Identification of a Natural Hybrid Between Castanopsis Sclerophylla

Total Page:16

File Type:pdf, Size:1020Kb

Identification of a Natural Hybrid Between Castanopsis Sclerophylla Article Identification of a Natural Hybrid between Castanopsis sclerophylla and Castanopsis tibetana (Fagaceae) Based on Chloroplast and Nuclear DNA Sequences Xiaorong Zeng, Risheng Chen, Yunxin Bian, Xinsheng Qin, Zhuoxin Zhang and Ye Sun * Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agriculture University, Guangzhou 510642, China; [email protected] (X.Z.); [email protected] (R.C.); [email protected] (Y.B.); [email protected] (X.Q.); [email protected] (Z.Z.) * Correspondence: [email protected]; Tel.: +86-136-4265-9676 Received: 30 June 2020; Accepted: 7 August 2020; Published: 11 August 2020 Abstract: Castanopsis kuchugouzhuiHuang et Y. T. Chang was recorded in Flora Reipublicae Popularis × Sinicae (FRPS) as a hybrid species on Yuelushan mountain, but it is treated as a hybrid between Castanopsis sclerophylla (Lindl.) Schott. and Castanopsis tibetana Hance in Flora of China. After a thorough investigation on Yuelushan mountain, we found a population of C. sclerophylla and one individual of C. kuchugouzhui, × but no living individual of C. tibetana. We collected C. kuchugouzhui, and we sampled 42 individuals of × C. sclerophylla from Yuelushan and Xiushui and 43 individuals of C. tibetana from Liangyeshan and Xiushui. Weused chloroplast DNA sequences and 29 nuclear microsatellite markers to investigate if C. kuchugouzhui × is a natural hybrid between C. sclerophylla and C. tibetana. The chloroplast haplotype analysis showed that C. kuchugouzhuishared haplotype H2 with C. sclerophylla on Yuelushan. The STRUCTURE analysis × identified two distinct genetic pools that corresponded well to C. sclerophylla and C. tibetana, revealing the genetic admixture of C. kuchugouzhui. Furthermore, the NewHybrids analysis suggested that × C. kuchugouzhuiis an F2 hybrid between C. sclerophylla and C. tibetana. Our results confirm that × C. kuchugouzhuirecorded in FRPS is a rare hybrid between C. sclerophylla and C. tibetana. × Keywords: Castanopsis kuchugouzhui; natural hybrid; molecular identification; chloroplast DNA × sequence; microsatellite 1. Introduction Hybridization is a process through which there is interbreeding of individuals from two genetically distinct populations or species [1]. It was estimated that at least 25% of plant species, mostly the youngest species, were involved in hybridization and potential introgression with other species [2]. A large number of studies showed that natural hybridization is ubiquitous in different taxa [3–6], and it plays a significant role in generating genetic diversity, even the origin of new ecotypes or species [7–10]. Research on natural hybridization has become a hot spot in the field of plant systematics and evolution in recent years [11–13]. Hybrid identification is the first step in exploring the intricate evolutionary history of natural hybridization. The morphological characteristics of natural hybrids are usually intermediate or more similar to one of their parents, and they form a gradually morphological transition that often causes the blurred and indistinguishable boundary of the species [14]. Chloroplast DNA is uniparentally inherited (maternal inheritance in most angiosperm) and nuclear DNA is biparentally inherited; thus, a comparative analysis of nuclear DNA and chloroplast DNA would provide complementary and often Forests 2020, 11, 873; doi:10.3390/f11080873 www.mdpi.com/journal/forests Forests 2020, 11, 873 2 of 11 contrasting information on the genetic structure and phylogenies. Interspecific hybrids are commonly identified by cytonuclear discordance that may indicate different parental contribution to the hybrid genome [4,15–17]. Castanopsis sclerophylla (Lindl.) Schott. and Castanopsis tibetana Hance are dominant species in mid-subtropical evergreen broad-leaved forest in China. Castanopsis sclerophylla is mainly distributed in the north of Nanling mountain, south of the Yangtze River, and east of Sichuan and Guizhou provinces [18]. Castanopsis tibetana is widely distributed in subtropical China and overlaps with the range of C. sclerophylla. Castanopsis tibetana grows together with C. sclerophylla in a forest on Yuelushan mountain of Changsha City in Hunan Province, where a specimen of Castanopsis kuchugouzhui × Huang et Y. T. Chang was collected according to Flora Reipublicae Popularis Sinicae (FRPS) [18]. The leaves and cupules of C. kuchugouzhui show intermediate morphologies between C. sclerophylla × and C. tibetana; thus, it is recognized as a hybrid species in FRPS [18]. However, C. kuchugouzhui is × assumed to be a putative natural hybrid between C. sclerophylla and C. tibetana in Flora of China [19]. Up to now, there is no molecular evidence for this putative hybrid. The purpose of this study was to verify whether C. kuchugouzhui is a natural hybrid between C. sclerophylla and C. tibetana by using × chloroplast DNA sequences and nuclear microsatellite markers. 2. Materials and Methods 2.1. Plant Materials and DNA Extraction After a thorough investigation of this forest on Yuelushan mountain in 2017–2019, we found a population of C. sclerophylla and one individual of C. kuchugouzhui, but no living individual × of C. tibetana. According to the information obtained from Yuelushan Mountain Scenic Area Administration Bureau and Hunan Normal University, this C. kuchugouzhui is more than 100 years × old and it is the same individual reported by FRPS. We sampled C. kuchugouzhui and 20 individuals × of C. sclerophylla on Yuelushan. We further sampled 22 individuals of C. sclerophylla and 19 individuals of C. tibetana from Xiushui, as well as 24 individuals of C. tibetana from Liangyeshan (Table1). For each population, eight to 10 fresh leaves per tree were chosen and quickly dried with silica gel, and the individuals were sampled at least 20 m apart from each other. Voucher specimens were made for C. kuchugouzhui and each population, and they were stored in the Dendrological Herbarium of South × China Agricultural University (CANT). Table 1. Location, sample size, and genetic diversity of the investigated populations. Species Location/Population Code Latitude (N) Longitude (E) Sample Size AAR HFIS Castanopsis Xiushui/KZ-XS 28◦55023” 114◦43012” 22 5.6 5.426 0.629 0.103 * sclerophylla Yuelushan/KZ-YLS 28◦10049” 112◦56028” 20 5.5 5.430 0.580 0.052 Average 21 5.6 5.428 0.605 0.078 Castanopsis Yuelushan/KZGK-YLS 28 10 49” 112 56 28” 1 kuchugouzhui× ◦ 0 ◦ 0 Castanopsis Liangyeshan/GK-LYS 25 12 35” 116 10 48” 24 3.3 3.219 0.481 0.057 ◦ 0 ◦ 0 − tibetana Xiushui/GK-XS 28 55 23” 114 43 12” 19 2.9 2.862 0.427 0.068 ◦ 0 ◦ 0 − Average 22 3.1 3.041 0.454 0.063 − N: north, E: east, A: total number of alleles detected, AR: allelic richness for 19 diploid individuals, H: gene diversity, FIS: fixation index. * Deviated from Hardy–Weinberg equilibrium significantly (p < 0.01). Total genomic DNA was extracted using the DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s instructions. The quality and concentration of the genomic DNA were evaluated by electrophoresis on 1% agarose gels and NanoDropTM 2000 Spectrophotometers (Thermo Scientific, Waltham, MA, USA). 2.2. Chloroplast DNA Sequencing and Nuclear Microsatellite Genotyping The chloroplast DNA of psbA-trnH and trnM-trnV intergenic spacers was amplified and sequenced with primers described in References [20,21]. The total volume of the polymerase chain reaction (PCR) Forests 2020, 11, 873 3 of 11 was 30 µL, which contained 1 ES Tag Master Mix (Cwbiotech, Beijing, China), 0.2 µM each of forward × and reverse primers, and 20 ng of DNA. PCR amplification was conducted for 33 cycles in a TaKaRa PCR Thermal Cycler Dice™ Gradient (TP600) (TAKARA, Kyoto, Japan). Each cycle included 45 s at 95 ◦C, 45 s at annealing temperature, and 45 s at 72 ◦C. An initial pre-denaturation for 5 min at 95 ◦C and a final extension for 7 min at 72 ◦C were added. Polymorphic nuclear microsatellites were screened from 173 simple sequence repeat (SSR) markers originally developed in C. sclerophylla, Castanopsis fargesii, Castanopsis sieboldii, Castanopsis tribuloides, Castanea