Relationships Between Vegetation and Stomata, and Between Vegetation and Pollen Surface Soil in Yunnan, Southwest China

Total Page:16

File Type:pdf, Size:1020Kb

Relationships Between Vegetation and Stomata, and Between Vegetation and Pollen Surface Soil in Yunnan, Southwest China Article Ecology May 2013 Vol.58 No.15: 17751786 doi: 10.1007/s11434-012-5657-2 Relationships between vegetation and stomata, and between vegetation and pollen surface soil in Yunnan, Southwest China SHEN HuaDong1,2, LI ChunHai1*, WAN HeWen3, TONG GuoBang4, LIU JinSong5,6 & DAN Johnson7 1 State Key Laboratory of Lake Science and Environment, Nanjng Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 College of Life Sciences, Anhui University, Hefei 230039, China; 4 Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Zhengding 050803, China; 5 Mathematics and Information Science College, Hebei Normal University, Shijiazhuang 050024, China; 6 The Key Laboratory of Calculation and Application of Hebei Province, Shijiazhuang 050024, China; 7 Environmental Science, Department of Geography, University of Lethbridge, Alberta T1K 3M4, Canada Received August 26, 2012; accepted November 30, 2012; published online February 21, 2013 Surface pollen and stomata of 61 samples collected in a study area ranging from tropical seasonal rainforest to oak forest (Quer- cus spinosa) in the Yulong Snow Mountain region in Yunnan, China, are used to distinguish vegetation communities. The results show that tropical seasonal rainforest (and mountain rainforest), south subtropical evergreen broad-leaved forest, and Quercus shrub are distinguished effectively from other vegetation types by analysis of surface pollen. The south subtropical evergreen broad-leaved forest, Pinus kesiya forest and evergreen broadleaf forest are distinguished effectively from other types of vegetation by pollen analysis. However, P. yunnanensis forest is not distinguished from other vegetation types, and P. armandii, P. densata forest and temperate deciduous conifer mixed forest are not distinguished. The over-representation of Pinus pollen is the main reason that these vegetation communities are not distinguished from each other. Conifer stomata analysis is an effective tool for identifying and distinguishing different types of coniferous forest, and this method performs well even with a small number of sampling points. Yunnan, pollen, stomata, topsoil, vegetation, palynology Citation: Shen H D, Li C H, Wan H W, et al. Relationships between vegetation and stomata, and between vegetation and pollen surface soil in Yunnan, Southwest China. Chin Sci Bull, 2013, 58: 17751786, doi: 10.1007/s11434-012-5657-2 Pollen analysis provides important indicators which recon- for accurate reconstruction of palaeovegetation [3]. Howev- struct palaeovegetation [1,2]. However, such results are er, adequate and reliable fossils are often unavailable. The often inaccurate because of uncertainty related to factors other method relies on identification and quantification of affecting pollen production, dissemination, deposition, and stomata, and provides an accurate means of reconstructing identification. Therefore, other assisting means of palaeo- palaeovegetation [4]. vegetation reconstruction are needed. At present, there are In the early 1950’s, Trautmann [5] found that observa- two main auxiliary methods of reconstructing palaeovegeta- tions on conifer stomata served as a potential palaeoenvi- tion. One method is based on examination of plant fossils, ronmental analysis tool, and that some conifer stomata from which identify species, and provides important information vegetation in central Europe are morphologically distinctive. Parshall [6] found that conifer leaves could only transport a *Corresponding author (email: [email protected]) very short distance, scattering within approximately 20 m © The Author(s) 2013. This article is published with open access at Springerlink.com csb.scichina.com www.springer.com/scp 1776 Shen H D, et al. Chin Sci Bull May (2013) Vol.58 No.15 from the origin. The stomata found in closed lake sediments 1 Study area provide information on the plants which grew in the local area, serving as a substitute for observations of plant fossils Yunnan Province lies in the extreme southwest of China [7,8]. Conifer stomata observations as an important sup- (21°9′–29°15′N, 97°30′–106°12′E). Complex mountains and plement for pollen analysis have received extensive atten- valleys were formed during massive uplift and erosion dur- tion and research in Europe, North America, Siberia, and ing the end of the Tertiary and Quaternary. Elevation varies Latin America. In Europe, stomata analyses were applied to considerably, from less than 100 m on the Red River in study timberline migration [9–13]; in North America, Han- southeast Yunnan, to more than 6000 m in the northwest sen [14] first used