Phylogenetic Position of an Uncharacterized Brazilian Strain of Bovine Papillomavirus in the Genus Xipapillomavirus Based on Sequencing of the L1 Open Reading Frame

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Position of an Uncharacterized Brazilian Strain of Bovine Papillomavirus in the Genus Xipapillomavirus Based on Sequencing of the L1 Open Reading Frame Genetics and Molecular Biology, 33, 4, 745-749 (2010) Copyright © 2010, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Short Communication Phylogenetic position of an uncharacterized Brazilian strain of bovine papillomavirus in the genus Xipapillomavirus based on sequencing of the L1 open reading frame Michele Lunardi1, Marlise P. Claus1, Amauri A. Alfieri1, Maria Helena P. Fungaro2 and Alice F. Alfieri1 1Laboratório de Virologia Animal, Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Londrina, PR, Brazil. 2Laboratório de Genética Molecular, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR, Brazil. Abstract The use of PCR assays with degenerate primers has suggested the existence of numerous as yet uncharacterized bovine papillomaviruses (BPV). Despite the endemic nature of BPV infections, the identification of BPV types in Bra- zilian cattle is still only sporadic. However, in a recent analysis of a partial segment of the L1 gene, we observed nota- ble diversity among the BPV types detected. The aim of this study was to determine the phylogenetic position of the previously identified wild strain BPV/BR-UEL2 detected in the state of Paraná in Brazil. Since previous analysis of the partial L1 sequence had shown that this strain was most closely related to BPV type 4, genus-specific primers were designed. Phylogenetic analysis using complete L1 ORF sequences revealed that BPV/BR-UEL2 was related to BPV types classified in the genus Xipapillomavirus and shared the highest L1 nucleotide sequence similarity with BPV type 4 (78%). This finding suggests that BPV/BR-UEL2 should be classified as a potential new type of BPV in the genus Xipapillomavirus. Key words: BPV, cattle, cutaneous papillomatosis, putative new BPV type, L1 gene. Received: March 26, 2010; Accepted: July 8, 2010. Papillomaviruses (PVs) are a highly diverse group of in the genera Deltapapillomavirus (BPV-1 and -2), Xipa- circular double-stranded DNA viruses that can induce epi- pillomavirus (BPV-3, -4, and -6) and Epsilonpapillo- thelial proliferation in a wide range of vertebrate species. In mavirus (BPV-5) (De Villiers et al., 2004). In addition, the cattle, the bovine papillomavirus (BPV) has been impli- most recently characterized BPV types were placed in cated as the casual agent of cutaneous papillomatosis and Epsilonpapillomavirus (BPV-8) and Xipapillomavirus cancer of the urinary bladder and upper gastrointestinal (BPV-9 and -10), with the exception of BPV-7, which be- tract (Campo, 2002). longs to an as yet undesignated PV genus (Ogawa et al., Recently, based on a comparison of the entire L1 nu- 2007; Tomita et al., 2007; Hatama et al., 2008). cleotide sequence of almost all known PVs, the family As observed for HPV, PCR assays using degenerate Papillomaviridae was found to consist of 18 genera primers that amplify partial fragments of the L1 gene, fol- (Alphapapillomavirus to Sigmapapillomavirus), each con- lowed by sequencing, have demonstrated the presence of taining a number of species. The different genera show less numerous BPV types in cattle herds from diverse geo- than 60% identity in the L1 nucleotide sequence, whereas graphical regions. Using the primers FAP59/FAP64 and species within a genus share 60%-70% identity. In addi- MY09/MY11, 12 putative new BPV types were detected in tion, traditional types within a species show 71%-89% teat skin warts and healthy teat skin of cattle from Japan and identity in the same gene (De Villiers et al., 2004). Sweden (Forslund et al., 1999; Antonsson and Hansson, While more than 100 human papillomavirus (HPV) 2002; Ogawa et al., 2004). types have been identified, only six