly • Lauder & Liem support notion: • 2. Unpaired basibranchial tooth plates (trend - consolidation dermal tooth patches in pharynx). • Primitive = whole bucco- pharynx w/ irregular tooth patches – consolidate into functional units - modified w/in teleostei esp. functional pharyngeal jaws. Teleost Monophyly • Lauder and Liem support this notion: • 3. Internal carotid foramen enclosed in parasphenoid (are all characters functional, maybe don't have one - why should they?) 2 Teleost Tails • Most interesting structure in teleosts is caudal fin. • Teleosts possess caudal skeleton differs from other neopterygian fishes - Possible major functional significance in Actinopterygian locomotor patterns. • Halecomorphs-ginglymodes = caudal fin rays articulate with posterior edge of haemal spines and hypurals (modified haemal spines). Fin is heterocercal (inside and out). Ginglymod - Gars Halecomorph - Amia 3 Tails • “Chondrostean hinge” at base of upper lobe - weakness btw body and tail lobe. Asymmetrical tail = asymmetrical thrust with respect to body axis.