Teat Papillomatosis Associated with Bovine Papillomavirus Types 6, 7, 9, and 10 in Dairy Cattle from Brazil

Total Page:16

File Type:pdf, Size:1020Kb

Teat Papillomatosis Associated with Bovine Papillomavirus Types 6, 7, 9, and 10 in Dairy Cattle from Brazil Brazilian Journal of Microbiology 44, 3, 905-909 (2013) Copyright © 2013, Sociedade Brasileira de Microbiologia ISSN 1678-4405 www.sbmicrobiologia.org.br Short Communication Teat papillomatosis associated with bovine papillomavirus types 6, 7, 9, and 10 in dairy cattle from Brazil 1,* 1,*,# 1 1 Claudia C. Tozato , Michele Lunardi , Alice F. Alfieri , Rodrigo A.A. Otonel , Giovana W. Di Santis2, Brígida K. de Alcântara1, Selwyn A. Headley2, Amauri A. Alfieri1 1Laboratório de Virologia Animal, Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Londrina, PR, Brazil. 2Laboratório de Patologia, Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Londrina, PR, Brazil. Submitted: February 7, 2012; Approved: September 10, 2012. Abstract This study describes the clinical, histopathological, and virological characterization of teat papillo- matosis from Brazilian dairy cattle herds. Four types of bovine papillomavirus were identified (BPV6, 7, 9, and 10); one of these (BPV7) is being detected for the first time in Brazilian cattle. Key words: papilloma, BPV, genotyping. Papillomaviruses (PVs) are small (52-55 nm), non- (BPV5 and 8), and a yet unnamed PV genus (BPV7) (Ber- enveloped, double-stranded DNA oncoviruses that repli- nard et al., 2010; Hatama et al., 2011; Zhu et al., 2012; cate in the nucleus of squamous epithelial cells and can in- Lunardi et al., 2013). Moreover, the occurrence of numer- duce warts in the skin and mucosal epithelia of most higher ous additional viral types has been proposed based on par- vertebrate species. Some specific viral types have the po- tial nucleotide sequence analysis of the major capsid pro- tential to cause malignant progression in papillomatous le- tein L1, obtained from both benign cutaneous lesions and sions of animals and humans (Antonsson et al., 2002; de swab samples of healthy skin from cattle (Antonsson and Villiers et al., 2004). In cattle, bovine papillomavirus Hansson 2002; Maeda et al., 2007; Ogawa et al., 2007; (BPV) is the etiological agent of cutaneous and teat papil- Claus et al., 2008; Claus et al., 2009c). lomatosis, cancers of the upper gastrointestinal tract and Teat papillomatosis has been reported in dairy herds urinary bladder (Campo 2002; Borzacchiello et al., 2003; worldwide as a cattle health problem resulting in economic Wosiacki et al., 2006). losses (Campo 2003). While milking can become difficult BPV produces characteristic gross lesions that are ei- in markedly affected individuals, ulceration and rupture of ther exophytic (proliferating outwards) or endophytic (in- established cutaneous lesions might predispose dairy cattle verted) and are composed of a hyperplastic epithelium to mastitis and distortion of the milk ducts. Additionally, supported by a discrete dermal tissue containing dilated the maintenance of affected cows with alteration in mam- capillaries (Ginn et al., 2007; Hargis et al., 2012). mary gland shape and/or even of herds with a high number Currently, the genomes of thirteen BPVs (BPV1 to of affected animals may prevent economic profits in the 13) have been fully characterized. They are classified into dairy industry (Campo 2002; Borzacchiello et al., 2008). four genera based on their genome relatedness and biologi- Although papilloma lesions found in teats and udders cal properties (de Villiers et al., 2004). These genera are can be caused by diverse BPV types, the BPV6 has often Deltapapillomavirus (BPV1, 2, and 13), Xipapillomavirus been identified in this anatomical location. Therefore, the (BPV3, 4, 6, 9, 10, 11, and 12), Epsilonpapillomavirus association of BPV1, 3, 5, 7, 8, 9, 10, 11, and other types Send correspondence to A.A. Alfieri. Laboratories of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, P.O. Box 10001, 860571-970, Londrina, Parana, Brazil. E-mail: [email protected]. *Both authors contributed equally to the development of this paper. #Current Adress: Laboratório de Microbiologia Veterinária, Hospital Veterinário Escola, Universidade de Cuiabá, Cuiabá, MT, Brazil. 