BPV types had been de- A recent investigation using the strategy above re- scribed in cattle before 2007. These BPVs were classified vealed notable diversity among BPV types detected in papillomas of four cattle herds from the state of Paraná in Send correspondence to Alice Fernandes Alfieri. Laboratório de southern Brazil. The study also identified four putative new Virologia Animal, Departamento de Medicina Veterinária Preven- BPV types designated as BPV/BR-UEL2 to BPV/BR- tiva, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445, km 380, Caixa Postal 6001, 86051-990 Londrina, PR, UEL5 (GenBank accession numbers EU293538 to Brazil. E-mail: [email protected]. EU293541, respectively) (Claus et al., 2008). The aim of 746 Lunardi et al. the current study was to determine the phylogenetic posi- 1.5 mM MgCl2 and ultrapure sterile water in a final volume tion of BPV/BR-UEL2 in relation to other BPVs. of 25 mL. The reactions were run in a PTC-200 thermo- BPV/BR-UEL2 DNA was isolated from a rice- cycler (MJ Research Co., USA) using the following times grain-sized papilloma located in the axillary region of a and temperatures: 10 min at 94 °C followed by 40 cycles of cow from a dairy cattle herd in Paraná (Claus et al., 2008). 1 min at 94 °C, 1 min at an optimum temperature for primer The papilloma was homogenized in phosphate-buffered sa- annealing, 1 min at 72 °C, and a final extension of 10 min at line (PBS, pH 7.2) and the homogenate (10% w/v) then 72 °C. The annealing temperatures for primer pairs centrifuged (1500 x g, 15 min, 4 °C). An aliquot (250 mL) of L2Bf/FAP64, L2Bf/L1Br and L1Bf/LCRBr were 50 °C, the supernatant was treated with lysis buffer [10 mM Tris, 54 °C and 57 °C, respectively. The amplified products were 1 mM EDTA, 0.5% Nonidet P40, 1% SDS and 0.2 mg/mL analyzed by electrophoresis in 1.5% agarose ethidium bro- proteinase K (Invitrogen, Life Technologies, USA)], mixed mide stained gels in TBE buffer, pH 8.4 and examined un- and incubated at 56 °C for 30 min. der UV light. DNA was extracted using a combination of the phe- Initially, all PCR products were purified using a nol/chloroform/isoamyl alcohol and silica/guanidine iso- PureLink quick gel extraction kit (Invitrogen) and then thiocyanate methods (Alfieri et al., 2006). The DNA was cloned using TOPO TA cloning kit for sequencing (Invi- eluted in 50 mL of ultrapure (MilliQ®) sterile water and trogen), according to the manufacturer’s instructions. The stored at -20 °C until used. An aliquot of ultrapure sterile inserts from two clones selected for each PCR amplicon water was included as a negative control in the DNA ex- were then sequenced using DYEnamic ET dye terminator traction procedure. cycle sequencing kit (GE Healthcare, Little Chalfont, UK) with M13 forward and reverse primers in a MegaBACE Since FAP sequence analysis of the wild type 1000/Automated 96 Capillary DNA sequencer (GE BPV/BR-UEL2 (GenBank accession number EU293538) Healthcare), according to the manufacturer’s instructions. has shown that this isolate is most closely (77%) related to The sequences obtained were examined with the PHRED BPV type 4, sequences from the L2, L1 and LCR regions of application for quality analysis of chromatogram read- Xipapillomavirus representatives (BPV-3, -4 and -6) were ings. The sequences were accepted if base quality aligned and used to design degenerate primers to obtain the was ³ 20. The consensus sequence was determined using entire L1 nucleotide sequence. CAP3 software and the sequence identity was verified Combinations of the two primer sets (L2Bf/L1Br and against all sequences deposited in GenBank using the L1Bf/LCRBr) and the previously described FAP primer BLAST application. The L1 ORF of Brazilian wild type pair were tested (see Table 1 for primer features) (Forslund BPV was predicted based on analysis with the ORF Finder et al., 1999). In addition, the same primer sets were also tool. The alignment and degree of similarity among se- tested on DNA samples known to harbor BPV type 6, a