sativa, and Castanea mollissima [22–28]. One sample in each population and C. kuchugouzhui × were used in a preliminary experiment to test SSR amplification. PCR was performed in a total volume of 10 µL that consisted of 1 ES Tag Master Mix, 0.5 µM each of forward and reverse primers, and 20 ng × of DNA. The PCR program was the same as above apart from the annealing temperature. PCR products were separated by electrophoresis on 3% agarose gels. A total of 75 pairs of primers that generated a clear electrophoretic band were applied to the multiple PCR, in which the forward primers were labeled with fluorochromes TAMRA, HEX, 6-FAM, and ROX. The primers with different fluorescence were combined, and we tried to keep their predicted products 30–50 bp apart. The Type-it Microsatellite PCR Kit (QIAGEN, Hilden, Germany) was used to prepare the multiple PCR with a total volume of 10 µL, which contained 1 PCR Master Mix, × 1 Q-Solution, 0.2 µM each of forward and reverse primers, and 20 ng of DNA. Two samples in × each population and C. kuchugouzhi were used in this experiment. The PCR programs included an × initial pre-denaturation of 5 min at 95 ◦C, followed by 28 cycles of 30 s at 95 ◦C, 90 s at 57 ◦C, 30 s at 72 ◦C, and a final extension of 30 min at 60 ◦C. PCR products were visualized on an ABI-3730XL fluorescence sequencer (Applied Biosystems, Foster City, CA, USA) using LIZ500 as an internal size standard. Alleles (Table S1) were scored using GeneMarker v 2.2.0 [29]. Finally, 32 pairs of primers with high polymorphism and stability were applied to genotype all samples. 2.3. Data Analyses DNA sequences of psbA-trnH (GenBank accession numbers: MT635060-MT635092) and trnM-trnV (GenBank accession numbers: MT635093-MT635125) were manually checked using BioEdit [30]. Multiple alignments were carried out using MEGA v 7 [31] with Castanopsis fabri (GenBank accession numbers: MF592976, MF592882) as the outgroup.
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Hybrid Vigor Between Native and Introduced Salamanders Raises New Challenges for Conservation
    Hybrid vigor between native and introduced salamanders raises new challenges for conservation Benjamin M. Fitzpatrick*† and H. Bradley Shaffer‡ *Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996; and ‡Evolution and Ecology, University of California, Davis, CA 95616 Edited by John C. Avise, University of California, Irvine, CA, and approved August 10, 2007 (received for review May 22, 2007) Hybridization between differentiated lineages can have many populations by alleviating inbreeding depression (13, 14) or different consequences depending on fitness variation among facilitating adaptive evolution in modified or degraded habitats hybrid offspring. When introduced organisms hybridize with na- (15–17). tives, the ensuing evolutionary dynamics may substantially com- The long-term consequences of hybridization are strongly plicate conservation decisions. Understanding the fitness conse- influenced by the genetic basis of hybrid fitness. In the case of quences of hybridization is an important first step in predicting its hybrid vigor, genetic models fall into two classes: heterozygote evolutionary outcome and conservation impact. Here, we mea- advantage and recombinant hybrid vigor (18–20). Heterozygote sured natural selection caused by differential viability of hybrid advantage (overdominance) refers to beneficial interactions larvae in wild populations where native California Tiger between heterospecific alleles of a single locus. Recombinant Salamanders (Ambystoma californiense) and introduced Barred hybrid vigor depends on multilocus genotypes and may be caused Tiger Salamanders (Ambystoma tigrinum mavortium) have been by epistasis (beneficial interactions between heterospecific al- hybridizing for 50–60 years. We found strong evidence of hybrid leles from different loci) or by complementary effects of inde- vigor; mixed-ancestry genotypes had higher survival rates than pendent advantageous alleles from each parental population (19, genotypes containing mostly native or mostly introduced alleles.