906 Tozato et al. still to be characterized, have been confirmed in mammary PHRED software for quality analysis of chromatogram glands of cattle (Campo et al., 1981; Jarrett et al., 1984; readings. The sequences were accepted if the base quality Ogawa et al., 2004; Claus et al., 2007; Maeda et al., 2007; was equal to or higher than 20. Consensus sequences were Claus et al., 2008). determined by using the CAP3 software, and the sequence Despite the high number of cattle herds affected by identity was verified with all sequences deposited in the cutaneous papillomatosis in several geographical regions GenBank by using the BLAST software. The guidelines of of Brazil, studies investigating BPV diversity associated the Papillomavirus Nomenclature Committee 1995 (14th with different clinical outcomes are sporadic (Stocco dos International Papillomavirus Conference, Quebec City, Santos et al., 1998; Freitas et al., 2003; Wosiacki et al., Quebec, Canada) were followed to identify PV types (de 2005; Wosiacki et al., 2006; Claus et al., 2008; Claus et al., Villiers et al., 2004). 2009b; Claus et al., 2009c; Lunardi et al., 2010). Grossly, all cutaneous lesions were exophytic and The aim of this report is to describe the identification were histologically classified as benign squamous cell neo- of BPVs 6, 7, 9, and 10 in association with cases of teat plasms (cutaneous papilloma) irrespective of the type of vi- papillomatosis from two dairy cattle herds of Brazil. This rus isolated. Microscopically, all tumorous growths dem- study represents the first detection of the BPV7 in Brazilian onstrated similar histological features; being characterized cattle. by varying degrees of hyperkeratosis or parakeratosis with Seven exophytic teat papillomas were individually elongated digital-like proliferation of the squamous epithe- collected from three dairy cows belonging to two different lium (Figure 1A). In all tumors fragments evaluated, most cattle herds from the Northern region of Parana state in keratinocytes within the stratum spinosum demonstrated Southern Brazil. These lesions were observed on different clear perinuclear halo, some having pyknotic nucleus parts of the teat and coded for identification. A portion of (characterized as koilocytes) others revealed discrete bal- each lesion was fixed in 10% buffered formalin solution looning degeneration; in some areas, two or more adjacent and routinely processed for histopathological evaluation. degenerated cells fused to produce microvesciles (Figu- Fragments from each papilloma specimen were grounded re 1B-D). Further, there was acanthosis, reduced mitotic in phosphate-buffered saline solution (PBSpH 7.2) and sus- index (1-2 per 40x Obj.), foci of apoptosis of squamous epi- pensions (10-20% w/v) were centrifuged for 15 min at thelium, and severe accumulations of irregular kera- 3,000 x g at 4 °C. Aliquots (250 mL) from supernatant were tohyalin granules within cells of the stratum granulosum. treated with lysis buffer (10 mM Tris; 1 mM EDTA; 0.5% However, characteristic basophilic intranuclear viral inclu- Nonidet P40; 1% SDS; and 0.2 mg/mL proteinase K) sion bodies were not observed. (Invitrogen, Life Technologies, Carlsbad, CA, USA). After Amplicons of the expected length, approximately homogenization, the samples were incubated at 56 °C for 480 bp, were obtained from each of the seven teat papil- 30 min. For DNA