quences at the nucleotide and amino acid levels were de- Xipapillomavirus representative. Sequence alignment and termined using BIOEDIT v 5.0.9 software (Hall, 1999). primer design were done using the CLUSTAL W Multiple The phylogenetic tree was constructed using MEGA v. 3.1 Alignment program and Gene Runner v 3.05 (Hastings software (Kumar et al., 2004) and the neighbor-joining Software Inc., Hastings, NY), respectively (Thompson et method with the Kimura two-parameter distance estimate al., 1994). (Kimura, 1980). Bootstrap support values were deter- The PCR reactions contained 2.5 mL of extracted mined for 1000 replications. DNA, 20 pmol of each primer, 200 mM of each dNTP, The first L1 segment of the Brazilian wild strain 2.5 U of Platinum Taq DNA polymerase (Invitrogen), 1 x BPV was obtained using a semi-nested PCR assay (SN- PCR buffer (20 mM Tris-HCl, pH 8.4 and 50 mM KCl), PCR) with the primer pair L2Bf/FAP64 in the first round Table 1 - Sequences and features of primers used in the polymerase chain reactions. Primer Genomic region targeted Polarity Sequence1 Nucleotide positions2 Degree of degeneracy L2Bf L2 + 5’GTIAARYTITTYATHAAYGAYGC3’ 5385-5407 96 FAP593 L1 + 5’TAACWGTIGGICAYCCWTATT3’ 5729-5749 8 L1Br L1 - 5’AASACTCTGAATTGACTGCC3’ 5794-5813 2 L1Bf L1 + 5’GRGAGCAYTGGGAYAAAG3’ 6089-6106 8 FAP643 L1 - 5’CCWATATCWVHCATITCICCATC3’ 6175-6197 36 LCRBr LCR - 5’CWRCATTTTATTKSSAASATTC3’ 7181-7202 64 1Degenerate nucleotides: I = inosine;R=G,A;Y=T,C;H=A,T,C;W=A,T;S=G,C;V=G,A,C;K=G,T. 2Relative position in the BPV-4 genome. 3Forslund et al. (1999). Phylogenetic position of a Brazilian BPV 747 and the primer pair L2Bf/L1Br in the second round, which yielded an amplicon of 435 bp. Use of the FAP59/FAP64 (475 bp) and L1Bf/LCRBr (1128 bp) primer sets allowed amplification of the remaining portions of the same gene (Figure 1). A consensus sequence of 1804 nt (GenBank acces- sion number GQ471901) spanning nt 5385 to nt 7184 of BPV-4 was obtained with the L2Bf/L1Br, FAP59/FAP64 and L1Bf/LCRBr overlapping amplicons of the BPV/BR- UEL2 isolate.
Recommended publications
  • Changes to Virus Taxonomy 2004
    Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales
    [Show full text]
  • Genome Characterization of a Bovine Papillomavirus Type 5 from Cattle in the Amazon Region, Brazil
    Virus Genes DOI 10.1007/s11262-016-1406-y Genome characterization of a bovine papillomavirus type 5 from cattle in the Amazon region, Brazil 1,2 1 1 1 Flavio R. C. da Silva • Cı´ntia Daudt • Samuel P. Cibulski • Matheus N. Weber • 3 3 4 1 Ana Paula M. Varela • Fabiana Q. Mayer • Paulo M. Roehe • Cla´udio W. Canal Received: 11 September 2016 / Accepted: 20 October 2016 Ó Springer Science+Business Media New York 2016 Abstract Papillomaviruses are small and complex viruses Keywords Papillomaviridae Á Epsilonpapillomavirus Á with circular DNA genome that belongs to the Papillo- BPV5 Á Complete genome Á Phylogeny mavirus family, which comprises at least 39 genera. The bovine papillomavirus (BPV) causes an infectious disease that is characterized by chronic and proliferative benign Introduction tumors that affect cattle worldwide. In the present work, the full genome sequence of BPV type 5, an Epsilonpa- Viruses from the Papillomaviridae family infect epithelia pillomavirus, is reported. The genome was recovered from in amniotes and are associated with asymptomatic infec- papillomatous lesions excised from cattle raised in the tions, proliferative benign lesions, and different cancers in Amazon region, Northern Brazil. The genome comprises humans and other animals [1]. Papillomaviruses (PVs) 7836 base pairs and exhibits the archetypal organization of have circular, double-stranded DNA genomes of *8kbin the Papillomaviridae. This is of significance for the study length. The organization of PV genomes consists of the of BPV biology, since currently available full BPV genome early and the late regions and the noncoding region sequences are scarce. The availability of genomic infor- between them.