the stomata to study vegetation changes, mountains, within the range of foothills of the Himalayas. In and further developed the identification standards of the eastern Yunnan, rivers generally flow eastward in relatively stomata, on the basis of Trautmann’s study. However, the shallow valleys, but in the west, the riversf low southward or scope of applications using stomata methodology has wid- southeastward, deeply dissecting the plateau landscape by ened. Recently, stomata analysis has been applied to re- as much as 1000 m. Altitude drops from north to south [29]. search conducted in alpine and arctic regions and Kennedy The climate of Yunnan is influenced by the interaction of evaluated Pinus stomata to distinguish mountain forest from several circulation systems, typically sub-tropical monsoon- grassland in Dominica [15]. Stomata analysis has also been al, affected by monsoons from the southwest, southeast and applied in the Yangtze River Delta and Liupangshan in northeast, and extra-tropical westerlies. The high altitude China [16,17]. strongly influences temperatures within the region. Yunnan The study of vegetation changes in the Yunnan forest ar- has a relatively mild climate, with maximum and minimum ea in China, an ecological region strongly influenced by the annual temperatures of 22.1 and 9.1°C. Average annual Asian monsoon, is important for the understanding of mon- precipitation is distinctly seasonal and varies from 800 mm soons and global climate change. Since the Quaternary, in dry valleys to 1700 mm in the southern and western areas, changes in the vertical belt of mountain forest in Northwest with 80%–90% during May to October. Yunnan may due to climate change [18–20]. Determination The topographical variety within the province has re- of the sequence and causes would be supported by accurate sulted in a rich diversity of vegetation, ranging from tropical methods of reconstruction of the vegetation community. rainforest to alpine exposed gravel, and cold desert from However, studies of surface pollen samples reveal that the Xishuangbanna in southern Yunnan to Yulong Snow Moun- accuracy of reconstruction of palaeovegetation by pollen is tain in northwestern Yunnan, within a straight-line distance limited in such areas, because of the over-representation of of more than 600 km [29]. Pinus pollen [21,22]. In addition, a wide range of gymno- Within the study area, a total of 61 surface pollen and sperms are extensively distributed in Yunnan region, vary- stomata samples were taken from Xishuangbanna in south- ing from cold temperate coniferous forest to subtropical ern Yunnan to Yulong Snow Mountain region in northwest- Pinus kesiya forest, in which conifer species are dominant. ern Yunnan (Figure 1). The main vegetation types are shown These conifers have specific significance for ecological and in Figure 1 and Table 1. palaeoecological research, if their stomata can be used as an auxiliary method to pollen analysis to reconstruct the an- cient vegetation diversity, abundance and distribution. If 2 Materials and methods validated, the method would provide a powerful means of reconstructing paleovegetation and paleoclimate. In 2005 and 2006, samples were collected from the southern The study of the relationship between current pollen ob- tropical rainforest in Xishuangbanna to the northern cold served in standard sampling to corresponding vegetation is a coniferous forest of Yulong Snow Mountain in Yunnan (Fig- very important step toward the reconstruction of palaeoveg- ure 1). The main material collected in each sample is topsoil etation [23], as a validation and calibration of the methods. and moss. At each sampling point, 4–5 samples of moss or Likewise, the study of the relationship of modern pollen topsoil were randomly selected and collected within an area stomata to corresponding vegetation can also provide im- of approximately 100 m2, then combined into one bulked portant reference relationships for reconstruction of the an- sample and tagged with the location and altitude of each cient vegetation communities. Similar research has been sampling point by GPS (Table 1). In order to study whether conducted in North America, Central Asia, and South the stomata can accurately indicate the existence of cold America [5,15,24–28]. This article reports the results of temperate coniferous vegetation communities, samples were examinations of the relationships among vegetation, pollen also collected in the forest sites where cold temperate tree and stomata, based on the study of pollen and stomata sam- species are not dominant to test the accuracy of analysis of ples from different types of vegetation in Yunnan. The pur- stomata as indicators. pose of the research is to provide evidence and data as Standard hydrofluoric (HF) methods
Recommended publications
  • Lepidoptera, Incurvariidae) with Two New Species from China and Japan