extraction, a combination of the phe- loma DNA samples, via the FAP PCR assay. Negative con- nol/chloroform/isoamyl alcohol and silica/guanidine iso- trols were not amplified. thiocyanate methods was performed as previously de- Through direct sequencing of the FAP products, scribed (Alfieri et al., 2006). DNA was eluted in 50 mLof BPV6, 7, 9, and 10 were identified in the examined papil- ultrapure sterile water and kept at -20 °C until used. loma specimens. Two cows with more than one teat papil- Aliquots of ultrapure sterile water were included as nega- lomas evaluated were coinfected by different BPV types tive controls in the DNA extraction procedures. (BPV7 and 10, and BPV6 and 9, respectively). The BPV The PCR assay was carried out by using the primer strains identified were designated as BPV6/BR-UEL, pair FAP59 (forward: 5’-TAACWGTIGGICAYCCWTA BPV7/BR-UEL, BPV9/BR-UEL, and BPV10/BR-UEL TT-3’) and FAP64 (reverse: 5’-CCWATATCWVHCAT (GenBank accession numbers: HM245430, HM245431, ITCICCATC-3’) (Forslund et al., 1999), with modifica- HM245433, and HM245432, respectively). tions (Claus et al., 2007). Aliquots from the PCR products were analyzed by electrophoresis in a 2% agarose gel in The gross characteristics of the cutaneous lesions as TBE buffer, pH 8.4 (89 mM Tris; 89 mM boric acid; 2 mM well as the PV type classification and GenBank accession EDTA) at constant voltage (90 V) for approximately numbers of the obtained sequences are indicated in Table 1. 45 min, stained with ethidium bromide (0.5 mg/mL), and vi- However, an association between the macroscopic charac- sualized under UV light. teristics and the viral type present in the cutaneous teat le- PCR bands suggestive of PV amplification were ex- sions was not observed in our analysis. cised from the agarose gel and purified by using illustra BPV types 7, 9, and 10, in addition to BPV type 6, GFX PCR DNA and Gel Band Purification kit (GE were identified as causative agents of warts in dairy cow Healthcare, Little Chalfont, UK). Direct sequencing
Recommended publications
  • Changes to Virus Taxonomy 2004
    Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales
    [Show full text]
  • Identification of Papillomaviruses in Butchers' Warts
    0022-202X/ 8 1/ 7602-0097$02.00/ 0 THE J OU RNAL OF INV ESTIGATIV E DERMATOLOGY, 76:97- 102 1981 Vol. 76, No.2 Copyright © !98 1 by The Williams & Wilkins Co. Printed in U.S. A. Identification of Papillomaviruses in Butchers' Warts GERARD ORTH, D.V.M., STEFANIA JABLONSKA, MD., MICHEL FAVRE, PH.D., 0DILE CROISSANT, PH.D., SLAVOMIR 0BALEK, M .D., MARIA JARZABEK-CHORZELSKA, PH.D., AND NICOLE JIBARD G. R . [NSERM U.J90. ln~>titut Pa~>t e ur, Paris, France (GO, MF, OC, NJ) and Department of Dermatology, Warww School of Medicine, Warsaw, Poland (SJ, SO, MJ-C). We have studied the papillomaviruses found in the butchers' warts, and to look for a possible correlation between hand warts of 60 butchers, most of them from 2 distant the types of viruses and the histological patterns of the lesions. slaughterhouses. Warts differing in morphology and lo­ MATERIALS AND METHODS cation were studied separately. The viruses were iden­ tified by molecular hybridization, restriction enzyme Subjects analysis and immunofluorescence. Four known human Our studies have been p erformed in 60 butchers whose work was papillomaviruses (HPV-1, HPV-2, HPV-3, HPV-4) were either to slaughter cattle, sheep and pigs, or to cut meat and viscera. detected and one hitherto unknown papillomavirus was Most of the butchers were from 2 slaughterhouses located in different identified in 9 butchers. The DNA of the latter virus did cities. All the warts were located on the hands: in 21 butchers, they the not anneal with any of the RNAs complementary to were dorsal and palmar; in 8, they were dorsal, palmar and around ey were dorsal on ly.