    [Show full text]
  • Molecular Characterization and Developing a Point-Of-Need Molecular Test for Diagnosis of Bovine Papillomavirus (BPV) Type 1 in Cattle from Egypt
    animals Article Molecular Characterization and Developing a Point-of-Need Molecular Test for Diagnosis of Bovine Papillomavirus (BPV) Type 1 in Cattle from Egypt Mohamed El-Tholoth 1,2,3 , Michael G. Mauk 2, Yasser F. Elnaker 4 , Samah M. Mosad 1, Amin Tahoun 5, Mohamed W. El-Sherif 6, Maha S. Lokman 7,8 , Rami B. Kassab 8,9 , Ahmed Abdelsadik 10, Ayman A. Saleh 11 and Ehab Kotb Elmahallawy 12,13,* 1 Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; [email protected] (M.E.-T.); [email protected] (S.M.M.) 2 Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA; [email protected] 3 Health Sciences Division, Veterinary Sciences Program, Al Ain Men’s Campus, Higher Colleges of Technology, Al Ain 17155, UAE 4 Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, The New Valley University, El-Karga 72511, New Valley, Egypt; [email protected] 5 Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelshkh University, Kafrelsheikh 33511, Egypt; [email protected] 6 Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, The New Valley University, El-Karga 72511, New Valley, Egypt; [email protected] 7 Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj 11942, Saudi Arabia; [email protected] 8 Department of Zoology and Entomology, Faculty of Science, Helwan University, 11795 Cairo, Egypt;
    [Show full text]
  • Isoodon Obesulus) in Western Australia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Virology 376 (2008) 173–182 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Genomic characterization of a novel virus found in papillomatous lesions from a southern brown bandicoot (Isoodon obesulus) in Western Australia Mark D. Bennett a,⁎, Lucy Woolford a, Hans Stevens b, Marc Van Ranst b, Timothy Oldfield c, Michael Slaven a, Amanda J. O'Hara a, Kristin S. Warren a, Philip K. Nicholls a a School of Veterinary and Biomedical Sciences, Murdoch University, Perth, Western Australia, 6150, Australia b Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10 B-3000, Leuven, Belgium c Wattle Grove Veterinary Hospital, 791 Welshpool Road, Wattle Grove, Western Australia, 6107, Australia article info abstract Article history: The genome of a novel virus, tentatively named bandicoot papillomatosis carcinomatosis virus type 2 (BPCV2), Received 21 January 2008 obtained from multicentric papillomatous lesions from an adult male southern brown bandicoot (Isoodon Returned to author for revision obesulus) was sequenced in its entirety. BPCV2 had a circular double-stranded DNA genome consisting of 3 March 2008 7277 bp and open reading frames encoding putative L1 and L2 structural proteins and putative large T antigen Accepted 14 March 2008 and small t antigen transforming proteins. These genomic features, intermediate between Papillomaviridae Available online 25 April 2008 and Polyomaviridae are most similar to BPCV1, recently described from papillomas and carcinomas in the endangered western barred bandicoot (Perameles bougainville).