    [Show full text]
  • Quercus Robur (Fagaceae)
    Quercus robur (Fagaceae) The map description EEBIO area The integrated map shows the distribution and changes in the areal’s boundaries of pedunculate oak (Quercus robur). Q. robur is the dominant forest- formative species in the belt of broadleaf and mixed 4 needleleaf-broadleaf forests in the plains of the European part of the former USSR (Sokolov et al. 1977). In the northern part of its areal Q. robur grows in river valleys. In the central part, it forms mixed forests with Picea abies; closer to the south – a belt of broadleaf forests where Q. robur dominates. At the areal’s south boundary it forms small (marginal) forests in ravines and flood-plains (Atlas of Areals and Resources… , 1976). Q. robur belongs to the thermophilic species. The low temperature bound of possible occurrence of oak forests is marked by an average annual of 2?C l (http://www.forest.ru – in Russian). Therefore, l l l l l l hypotretically, oak areal boundaries will shift along l ll l l l l l l l with the changes in the average annual temperature. l l l l l l l l l l l For Yearly map of averaged mean annual air l l l l l l l l l l l l l l l l l l lll temperature (Afonin A., Lipiyaynen K., Tsepelev V., l l l l l l l ll ll l l l 2005) see http://www.agroatlas.spb.ru Climate. l l l l l l l l l l l l l l l l Oak forests are of great importance for the water l l l l l ll l lll l l l l l l l l l l l l l l l l l l l regime and soil structure, especially on the steep l l l l l l l l l l l l l l l l l l l l l l l l l l l l l slopes of river valleys and in forest-poor areas.
    [Show full text]
  • 5 Fagaceae Trees
    CHAPTER 5 5 Fagaceae Trees Antoine Kremerl, Manuela Casasoli2,Teresa ~arreneche~,Catherine Bod6n2s1, Paul Sisco4,Thomas ~ubisiak~,Marta Scalfi6, Stefano Leonardi6,Erica ~akker~,Joukje ~uiteveld', Jeanne ~omero-Seversong, Kathiravetpillai Arumuganathanlo, Jeremy ~eror~',Caroline scotti-~aintagne", Guy Roussell, Maria Evangelista Bertocchil, Christian kxerl2,Ilga porth13, Fred ~ebard'~,Catherine clark15, John carlson16, Christophe Plomionl, Hans-Peter Koelewijn8, and Fiorella villani17 UMR Biodiversiti Genes & Communautis, INRA, 69 Route d'Arcachon, 33612 Cestas, France, e-mail: [email protected] Dipartimento di Biologia Vegetale, Universita "La Sapienza", Piazza A. Moro 5,00185 Rome, Italy Unite de Recherche sur les Especes Fruitikres et la Vigne, INRA, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon, France The American Chestnut Foundation, One Oak Plaza, Suite 308 Asheville, NC 28801, USA Southern Institute of Forest Genetics, USDA-Forest Service, 23332 Highway 67, Saucier, MS 39574-9344, USA Dipartimento di Scienze Ambientali, Universitk di Parma, Parco Area delle Scienze 1lIA, 43100 Parma, Italy Department of Ecology and Evolution, University of Chicago, 5801 South Ellis Avenue, Chicago, IL 60637, USA Alterra Wageningen UR, Centre for Ecosystem Studies, P.O. Box 47,6700 AA Wageningen, The Netherlands Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA lo Flow Cytometry and Imaging Core Laboratory, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101,
    [Show full text]
  • Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
    Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B.