    [Show full text]
  • Genome Characterization of a Bovine Papillomavirus Type 5 from Cattle in the Amazon Region, Brazil
    Virus Genes DOI 10.1007/s11262-016-1406-y Genome characterization of a bovine papillomavirus type 5 from cattle in the Amazon region, Brazil 1,2 1 1 1 Flavio R. C. da Silva • Cı´ntia Daudt • Samuel P. Cibulski • Matheus N. Weber • 3 3 4 1 Ana Paula M. Varela • Fabiana Q. Mayer • Paulo M. Roehe • Cla´udio W. Canal Received: 11 September 2016 / Accepted: 20 October 2016 Ó Springer Science+Business Media New York 2016 Abstract Papillomaviruses are small and complex viruses Keywords Papillomaviridae Á Epsilonpapillomavirus Á with circular DNA genome that belongs to the Papillo- BPV5 Á Complete genome Á Phylogeny mavirus family, which comprises at least 39 genera. The bovine papillomavirus (BPV) causes an infectious disease that is characterized by chronic and proliferative benign Introduction tumors that affect cattle worldwide. In the present work, the full genome sequence of BPV type 5, an Epsilonpa- Viruses from the Papillomaviridae family infect epithelia pillomavirus, is reported. The genome was recovered from in amniotes and are associated with asymptomatic infec- papillomatous lesions excised from cattle raised in the tions, proliferative benign lesions, and different cancers in Amazon region, Northern Brazil. The genome comprises humans and other animals [1]. Papillomaviruses (PVs) 7836 base pairs and exhibits the archetypal organization of have circular, double-stranded DNA genomes of *8kbin the Papillomaviridae. This is of significance for the study length. The organization of PV genomes consists of the of BPV biology, since currently available full BPV genome early and the late regions and the noncoding region sequences are scarce. The availability of genomic infor- between them.
    [Show full text]
  • Bovine Papillomaviruses, Papillomas and Cancer in Cattle Giuseppe Borzacchiello, Franco Roperto
    Bovine papillomaviruses, papillomas and cancer in cattle Giuseppe Borzacchiello, Franco Roperto To cite this version: Giuseppe Borzacchiello, Franco Roperto. Bovine papillomaviruses, papillomas and cancer in cattle. Veterinary Research, BioMed Central, 2008, 39 (5), pp.1. 10.1051/vetres:2008022. hal-00902936 HAL Id: hal-00902936 https://hal.archives-ouvertes.fr/hal-00902936 Submitted on 1 Jan 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vet. Res. (2008) 39:45 www.vetres.org DOI: 10.1051/vetres:2008022 C INRA, EDP Sciences, 2008 Review article Bovine papillomaviruses, papillomas and cancer in cattle Giuseppe Borzacchiello*,FrancoRoperto Department of Pathology and Animal health, Faculty of Veterinary Medicine, Naples University “Federico II”, Via F. Delpino, 1 – 80137, Naples, Italy (Received 27 November 2007; accepted 7 May 2008) Abstract – Bovine papillomaviruses (BPV) are DNA oncogenic viruses inducing hyperplastic benign lesions of both cutaneous and mucosal epithelia in cattle. Ten (BPV 1-10) different viral genotypes have been characterised so far. BPV 1-10 are all strictly species-specific but BPV 1/2 may also infect equids inducing fibroblastic tumours. These benign lesions generally regress but may also occasionally persist, leading to a high risk of evolving into cancer, particularly in the presence of environmental carcinogenic co-factors.