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Isoodon Obesulus) in Western Australia
    Virology 376 (2008) 173–182 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Genomic characterization of a novel virus found in papillomatous lesions from a southern brown bandicoot (Isoodon obesulus) in Western Australia Mark D. Bennett a,⁎, Lucy Woolford a, Hans Stevens b, Marc Van Ranst b, Timothy Oldfield c, Michael Slaven a, Amanda J. O'Hara a, Kristin S. Warren a, Philip K. Nicholls a a School of Veterinary and Biomedical Sciences, Murdoch University, Perth, Western Australia, 6150, Australia b Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10 B-3000, Leuven, Belgium c Wattle Grove Veterinary Hospital, 791 Welshpool Road, Wattle Grove, Western Australia, 6107, Australia article info abstract Article history: The genome of a novel virus, tentatively named bandicoot papillomatosis carcinomatosis virus type 2 (BPCV2), Received 21 January 2008 obtained from multicentric papillomatous lesions from an adult male southern brown bandicoot (Isoodon Returned to author for revision obesulus) was sequenced in its entirety. BPCV2 had a circular double-stranded DNA genome consisting of 3 March 2008 7277 bp and open reading frames encoding putative L1 and L2 structural proteins and putative large T antigen Accepted 14 March 2008 and small t antigen transforming proteins. These genomic features, intermediate between Papillomaviridae Available online 25 April 2008 and Polyomaviridae are most similar to BPCV1, recently described from papillomas and carcinomas in the endangered western barred bandicoot (Perameles bougainville). This study also employed in situ hybridization Keywords: to definitively demonstrate BPCV2 DNA within lesion biopsies.
    [Show full text]
  • Papillomaviruses: a Systematic Review
    Genetics and Molecular Biology, 40, 1, 1-21 (2017) Copyright © 2017, Sociedade Brasileira de Genética. Printed in Brazil DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2016-0128 Review Article Papillomaviruses: a systematic review Rodrigo Pinheiro Araldi1,2, Suely Muro Reis Assaf1, Rodrigo Franco de Carvalho1, Márcio Augusto Caldas Rocha de Carvalho1,3, Jacqueline Mazzuchelli de Souza1,2, Roberta Fiusa Magnelli1,2, Diego Grando Módolo1, Franco Peppino Roperto4, Rita de Cassia Stocco1 and Willy Beçak1 1Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil. 2Programa de Pós-graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP, Brazil. 3Programa de Aprimoramento Profissional (PAP), Instituto Butantan, São Paulo, SP, Brazil 4Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Campania, Italy. Abstract In the last decades, a group of viruses has received great attention due to its relationship with cancer development and its wide distribution throughout the vertebrates: the papillomaviruses. In this article, we aim to review some of the most relevant reports concerning the use of bovines as an experimental model for studies related to papillo- maviruses. Moreover, the obtained data contributes to the development of strategies against the clinical conse- quences of bovine papillomaviruses (BPV) that have led to drastic hazards to the herds. To overcome the problem, the vaccines that we have been developing involve recombinant DNA technology, aiming at prophylactic and thera- peutic procedures. It is important to point out that these strategies can be used as models for innovative procedures against HPV, as this virus is the main causal agent of cervical cancer, the second most fatal cancer in women.
    [Show full text]
  • Molecular Identification of Bovine Papillomaviruses in Dairy and Beef Cattle: First Description of Xi- and Epsilonpapillomavirus in Turkey
    Turkish Journal of Veterinary and Animal Sciences Turk J Vet Anim Sci (2016) 40: 757-763 http://journals.tubitak.gov.tr/veterinary/ © TÜBİTAK Research Article doi:10.3906/vet-1512-64 Molecular identification of bovine papillomaviruses in dairy and beef cattle: first description of Xi- and Epsilonpapillomavirus in Turkey 1, 2 3 Veysel Soydal ATASEVEN *, Özgür KANAT , Yaşar ERGÜN 1 Department of Virology, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, Turkey 2 Department of Pathology, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, Turkey 3 Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, Turkey Received: 21.12.2015 Accepted/Published Online: 02.05.2016 Final Version: 15.12.2016 Abstract: In the current study, 23 papilloma/tumor-like samples obtained from cattle having clinical lesions and 9 blood samples collected from healthy-appearing cattle in Turkey were examined for bovine papillomavirus (BPV) DNA using the degenerate primers FAP59/64, and the different types of BPV were distinguished by type-specific primer sets. Furthermore, histopathological studies of papillomavirus were performed. A total of 7 BPV types (BPVs 1, 2, 3, 4, 6, 8, 9), including genera Deltapapillomavirus, Xipapillomavirus, and Epsilonpapillomavirus, were identified. In all samples, BPV-1 was the most common genotype (90.6%). Overall, coinfections were determined in 26 of the examined samples (81.3%), and coinfection with BPV-1/BPV-4/BPV-8 (21.9%) was the most frequently identified using BPV type-specific primers. Moreover, bovine leukemia virus, an oncogenic retrovirus, was detected from three cattle with tumor-like lesions (13.0%), which were also coinfected by different BPV types.