    [Show full text]
  • Nothofagus, Key Genus of Plant Geography, in Time
    Nothofagus, key genus of plant geography, in time and space, living and fossil, ecology and phylogeny C.G.G.J. van Steenis Rijksherbarium, Leyden, Holland Contents Summary 65 1. Introduction 66 New 2. Caledonian species 67 of and Caledonia 3. Altitudinal range Nothofagus in New Guinea New 67 Notes of 4. on distribution Nothofagus species in New Guinea 70 5. Dominance of Nothofagus 71 6. Symbionts of Nothofagus 72 7. Regeneration and germination of Nothofagus in New Guinea 73 8. Dispersal in Nothofagus and its implications for the genesis of its distribution 74 9. The South Pacific and subantarctic climate, present and past 76 10. The fossil record 78 of in time and 11. Phylogeny Nothofagus space 83 12. Bi-hemispheric ranges homologous with that of Fagoideae 89 13. Concluding theses 93 Acknowledgements 95 Bibliography 95 Postscript 97 Summary Data are given on the taxonomy and ecology of the genus. Some New Caledonian in descend the lowland. Details the distri- species grow or to are provided on bution within New Guinea. For dominance of Nothofagus, and Fagaceae in general, it is suggested that this. Some in New possibly symbionts may contribute to notes are made onregeneration and germination Guinea. A is devoted a discussion of which to be with the special chapter to dispersal appears extremely slow, implication that Nothofagus indubitably needs land for its spread, and has needed such for attaining its colossal range, encircling onwards of New Guinea the South Pacific (fossil pollen in Antarctica) to as far as southern South America. Map 1. An is other chapter devoted to response ofNothofagus to the present climate.
    [Show full text]
  • Patterns of Occurrence of Hybrids of Castanopsis Cuspidata and C
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kanazawa University Repository for Academic Resources Patterns of occurrence of hybrids of Castanopsis cuspidata and C. sieboldii in the IBP Minamata Special Research Area , Kumamoto Prefecture , Japan 著者 Kobayashi Satoshi, Hiroki Shozo journal or 植物地理・分類研究 = The journal of publication title phytogeography and toxonomy volume 51 number 1 page range 63-67 year 2003-06-25 URL http://hdl.handle.net/2297/48538 Journal of Phytogeography and Taxonomy 51 : 63-67, 2003 !The Society for the Study of Phytogeography and Taxonomy 2003 Satoshi Kobayashi and Shozo Hiroki : Patterns of occurrence of hybrids of Castanopsis cuspidata and C. sieboldii in the IBP Minamata Special Research Area , Kumamoto Prefecture , Japan Graduate School of Human Informatics, Nagoya University, Chikusa-Ku, Nagoya 464―8601, Japan Castanopsis cuspidata(Thunb.)Schottky and However, it is difficult to identify the hybrids by C. sieboldii(Makino)Hatus. ex T. Yamaz. et nut morphology alone, because the nut shapes of Mashiba are dominant components of the ever- the 2 species are variable and can overlap with green broad-leaved forests of southwestern Ja- each other. Kobayashi et al.(1998)showed that pan, including parts of Honshu, Kyushu and hybrids have a chimeric structure of both 1 and Shikoku but excluding the Ryukyu Islands(Hat- 2 epidermal layers within a leaf. These morpho- tori and Nakanishi 1983).Although these 2 Cas- logical differences among C. cuspidata, C. sie- tanopsis species are both climax species, it is boldii and their hybrid can be confirmed by ge- very difficult to distinguish them because of the netic differences in nuclear species-specific existence of an intermediate type(hybrid).