    [Show full text]
  • Papillomavirus Virus-Like Particles As Vehicles for the Delivery of Epitopes Or Genes
    Arch Virol (2006) 151: 2133–2148 DOI 10.1007/s00705-006-0798-8 Papillomavirus virus-like particles as vehicles for the delivery of epitopes or genes Y.-F. Xu1, Y.-Q. Zhang2, X.-M. Xu1, and G.-X. Song1 1Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China 2Department of Physical Education, Zhejiang Water Conservancy and Hydropower College, Hangzhou, P.R. China Received November 16, 2005; accepted May 4, 2006 Published online June 22, 2006 c Springer-Verlag 2006 Summary. Papillomaviruses (PVs) are simple double-strand DNA viruses whose virion shells are T = 7 icosahedrons and composed of major capsid protein L1 and minor capsid protein L2. L1 alone or together with L2 can self-assemble into virus- like particles (VLPs) when expressed in eukaryotic or prokaryotic expression systems.Although the VLPs lack the virus genome DNA, their morphological and immunological characteristics are very similar to those of nature papillomaviruses. PVVLP vaccination can induce high titers of neutralizing antibodies and can effec- tively protect animals or humans from PV infection. Moreover, PVVLPs have been good candidates for vehicles to deliver epitopes or genes to target cells. They are widely used in the fields of vaccine development, neutralizing antibody detection, basic virologic research on papillomaviruses, and human papillomavirus (HPV) screening. Besides the structural biology and immunological basis for PV VLPs used as vehicles to deliver epitopes or genes, this review details the latest findings on chimeric papillomavirus VLPs and papillomavirus pseudoviruses, which are two important forms of PV VLPs used to transfer epitopes or genes.
    [Show full text]
  • Molecular Characterization and Developing a Point-Of-Need Molecular Test for Diagnosis of Bovine Papillomavirus (BPV) Type 1 in Cattle from Egypt
    animals Article Molecular Characterization and Developing a Point-of-Need Molecular Test for Diagnosis of Bovine Papillomavirus (BPV) Type 1 in Cattle from Egypt Mohamed El-Tholoth 1,2,3 , Michael G. Mauk 2, Yasser F. Elnaker 4 , Samah M. Mosad 1, Amin Tahoun 5, Mohamed W. El-Sherif 6, Maha S. Lokman 7,8 , Rami B. Kassab 8,9 , Ahmed Abdelsadik 10, Ayman A. Saleh 11 and Ehab Kotb Elmahallawy 12,13,* 1 Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; [email protected] (M.E.-T.); [email protected] (S.M.M.) 2 Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA; [email protected] 3 Health Sciences Division, Veterinary Sciences Program, Al Ain Men’s Campus, Higher Colleges of Technology, Al Ain 17155, UAE 4 Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, The New Valley University, El-Karga 72511, New Valley, Egypt; [email protected] 5 Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelshkh University, Kafrelsheikh 33511, Egypt; [email protected] 6 Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, The New Valley University, El-Karga 72511, New Valley, Egypt; [email protected] 7 Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj 11942, Saudi Arabia; [email protected] 8 Department of Zoology and Entomology, Faculty of Science, Helwan University, 11795 Cairo, Egypt;
    [Show full text]
  • Isoodon Obesulus) in Western Australia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Virology 376 (2008) 173–182 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Genomic characterization of a novel virus found in papillomatous lesions from a southern brown bandicoot (Isoodon obesulus) in Western Australia Mark D. Bennett a,⁎, Lucy Woolford a, Hans Stevens b, Marc Van Ranst b, Timothy Oldfield c, Michael Slaven a, Amanda J. O'Hara a, Kristin S. Warren a, Philip K. Nicholls a a School of Veterinary and Biomedical Sciences, Murdoch University, Perth, Western Australia, 6150, Australia b Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10 B-3000, Leuven, Belgium c Wattle Grove Veterinary Hospital, 791 Welshpool Road, Wattle Grove, Western Australia, 6107, Australia article info abstract Article history: The genome of a novel virus, tentatively named bandicoot papillomatosis carcinomatosis virus type 2 (BPCV2), Received 21 January 2008 obtained from multicentric papillomatous lesions from an adult male southern brown bandicoot (Isoodon Returned to author for revision obesulus) was sequenced in its entirety. BPCV2 had a circular double-stranded DNA genome consisting of 3 March 2008 7277 bp and open reading frames encoding putative L1 and L2 structural proteins and putative large T antigen Accepted 14 March 2008 and small t antigen transforming proteins. These genomic features, intermediate between Papillomaviridae Available online 25 April 2008 and Polyomaviridae are most similar to BPCV1, recently described from papillomas and carcinomas in the endangered western barred bandicoot (Perameles bougainville).