    [Show full text]
  • Infectious Diseases of the Horse
    INFECTIOUS DISEASES of the Diagnosis, pathology, HORSE management, and public health J. H. van der Kolk DVM, PhD, dipl ECEIM Department of Equine Sciences–Medicine Faculty of Veterinary Medicine Utrecht University, the Netherlands E. J. B. Veldhuis Kroeze DVM, dipl ECVP Department of Pathobiology Faculty of Veterinary Medicine Utrecht University, the Netherlands MANSON PUBLISHING / THE VETERINARY PRESS Copyright © 2013 Manson Publishing Ltd ISBN: 978-1-84076-165-8 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means without the written permission of the copyright holder or in accordance with the provisions of the Copyright Act 1956 (as amended), or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, 33–34 Alfred Place, London WC1E 7DP, UK. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages. A CIP catalogue record for this book is available from the British Library. For full details of all Manson Publishing Ltd titles please write to: Manson Publishing Ltd, 73 Corringham Road, London NW11 7DL, UK. Tel: +44(0)20 8905 5150 Fax: +44(0)20 8201 9233 Email: [email protected] Website: www.mansonpublishing.com Commissioning editor: Jill Northcott Project manager: Kate Nardoni Copy editor: Ruth Maxwell Layout: DiacriTech, Chennai, India Colour reproduction: Tenon & Polert Colour Scanning Ltd, Hong Kong Printed by: Grafos SA, Barcelona, Spain CONTENTS Introduction 5 Actinomyces spp. 90 Abbreviations 6 Dermatophilus congolensis: ‘rain scald’ or streptotrichosis 92 Chapter 1 Corynebacterium pseudotuberculosis: ‘pigeon fever’ 94 Bacterial diseases 9 Mycobacterium spp.: tuberculosis 97 Nocardia spp.
    [Show full text]
  • Taxonomy Bovine Ephemeral Fever Virus Kotonkan Virus Murrumbidgee
    Taxonomy Bovine ephemeral fever virus Kotonkan virus Murrumbidgee virus Murrumbidgee virus Murrumbidgee virus Ngaingan virus Tibrogargan virus Circovirus-like genome BBC-A Circovirus-like genome CB-A Circovirus-like genome CB-B Circovirus-like genome RW-A Circovirus-like genome RW-B Circovirus-like genome RW-C Circovirus-like genome RW-D Circovirus-like genome RW-E Circovirus-like genome SAR-A Circovirus-like genome SAR-B Dragonfly larvae associated circular virus-1 Dragonfly larvae associated circular virus-10 Dragonfly larvae associated circular virus-2 Dragonfly larvae associated circular virus-3 Dragonfly larvae associated circular virus-4 Dragonfly larvae associated circular virus-5 Dragonfly larvae associated circular virus-6 Dragonfly larvae associated circular virus-7 Dragonfly larvae associated circular virus-8 Dragonfly larvae associated circular virus-9 Marine RNA virus JP-A Marine RNA virus JP-B Marine RNA virus SOG Ostreid herpesvirus 1 Pig stool associated circular ssDNA virus Pig stool associated circular ssDNA virus GER2011 Pithovirus sibericum Porcine associated stool circular virus Porcine stool-associated circular virus 2 Porcine stool-associated circular virus 3 Sclerotinia sclerotiorum hypovirulence associated DNA virus 1 Wallerfield virus AKR (endogenous) murine leukemia virus ARV-138 ARV-176 Abelson murine leukemia virus Acartia tonsa copepod circovirus Adeno-associated virus - 1 Adeno-associated virus - 4 Adeno-associated virus - 6 Adeno-associated virus - 7 Adeno-associated virus - 8 African elephant polyomavirus
    [Show full text]
  • Teat Papillomatosis Associated with Bovine Papillomavirus Types 6, 7, 9, and 10 in Dairy Cattle from Brazil