    Zootaxa 4927 (2): 209–233 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4927.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:96B9981B-01B5-4828-A4C6-E2E4A08DB8F2 Review of the genus Vespina (Lepidoptera, Incurvariidae) with two new species from China and Japan TOSHIYA HIROWATARI1*, SADAHISA YAGI1, ISSEI OHSHIMA2, GUO-HUA HUANG3 & MIN WANG4 1Entomological laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan. [email protected]; https://orcid.org/0000-0002-4261-1219 2Department of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8522 Japan. [email protected]; https://orcid.org/0000-0001-8295-9749 3Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, Hunan, China. [email protected]; https://orcid.org/0000-0002-6841-0095 4Department of Entomology, South China Agricultural University, Guangzhou 510640, Guangdong, China. [email protected]; https://orcid.org/0000-0001-5834-4058 *Corresponding author. [email protected]; https://orcid.org/0000-0002-6839-2229 Abstract Asian species of the genus Vespina Davis, 1972 (Lepidoptera, Incurvariidae) are mainly reviewed. Vespina meridiana Hirowatari & Yagi sp. nov. from the Ryukyu Islands, Japan, and Vespina sichuana Hirowatari, Huang & Wang sp. nov. from Sichuan, China, are described. The previously known Vespina species are associated with plants from the Fagaceae family on the western coast of the USA and East Asia and with Sapindaceae (Aceraceae) in eastern Europe.
    [Show full text]
  • Phytogeographic Review of Vietnam and Adjacent Areas of Eastern Indochina L
    KOMAROVIA (2003) 3: 1–83 Saint Petersburg Phytogeographic review of Vietnam and adjacent areas of Eastern Indochina L. V. Averyanov, Phan Ke Loc, Nguyen Tien Hiep, D. K. Harder Leonid V. Averyanov, Herbarium, Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov str. 2, Saint Petersburg 197376, Russia E-mail: [email protected], [email protected] Phan Ke Loc, Department of Botany, Viet Nam National University, Hanoi, Viet Nam. E-mail: [email protected] Nguyen Tien Hiep, Institute of Ecology and Biological Resources of the National Centre for Natural Sciences and Technology of Viet Nam, Nghia Do, Cau Giay, Hanoi, Viet Nam. E-mail: [email protected] Dan K. Harder, Arboretum, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, U.S.A. E-mail: [email protected] The main phytogeographic regions within the eastern part of the Indochinese Peninsula are delimited on the basis of analysis of recent literature on geology, geomorphology and climatology of the region, as well as numerous recent literature information on phytogeography, flora and vegetation. The following six phytogeographic regions (at the rank of floristic province) are distinguished and outlined within eastern Indochina: Sikang-Yunnan Province, South Chinese Province, North Indochinese Province, Central Annamese Province, South Annamese Province and South Indochinese Province. Short descriptions of these floristic units are given along with analysis of their floristic relationships. Special floristic analysis and consideration are given to the Orchidaceae as the largest well-studied representative of the Indochinese flora. 1. Background The Socialist Republic of Vietnam, comprising the largest area in the eastern part of the Indochinese Peninsula, is situated along the southeastern margin of the Peninsula.
    [Show full text]
  • Study on the Genetic Structure Based on Geographic Populations of the Endangered Tree Species: Liriodendron Chinense
    Article Study on the Genetic Structure Based on Geographic Populations of the Endangered Tree Species: Liriodendron chinense Peng-Yan Zhou 1,† , Li-Xing Hui 1,†, Shu-Jing Huang 1, Zhou-Xian Ni 1 , Fa-Xin Yu 2 and Li-An Xu 1,* 1 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; [email protected] (P.-Y.Z.); [email protected] (L.-X.H.); [email protected] (S.-J.H.); [email protected] (Z.-X.N.) 2 The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; [email protected] * Correspondence: [email protected]; Tel.: +86-025-8542-7882 † Peng-Yan Zhou and Li-Xing Hui contributed equal. Abstract: Liriodendron chinense (Hemsley) Sargent is a Class II protected plant in China as natural populations are on the verge of extinction. There is still a lack of systematic research on the genetic resources of its geographic populations. In this study, we used 20 pairs of SSR markers with high polymorphism to analyze a total of 808 L. chinense samples from 22 regions, and 63 Liriodendron tulipifera Linn samples from 2 regions were used as a comparison group. The results revealed a total of 78 alleles in L. chinense, and the average expected heterozygosity (He) was 0.558, showing a low level of genetic diversity. The degree of differentiation of L. chinense was high, with the differentiation coefficient (Fst) as high as 0.302, which is related to the low gene flow (Nm = 0.578).