    [Show full text]
  • (BAD) Guidelines for Management of Cutaneous Warts 2014
    BJD GUIDELINES British Journal of Dermatology British Association of Dermatologists’ guidelines for the management of cutaneous warts 2014 J.C. Sterling,1 S. Gibbs,2 S.S. Haque Hussain,1 M.F. Mohd Mustapa3 and S.E. Handfield-Jones4 1Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 OQQ, U.K. 2Great Western Hospital, Marlborough Road, Swindon SN3 6BB, U.K. 3British Association of Dermatologists, Willan House, 4 Fitzroy Square, London W1T 5HQ, U.K. 4West Suffolk Hospital, Hardwick Lane, Bury St Edmunds, Suffolk IP33 2QZ, U.K. 1.0 Purpose and scope Correspondence Jane Sterling. The overall objective of the guideline is to provide up-to-date, E-mail: [email protected] evidence-based recommendations for the management of infectious cutaneous warts caused by papillomavirus infection. Accepted for publication The document aims to (i) offer an appraisal of all relevant lit- 14 July 2014 erature since January 1999, focusing on any key develop- ments; (ii) address important practical clinical questions Funding sources relating to the primary guideline objective, i.e. accurate diag- None. nosis and identification of cases and suitable treatment; (iii) provide guideline recommendations, where appropriate with Conflicts of interest some health economic implications; and (iv) discuss potential J.C.S. has received travel and accommodation expenses from LEO Pharma (nonspe- developments and future directions. cific) and has been an invited speaker at educational events for Healthcare Education Services (nonspecific). The guideline is presented as a detailed review with high- lighted recommendations for practical use in the clinic, in J.C.S., S.G., S.S.H.H.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Primary Cultures Derived from Bovine Papillomavirus-Infected Lesions As
    Journal of Cancer Research and Therapeutic Oncology Research Open Access Primary Cultures Derived From Bovine Papillomavirus-Infected Lesions As Model To Study Metabolic Deregulation Rodrigo Pinheiro Araldi1,2, Paulo Luiz de Sá Júnior1, Roberta Fiusa Magnelli1,2, Diego Grando Módolo1, Jacqueline Mazzuchelli de Souza1, Diva Denelle Spadacci-Morena3, Rodrigo Franco de Carvalho1, Willy Beçak1, Rita de Cassia Stocco1,* 1Genetics Laboratory, Butantan Institute, Vital Brazil Avenue 1500, São Paulo-SP, Brazil 2Biotechnology Interunit Post-graduation Program IPT/Butantã/USP, University of São Paulo, Lineu Prestes 2415, São Paulo-SP, Brazil 3Physiopathology Laboratory, Butantan Institute, Vital Brazil 1500, São Paulo-SP, Brazil *Corresponding author: Rita de Cassia Stocco, Genetics Laboratory (Viral Oncogenesis), Butantan Institute, Vital Brazil St. 1500, São Paulo-SP, Brazil, Phone/Fax: 55 (11) 2627-9701; E-mail: [email protected] Received Date: November 10, 2016; Accepted Date: November 23, 2016; Published Date: November 25, 2016 Citation: Rodrigo Pinheiro Araldi, et al. (2016) Primary Cultures Derived From Bovine Papillomavirus-Infected Lesions As Model To Study Metabolic Deregulation. J Cancer Res Therap Oncol 4: 1-18 Abstract Bovine papillomavirus (BPV) is the etiological agent of bovine papillomatosis, disease characterized by the presence of mul- tiple papillomas that can regress or to progress to malignances. Due to the pathological similarities with the human papil- lomavirus (HPV), BPV is considered a prototype to study the papillomavirus-associated oncogenic process. Although it is clear that both BPV and HPV can interact with host chromatin, the interaction of these viruses with cell metabolism remains understudied due to the little attention given to primary cultures derived from papillomavirus-infected lesions.