    Brazilian Journal of Microbiology 44, 3, 905-909 (2013) Copyright © 2013, Sociedade Brasileira de Microbiologia ISSN 1678-4405 www.sbmicrobiologia.org.br Short Communication Teat papillomatosis associated with bovine papillomavirus types 6, 7, 9, and 10 in dairy cattle from Brazil 1,* 1,*,# 1 1 Claudia C. Tozato , Michele Lunardi , Alice F. Alfieri , Rodrigo A.A. Otonel , Giovana W. Di Santis2, Brígida K. de Alcântara1, Selwyn A. Headley2, Amauri A. Alfieri1 1Laboratório de Virologia Animal, Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Londrina, PR, Brazil. 2Laboratório de Patologia, Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Londrina, PR, Brazil. Submitted: February 7, 2012; Approved: September 10, 2012. Abstract This study describes the clinical, histopathological, and virological characterization of teat papillo- matosis from Brazilian dairy cattle herds. Four types of bovine papillomavirus were identified (BPV6, 7, 9, and 10); one of these (BPV7) is being detected for the first time in Brazilian cattle. Key words: papilloma, BPV, genotyping. Papillomaviruses (PVs) are small (52-55 nm), non- (BPV5 and 8), and a yet unnamed PV genus (BPV7) (Ber- enveloped, double-stranded DNA oncoviruses that repli- nard et al., 2010; Hatama et al., 2011; Zhu et al., 2012; cate in the nucleus of squamous epithelial cells and can in- Lunardi et al., 2013). Moreover, the occurrence of numer- duce warts in the skin and mucosal epithelia of most higher ous additional viral types has been proposed based on par- vertebrate species. Some specific viral types have the po- tial nucleotide sequence analysis of the major capsid pro- tential to cause malignant progression in papillomatous le- tein L1, obtained from both benign cutaneous lesions and sions of animals and humans (Antonsson et al., 2002; de swab samples of healthy skin from cattle (Antonsson and Villiers et al., 2004).
    [Show full text]
  • ICTV in San Francisco: a Report from the Plenary Session
    Arch Virol (2006) 151: 413– 422 DOI 10.1007/s00705-005-0698-3 ICTV in San Francisco: a report from the Plenary Session M. A. Mayo1 and L. A. Ball2 1Scottish Crop Research Institute, Dundee, U.K. 2Department of Microbiology, University of Birmingham at Alabama, Birmingham, Alabama, U.S.A. Received October 19, 2005; accepted November 23, 2005 Published online December 29, 2005 c Springer-Verlag 2005 At the International Congress of Virology (ICV) in San Francisco in July 2005, the Inter- national Committee on Taxonomy of Viruses (ICTV) held a Plenary Session. This note summarizes the reports made to the meeting by the President and the chairs of the ICTV subcommittees acknowledged at the end of this note. It also reports the results of elections to positions on the ICTV Executive Committee (EC) and changes made to the statutes that govern how ICTV operates. President’s report The composition of the EC will change greatly after the Congress because three of the four officers, 5 of the 6 subcommittee chairs and 5 of the 8 elected members will change. The memberships of the ICTV EC for 2002 to 2005 and for 2005 to 2008 (following the results of the elections at the Plenary Session) are shown in Table 1. Meetings Since the International Congress of Virology held in Paris in 2002, the EC met in May 2003 at the Danforth Plant Science Center, St Louis, USA and in July 2004 at Queen’s University, Kingston, Ontario, Canada. Immediately after the Kingston meeting, ICTV organized and, with donated funds, spon- sored a 1-day Satellite Symposium on ‘Virus Evolution’ in association with the annual American Society forVirology (ASV) meeting held at McGill University in Montreal, Canada, on July 10, 2004.
    [Show full text]