    [Show full text]
  • Number 3, Spring 1998 Director’S Letter
    Planning and planting for a better world Friends of the JC Raulston Arboretum Newsletter Number 3, Spring 1998 Director’s Letter Spring greetings from the JC Raulston Arboretum! This garden- ing season is in full swing, and the Arboretum is the place to be. Emergence is the word! Flowers and foliage are emerging every- where. We had a magnificent late winter and early spring. The Cornus mas ‘Spring Glow’ located in the paradise garden was exquisite this year. The bright yellow flowers are bright and persistent, and the Students from a Wake Tech Community College Photography Class find exfoliating bark and attractive habit plenty to photograph on a February day in the Arboretum. make it a winner. It’s no wonder that JC was so excited about this done soon. Make sure you check of themselves than is expected to seedling selection from the field out many of the special gardens in keep things moving forward. I, for nursery. We are looking to propa- the Arboretum. Our volunteer one, am thankful for each and every gate numerous plants this spring in curators are busy planting and one of them. hopes of getting it into the trade. preparing those gardens for The magnolias were looking another season. Many thanks to all Lastly, when you visit the garden I fantastic until we had three days in our volunteers who work so very would challenge you to find the a row of temperatures in the low hard in the garden. It shows! Euscaphis japonicus. We had a twenties. There was plenty of Another reminder — from April to beautiful seven-foot specimen tree damage to open flowers, but the October, on Sunday’s at 2:00 p.m.
    [Show full text]
  • Chapter 1 Introduction
    Chapter 1 Introduction Chapterl Page 1 1.1 Introduction Chir pine scientifically known as Pinus roxburghii (family Coniferae) is one of the six Pinus species of India and the most widely occurring. It is also known as Himalayan long needle pine, long leaved Indian pine, Indian chir pine, chir or chil. Chir pine (Pinus roxburghii), is the dominant species native of the inter-ranges and principal valleys of the Himalaya. It begins from Afghanistan in the west and ends in Bhutan in the east and extends through countries like Pakistan, India and Nepal. In India its natural forests are found in Jammu and Kashmir, Haryana, Uttarakhand, Himachal Pradesh, and Uttar Pradesh, parts of Sikkim, West Bengal and Arunachal Pradesh. The total area under chir forests is estimated to be 8, 90,000 hectares which occurs between 450 m to 2300 m altitude. It forms pure forests in its habitat but in its upper and lower limits occurs mixed with other conifers and broad leaved species, though rarely, in its upper limits it is found in association with deodar, kail, ban oak, burans (Rhododendron) etc., and in the lower limits with sal, sain, khair, harada, bahera, amla, jamun etc. Besides Chir pine other indigenous pines which are present in Indian subcontinent are P. gerardiana, P. wallichiana, P.kesiya, P.bhutanica, and P.merkusii (Ginwal et.al, 2009), all belong to family Abitaceae or Pinaceae of order coniferals. Classification of Genus Pinus : Kingdom : Plantae Division : Pinophyta Class : Pinopsida Order : Pinales / Coniferals Family : Pinacea/Abitaceae Genus : Pinus The pines have been traced back in the geological history to Jurassic period (150 million years) reaching their climax in the tertiary period (60 million years).