    [Show full text]
  • Isoodon Obesulus) in Western Australia
    Virology 376 (2008) 173–182 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Genomic characterization of a novel virus found in papillomatous lesions from a southern brown bandicoot (Isoodon obesulus) in Western Australia Mark D. Bennett a,⁎, Lucy Woolford a, Hans Stevens b, Marc Van Ranst b, Timothy Oldfield c, Michael Slaven a, Amanda J. O'Hara a, Kristin S. Warren a, Philip K. Nicholls a a School of Veterinary and Biomedical Sciences, Murdoch University, Perth, Western Australia, 6150, Australia b Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10 B-3000, Leuven, Belgium c Wattle Grove Veterinary Hospital, 791 Welshpool Road, Wattle Grove, Western Australia, 6107, Australia article info abstract Article history: The genome of a novel virus, tentatively named bandicoot papillomatosis carcinomatosis virus type 2 (BPCV2), Received 21 January 2008 obtained from multicentric papillomatous lesions from an adult male southern brown bandicoot (Isoodon Returned to author for revision obesulus) was sequenced in its entirety. BPCV2 had a circular double-stranded DNA genome consisting of 3 March 2008 7277 bp and open reading frames encoding putative L1 and L2 structural proteins and putative large T antigen Accepted 14 March 2008 and small t antigen transforming proteins. These genomic features, intermediate between Papillomaviridae Available online 25 April 2008 and Polyomaviridae are most similar to BPCV1, recently described from papillomas and carcinomas in the endangered western barred bandicoot (Perameles bougainville). This study also employed in situ hybridization Keywords: to definitively demonstrate BPCV2 DNA within lesion biopsies.
    [Show full text]
  • Novel Production of Bovine Papillomavirus Pseudovirions in Tobacco Plants
    pathogens Article Novel Production of Bovine Papillomavirus Pseudovirions in Tobacco Plants Inge Pietersen 1 , Albertha van Zyl 1, Edward Rybicki 1,2 and Inga Hitzeroth 1,* 1 Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7701, South Africa; [email protected] (I.P.); [email protected] (A.v.Z.); [email protected] (E.R.) 2 Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7701, South Africa * Correspondence: [email protected]; Tel.: +27-21-650-5712 Received: 29 October 2020; Accepted: 22 November 2020; Published: 28 November 2020 Abstract: Vaccine efficacy requires the production of neutralising antibodies which offer protection against the native virus. The current gold standard for determining the presence of neutralising antibodies is the pseudovirion-based neutralisation assay (PBNA). PBNAs utilise pseudovirions (PsVs), structures which mimic native virus capsids, but contain non-viral nucleic material. PsVs are currently produced in expensive cell culture systems, which limits their production, yet plant expression systems may offer cheaper, safer alternatives. Our aim was to determine whether plants could be used for the production of functional PsVs of bovine papillomavirus 1 (BPV1), an important causative agent of economically damaging bovine papillomas in cattle and equine sarcoids in horses and wild equids. BPV1 capsid proteins, L1 and L2, and a self-replicating reporter plasmid were transiently expressed in Nicotiana benthamiana to produce virus-like particles (VLPs) and PsVs. Strategies to enhance particle yields were investigated and optimised protocols were established. The PsVs’ ability to infect mammalian cells and express their encapsidated reporter genes in vitro was confirmed, and their functionality as reagents in PBNAs was demonstrated through their neutralisation by several different antibodies.
    [Show full text]