    [Show full text]
  • Diversity of Wisconsin Rosids
    Diversity of Wisconsin Rosids . oaks, birches, evening primroses . a major group of the woody plants (trees/shrubs) present at your sites The Wind Pollinated Trees • Alternate leaved tree families • Wind pollinated with ament/catkin inflorescences • Nut fruits = 1 seeded, unilocular, indehiscent (example - acorn) *Juglandaceae - walnut family Well known family containing walnuts, hickories, and pecans Only 7 genera and ca. 50 species worldwide, with only 2 genera and 4 species in Wisconsin Carya ovata Juglans cinera shagbark hickory Butternut, white walnut *Juglandaceae - walnut family Leaves pinnately compound, alternate (walnuts have smallest leaflets at tip) Leaves often aromatic from resinous peltate glands; allelopathic to other plants Carya ovata Juglans cinera shagbark hickory Butternut, white walnut *Juglandaceae - walnut family The chambered pith in center of young stems in Juglans (walnuts) separates it from un- chambered pith in Carya (hickories) Juglans regia English walnut *Juglandaceae - walnut family Trees are monoecious Wind pollinated Female flower Male inflorescence Juglans nigra Black walnut *Juglandaceae - walnut family Male flowers apetalous and arranged in pendulous (drooping) catkins or aments on last year’s woody growth Calyx small; each flower with a bract CA 3-6 CO 0 A 3-∞ G 0 Juglans cinera Butternut, white walnut *Juglandaceae - walnut family Female flowers apetalous and terminal Calyx cup-shaped and persistant; 2 stigma feathery; bracted CA (4) CO 0 A 0 G (2-3) Juglans cinera Juglans nigra Butternut, white
    [Show full text]
  • Hybrid Fitness, Adaptation and Evolutionary Diversification: Lessons
    Heredity (2012) 108, 159–166 & 2012 Macmillan Publishers Limited All rights reserved 0018-067X/12 www.nature.com/hdy REVIEW Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana Irises ML Arnold, ES Ballerini and AN Brothers Estimates of hybrid fitness have been used as either a platform for testing the potential role of natural hybridization in the evolution of species and species complexes or, alternatively, as a rationale for dismissing hybridization events as being of any evolutionary significance. From the time of Darwin’s publication of The Origin, through the neo-Darwinian synthesis, to the present day, the observation of variability in hybrid fitness has remained a challenge for some models of speciation. Yet, Darwin and others have reported the elevated fitness of hybrid genotypes under certain environmental conditions. In modern scientific terminology, this observation reflects the fact that hybrid genotypes can demonstrate genotypeÂenvironment interactions. In the current review, we illustrate the development of one plant species complex, namely the Louisiana Irises, into a ‘model system’ for investigating hybrid fitness and the role of genetic exchange in adaptive evolution and diversification. In particular, we will argue that a multitude of approaches, involving both experimental and natural environments, and incorporating both manipulative analyses and surveys of natural populations, are necessary to adequately test for the evolutionary significance of introgressive hybridization. An appreciation of the variability of hybrid fitness leads to the conclusion that certain genetic signatures reflect adaptive evolution. Furthermore, tests of the frequency of allopatric versus sympatric/parapatric divergence (that is, divergence with ongoing gene flow) support hybrid genotypes as a mechanism of evolutionary diversification in numerous species complexes.
    [Show full text]
  • Lepidoptera, Incurvariidae) with Two New Species from China and Japan
    Zootaxa 4927 (2): 209–233 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4927.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:96B9981B-01B5-4828-A4C6-E2E4A08DB8F2 Review of the genus Vespina (Lepidoptera, Incurvariidae) with two new species from China and Japan TOSHIYA HIROWATARI1*, SADAHISA YAGI1, ISSEI OHSHIMA2, GUO-HUA HUANG3 & MIN WANG4 1Entomological laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan. [email protected]; https://orcid.org/0000-0002-4261-1219 2Department of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8522 Japan. [email protected]; https://orcid.org/0000-0001-8295-9749 3Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, Hunan, China. [email protected]; https://orcid.org/0000-0002-6841-0095 4Department of Entomology, South China Agricultural University, Guangzhou 510640, Guangdong, China. [email protected]; https://orcid.org/0000-0001-5834-4058 *Corresponding author. [email protected]; https://orcid.org/0000-0002-6839-2229 Abstract Asian species of the genus Vespina Davis, 1972 (Lepidoptera, Incurvariidae) are mainly reviewed. Vespina meridiana Hirowatari & Yagi sp. nov. from the Ryukyu Islands, Japan, and Vespina sichuana Hirowatari, Huang & Wang sp. nov. from Sichuan, China, are described. The previously known Vespina species are associated with plants from the Fagaceae family on the western coast of the USA and East Asia and with Sapindaceae (Aceraceae) in eastern Europe.