    [Show full text]
  • Pinus Kesiya Royle Ex Gord
    Indian Journal of Biotechnology Vol 6, April 2007, pp 262-266 Plantlet regeneration of Pinus kesiya Royle ex Gord. from mature embryos Pramod Tandon*, Suman Kumaria and Hiranjit Choudhury Plant Biotechnology Laboratory, Department of Botany, North-Eastern Hill University, Shillong 793 022, India Received 7 September 2005; revised 8 May 2006; accepted 10 August 2006 A high frequency (90.5%) of shoot bud induction was observed in mature zygotic embryos of Pinus kesiya Royle ex Gord. that were pre-cultured in Quoirin and Lepoivre (LP) medium containing 23.15 µM Kn for 4 wk and then transferred to growth regulator-free medium. Multiplication and elongation of the shoot buds resulted in 1/2 LP medium containing 0.5 µM IBA and 4.5 µM BAP or Kn. Rooting was 72.3% in isolated shoots that were treated with 53.76 µΜ ΝΑΑ for 24 h and then cultured on water-agar medium. Plantlets were hardened and successfully established on soil collected from pine forests with 70% survival. Biomass of the micropropagated plants was 3.2 times higher than seed- derived plants. Keywords : growth characteristics, micropropagation, shoot buds induction, zygotic embryos, Pinus kesiya IPC Code: Int. Cl. 8 A01H4/00, 7/00 Introduction were surface-sterilized with 1% (w/v) mercuric Pinus kesiya Royle ex Gord. (Khasi pine) is chloride for 2-3 min, washed 3-4 times with sterilized widely distributed in the eastern Himalayan region of pure water and then treated with 6% (v/v) hydrogen the Indian subcontinent and extends up to Myanmar, peroxide for 10 min and stratified at 4°C for 24 h.
    [Show full text]
  • Report of Rapid Biodiversity Assessments at Cenwanglaoshan Nature Reserve, Northwest Guangxi, China, 1999 and 2002
    Report of Rapid Biodiversity Assessments at Cenwanglaoshan Nature Reserve, Northwest Guangxi, China, 1999 and 2002 Kadoorie Farm and Botanic Garden in collaboration with Guangxi Zhuang Autonomous Region Forestry Department Guangxi Forestry Survey and Planning Institute South China Institute of Botany South China Normal University Institute of Zoology, CAS March 2003 South China Forest Biodiversity Survey Report Series: No. 27 (Online Simplified Version) Report of Rapid Biodiversity Assessments at Cenwanglaoshan Nature Reserve, Northwest Guangxi, China, 1999 and 2002 Editors John R. Fellowes, Bosco P.L. Chan, Michael W.N. Lau, Ng Sai-Chit and Gloria L.P. Siu Contributors Kadoorie Farm and Botanic Garden: Gloria L.P. Siu (GS) Bosco P.L. Chan (BC) John R. Fellowes (JRF) Michael W.N. Lau (ML) Lee Kwok Shing (LKS) Ng Sai-Chit (NSC) Graham T. Reels (GTR) Roger C. Kendrick (RCK) Guangxi Zhuang Autonomous Region Forestry Department: Xu Zhihong (XZH) Pun Fulin (PFL) Xiao Ma (XM) Zhu Jindao (ZJD) Guangxi Forestry Survey and Planning Institute (Comprehensive Tan Wei Fu (TWF) Planning Branch): Huang Ziping (HZP) Guangxi Natural History Museum: Mo Yunming (MYM) Zhou Tianfu (ZTF) South China Institute of Botany: Chen Binghui (CBH) Huang Xiangxu (HXX) Wang Ruijiang (WRJ) South China Normal University: Li Zhenchang (LZC) Chen Xianglin (CXL) Institute of Zoology CAS (Beijing): Zhang Guoqing (ZGQ) Chen Deniu (CDN) Nanjing University: Chen Jianshou (CJS) Wang Songjie (WSJ) Xinyang Teachers’ College: Li Hongjing (LHJ) Voluntary specialist: Keith D.P. Wilson (KW) Background The present report details the findings of visits to Northwest Guangxi by members of Kadoorie Farm and Botanic Garden (KFBG) in Hong Kong and their colleagues, as part of KFBG's South China Biodiversity Conservation Programme.
