Highly Specific Nanobody Against Herbicide 2,4
Science of the Total Environment 753 (2021) 141950 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Highly specific nanobody against herbicide 2,4-dichlorophenoxyacetic acid for monitoring of its contamination in environmental water Zhen-Feng Li a,e, Jie-Xian Dong a,e, Natalia Vasylieva a, Yong-Liang Cui b, De-Bin Wan a, Xiu-De Hua c, Jing-Qian Huo d, Dong-Chen Yang d, Shirley J. Gee a, Bruce D. Hammock a,⁎ a Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States b Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, PR China. c College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China d College of Plant Protection, Agricultural University of Hebei, Baoding 071001, PR China e Guangzhou Nabo Antibody Technology Co. Ltd, Guangzhou 510530, PR China HIGHLIGHTS GRAPHICAL ABSTRACT • Reliable step-wise workflow for anti- hapten nanobody discovery was pre- sented. • Highly specific and sensitive nanobody against 2,4-D was obtained by opti- mized isolation procedure. • A sensitive one-step FLEIA for 2,4-D was developed based on nanobody-AP fu- sion protein. • The assay showed to be useful and ap- plicable for monitoring 2,4-D pollution in environmental water. article info abstract Article history: 2,4-dichlorophenoxyacetic acid (2,4-D), a widely used herbicide, is a small organic chemical pollutant in the en- Received 15 July 2020 vironment. To develop a nanobody-based immunoassay for monitoring trace levels of 2,4-D, a step-wise strategy Received in revised form 22 August 2020 for the generation of nanobodies highly specific against this small chemical was employed.
[Show full text]