    [Show full text]
  • NGS Report Explained
    Jonah Ventures NGS Report Files Explained Summary data The % of base pairs in the Sample identifiers Exact Sequence Variant sequence that match to the The detected Exact Sequence Variant Consensus Taxonomy The detected Numbers after the decimal point unique identifier species in the library. sequence. represent lab replicates of the same Taxonomic ranking from the Number of species sample. library matched to each sequence. matching the sequence at a given level. ESV Family Genus Species %match # Species Sequence S10001.1 S10002.1 S10003.1 S10003.2 ESV_000080 Fagaceae Quercus NA 100 7 AAAAAG… 3066 1340 5780 3462 ESV_000818 Orobanchaceae Orthocarpus Orthocarpus luteus 100 1 AAAAAG… 0 2582 249 0 ESV_000006 Poaceae NA NA 100 77 GAAAAG… 584 101 0 1039 ESV_000050 Poaceae NA NA 100 12 GAAAAG… 1328 0 0 0 ESV_000308 Polygonaceae Polygonum Polygonum humifusum 100 2 AAAAAG… 902 0 0 278 ESV_000027 Polygonaceae Eriogonum Eriogonum umbellatum 100 1 ATAAAG… 341 124 282 381 ESV_000520 Polygonaceae Fallopia Fallopia multiflora 99 1 AAAAAG… 126 0 0 994 “NA” at a taxonomic ranks means multiple species present in The number in each cell is the absolute number of the sample differ in that taxonomic rank times a given sequence was read by the sequencer. ESV detail Exact Sequence Variant The % of base pairs in the sequence that match to the species. Index identification number. that match to the species. Each sample has an Species Taxonomy 100% indicates all base pairs matched individual index number. ESV GB_ID Phylum Order Family Genus Species %match ESV_000818
    [Show full text]
  • Ray Imaging of a Dichasium Cupule of Castanopsis from Eocene Baltic Amber
    RESEARCH ARTICLE Synchrotron X- ray imaging of a dichasium cupule of Castanopsis from Eocene Baltic amber Eva-Maria Sadowski1,4 , Jörg U. Hammel2 , and Thomas Denk3 Manuscript received 30 May 2018; revision accepted 6 September PREMISE OF THE STUDY: The Eocene Baltic amber deposit represents the largest 2018. accumulation of fossil resin worldwide, and hundreds of thousands of entrapped 1 Department of Geobiology, University of Göttingen, arthropods have been recovered. Although Baltic amber preserves delicate plant Goldschmidtstraße 3, 37077 Göttingen, Germany structures in high fidelity, angiosperms of the “Baltic amber forest” remain poorly studied. 2 Institute of Materials Research, Helmholtz-Zentrum Geesthacht, We describe a pistillate partial inflorescence of Castanopsis (Fagaceae), expanding the Max-Planck-Str. 1, 21502 Geesthacht, Germany knowledge of Fagaceae diversity from Baltic amber. 3 Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden METHODS: The amber specimen was investigated using light microscopy and 4 Author for correspondence (e-mail: eva-maria.sadowski@ synchrotron- radiation- based X- ray micro- computed tomography (SRμCT). geo.uni-goettingen.de) KEY RESULTS: The partial inflorescence is a cymule, consisting of an involucre of scales Citation: Sadowski, E.-M., J. U. Hammel, and T. Denk. 2018. Synchrotron X- ray imaging of a dichasium cupule of Castanopsis that surround all four pistillate flowers, indicating a dichasium cupule. Subtending bracts from Eocene Baltic amber. American Journal of Botany 105(12): are basally covered with peltate trichomes. Flowers possess an urecolate perianth of 2025–2036. six nearly free lobes, 12 staminodia hidden by the perianth, and a tri-locular ovary that doi:10.1002/ajb2.1202 is convex- triangular in cross section.
    [Show full text]