    [Show full text]
  • Seasonal Abundance and Diversity of Arthropods on Acacia Mangium (Fabales: Fabaceae) Trees As Windbreaks in the Cerrado F
    Seasonal abundance and diversity of arthropods on Acacia mangium (Fabales: Fabaceae) trees as windbreaks in the cerrado F. W. S. Silva1,2,*, G. L. D. Leite1, R. E. M. Guañabens1, R. A. Sampaio1, C. A. G. Gusmão1, J. E. Serrão3 and J. C. Zanuncio4 Abstract Our aim was to assess the seasonal abundance and diversity of arthropods on Acacia mangium Willd. (Fabales: Fabaceae) trees. Phytophagous arthropods, natural enemies and pollinators were quantified biweekly in 20 trees during 3 years. The Shannon biodiversity index (H’) of arthro- pods was greater in the summer and smaller in the winter and spring on A. magium. The diversities of species and abundances of individuals of all arthropod taxa were greater in the autumn and smaller in the winter and in the spring. The H’ index of arthropods was greater in 2005 and smaller in 2007. The diversity of species and abundance of individuals of phytophagous taxa were greater in 2005 and 2006, respectively, whereas those of natural enemies and pollinators was greater in 2006. Aethalion reticulatum L. (Hemiptera: Aetalionidae) was the most abundant phytophagous species found in the various seasons, while Camponotus sp.2 (Hymenoptera: Formicidae), Trigona spinipes Fabricius (Hymenoptera: Apidae, Meliponini), Tetragonisca angustula Latreille (Hymenoptera: Meliponinae, Meliponini) and Polistes sp. (Hymenoptera: Vespidae) were the most abundant natural enemies and pollinators. The great diversity of predators on this tree species can explain the little damage to its leaves. These results may be applied to support programs of pest control and maintenance of natural enemies and pollinators in future plantations of A. mangium. Key Words: biodiversity; insects, phytophagous; natural enemies and pollinators Resumen Nuestro objetivo era evaluar la abundancia y diversidad estacional de artrópodos en Acacia mangium Willd.
    [Show full text]
  • Kadoorie Farm and Botanic Garden, 2004. Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001
    Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 Kadoorie Farm and Botanic Garden in collaboration with Zhongshan University Zhaoqing Forestry Bureau February 2004 South China Forest Biodiversity Survey Report Series: No. 37 (Online Simplified Version) Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 Editors Bosco P.L. Chan, Ng Sai-Chit, Michael W.N. Lau and John R. Fellowes Contributors Kadoorie Farm and Botanic Garden: Michael W.N. Lau (ML) Bosco P.L. Chan (BC) John R. Fellowes (JRF) Lee Kwok Shing (LKS) Ng Sai-Chit (NSC) Roger Kendrick (RCK) Zhongshan University: Chang Hong (CH) Voluntary specialists: Graham T. Reels (GTR) Keith D.P. Wilson (KW) Background The present report details the findings of a trip to Northwest Guangdong by members of Kadoorie Farm and Botanic Garden (KFBG) in Hong Kong and their colleagues, as part of KFBG's South China Biodiversity Conservation Programme (renamed the China Programme in 2003). The overall aim of the programme is to minimise the loss of forest biodiversity in the region, and the emphasis in the first three years is on gathering up-to-date information on the distribution and status of fauna and flora. Citation Kadoorie Farm and Botanic Garden, 2004. Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 . South China Forest Biodiversity Survey Report Series (Online Simplified Version): No. 37. KFBG, Hong Kong SAR, ii + 33 pp. Copyright Kadoorie Farm and Botanic Garden Corporation Lam Kam Road, Tai Po, N.T., Hong Kong February 2004 - i - Contents Objectives …………………………………………………………………………………….
    [Show full text]
  • Genetic Studies in a Tropical Pine - Pinus Kesiya II
    Journal of Tropical Forest Science 3 (4): 308- 317 308 PINUS - E PIN L TROPICA A N I S STUDIE C GENETI R FOU G AMON N VARIATIO C GENETI . II KESIYA POPULATIONS IN NORTHERN THAILAND T.J.B. Boyle, C. Liengsiri & C. Piewluang ASEAN-Canada Forest Tree Seed Centre, Muak Lek, Saraburi 18180, Thailand Received March 1990___________________________________________________ BOYLE, T.J.B., LIENGSIRI, C. & PIEWLUANG, C. 1991. Genetic studies in a tropical pine - Pinus kesiya II. Genetic variation among four populations in Northern Thailand. The genetic diversity and population structure of four populations of Pinus kesiya from Northern Thailand were investigated by means of isoenzyme analysis. Expected heterozygosities were similar to those obtained for other tropical tree species. Estimates of population differentiation by means of G-statistics indicated comparable levels of differentiation with other conifers and somewhat lower levels than other tropical tree species. Genetic distances indicated that one population in particular (Samoeng) was the main contributor to population differentiation. Key words: Pinus kesiya - isozymes - genetic variation - genetic differentiation - F-statistics - genetic distance Introduction The organisation of genetic variation within a species is of critical importance for effecient management of the resource. For example, in devising an optimum sampling strategy for genetic conservation, it is highly benefical to obtain estimates of the amount and distribution of genetic variation among populations (Marshall & Brown 1975). Sampling of genetically similar popula- tion then limitee ca snb highld dan y variable populatio samplee b n nca d more intensively. Similarly, genetic improvement involves sampling of the natural resource and in order to maximize the rate of improvement, the same information concerning the distribution of genetic variation is required (Guries & Ledig 1977).
    [Show full text]
  • FAGACEAE 1. FAGUS Linnaeus, Sp. Pl. 2: 997. 1753
    Flora of China 4: 314–400. 1999. 1 FAGACEAE 壳斗科 qiao dou ke Huang Chengjiu (黄成就 Huang Ching-chieu)1, Zhang Yongtian (张永田 Chang Yong-tian)2; Bruce Bartholomew3 Trees or rarely shrubs, monoecions, evergreen or deciduous. Stipules usually early deciduous. Leaves alternate, sometimes false-whorled in Cyclobalanopsis. Inflorescences unisexual or androgynous with female cupules at the base of an otherwise male inflorescence. Male inflorescences a pendulous head or erect or pendulous catkin, sometimes branched; flowers in dense cymules. Male flower: sepals 4–6(–9), scalelike, connate or distinct; petals absent; filaments filiform; anthers dorsifixed or versatile, opening by longitudinal slits; with or without a rudimentary pistil. Female inflorescences of 1–7 or more flowers subtended individually or collectively by a cupule formed from numerous fused bracts, arranged individually or in small groups along an axis or at base of an androgynous inflorescence or on a separate axis. Female flower: perianth 1–7 or more; pistil 1; ovary inferior, 3–6(– 9)-loculed; style and carpels as many as locules; placentation axile; ovules 2 per locule. Fruit a nut. Seed usually solitary by abortion (but may be more than 1 in Castanea, Castanopsis, Fagus, and Formanodendron), without endosperm; embryo large. Seven to 12 genera (depending on interpretation) and 900–1000 species: worldwide except for tropical and S Africa; seven genera and 294 species (163 endemic, at least three introduced) in China. Many species are important timber trees. Nuts of Fagus, Castanea, and of most Castanopsis species are edible, and oil is extracted from nuts of Fagus. Nuts of most species of this family contain copious amounts of water soluble tannin.
    [Show full text]
  • PINUS KESIYA Page 1Of 4
    PINUS KESIYA Page 1of 4 Family: PINACEAE (gymnosperm) Scientific name(s): Pinus kesiya Commercial restriction: no commercial restriction Note: This species can be found at altitudes between 600 m and 2700 m. WOOD DESCRIPTION LOG DESCRIPTION Color: orange - yellow Diameter: from 50 to 60 cm Sapwood: clearly demarcated Thickness of sapwood: from 4 to 5 cm Texture: medium Floats: yes Grain: straight Log durability: low (must be treated) Interlocked grain: absent Note: Wood pinkish white. Numerous resin canals. PHYSICAL PROPERTIES MECHANICAL AND ACOUSTIC PROPERTIES Physical and mechanical properties are based on mature heartwood specimens. These properties can vary greatly depending on origin and growth conditions. Mean Std dev. Mean Std dev. Specific gravity *: 0,71 Crushing strength *: 65 MPa Monnin hardness *: 2,8 Static bending strength *: 85 MPa Coeff. of volumetric shrinkage: 0,52 % Modulus of elasticity *: 12300 MPa Total tangential shrinkage (TS): 8,9 % Total radial shrinkage (RS): 6,1 % (*: at 12% moisture content, with 1 MPa = 1 N/mm²) TS/RS ratio: 1,5 Fiber saturation point: 35 % Musical quality factor: 96,2 measured at 2718 Hz Stability: moderately stable Note: Physical and mechanical properties vary according to the age and the origin. NATURAL DURABILITY AND TREATABILITY Fungi and termite resistance refers to end-uses under temperate climate. Except for special comments on sapwood, natural durability is based on mature heartwood. Sapwood must always be considered as non-durable against wood degrading agents. E.N. = Euro Norm Funghi (according to E.N. standards): class 4 - poorly durable Dry wood borers: susceptible Termites (according to E.N. standards): class S - susceptible Treatability (according to E.N.
    [Show full text]