Shoreline Processes: Overview of Waves the Ocean's Surfa
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolution of Glacial & Coastal Landforms
1 GEOMORPHOLOGY 201 READER PART IV : EVOLUTION OF GLACIAL & COASTAL LANDFORMS A landform is a small to medium tract or parcel of the earth’s surface. After weathering processes have had their actions on the earth materials making up the surface of the earth, the geomorphic agents like running water, ground water, wind, glaciers, waves perform erosion. The previous sections covered the erosion and deposition and hence landforms caused by running water (fluvial geomorphology) and by wind (aeolian geomorphology). Erosion causes changes on the surface of the earth and is followed by deposition, which likewise causes changes to occur on the surface of the earth. Several related landforms together make up landscapes, thereby forming large tracts of the surface of the earth. Each landform has its own physical shape, size, materials and is a result of the action of certain geomorphic processes and agents. Actions of most of the geomorphic processes and agents are slow, and hence the results take a long time to take shape. Every landform has a beginning. Landforms once formed may change their shape, size and nature slowly or fast due to continued action of geomorphic processes and agents. Due to changes in climatic conditions and vertical or horizontal movements of landmasses, either the intensity of processes or the processes themselves might change leading to new modifications in the landforms. Evolution here implies stages of transformation of either a part of the earth’s surface from one landform into another or transformation of individual landforms after they are once formed. That means, each and every landform has a history of development and changes through time. -
An International Journal Published by the Marine Environmental Alabama Sciences Consortium Of
An International Journal Evolution of the Florida State University Coastal and Marine Laboratory MICHAEL J. GREENBERG,WILLIAM F. HERRNKIND, AND FELICIA C. COLEMAN Published by the Marine Environmental Sciences Consortium of Alabama Gulf of Mexico Science, 2010(1–2), pp. 149–163 Evolution of the Florida State University Coastal and Marine Laboratory MICHAEL J. GREENBERG,WILLIAM F. HERRNKIND, AND FELICIA C. COLEMAN SIXTY YEARS OF HISTORY and the toponym Turkey Point Laboratory or, more often, the FSU Marine Laboratory n 1949, just 2 yr after the Florida State College (FSUML) stuck for more than 4 decades. I for Women was transformed into a coeduca- In 2006, Felicia Coleman became the 13th tional institution—The Florida State University director of the Laboratory. She is the first (FSU)—marine science gained a permanent director whose primary workplace is at the foothold on the Tallahassee campus with the laboratory, and the first with an on-site faculty formation of The Oceanographic Institute (OI). to manage. And the laboratory became the FSU This institute—within the College of Arts and Coastal and Marine Laboratory (FSUCML). Sciences—was meant to train graduate students The history of these two laboratories, which in marine science, to provide marine research follows, is narrated primarily by three of the 13 facilities for faculty and students and visiting directors. We have divided the narrative into four investigators, to conduct interdisciplinary basic distinct periods: The Genesis, 15 yr at Alligator research in the northeastern Gulf of Mexico, and Harbor; The Great Move from Alligator Harbor also to conduct applied research directed toward to Turkey Point, 7 yr of change; The Long improving Florida’s fishing industry and devel- Struggle at Turkey Point, 34 yr of intermittent, oping other marine resources. -
Accessing and Developing the Required Biophysical Datasets and Datalayers for Marine Protected Areas Network Planning and Wider Marine Spatial Planning Purposes
Accessing and developing the required biophysical datasets and datalayers for Marine Protected Areas network planning and wider marine spatial planning purposes Report No 8 Task 2A. Mapping of Geological and Geomorphological Features Version (Final) 27 November 2009 © Crown copyright 1 Project Title: Accessing and developing the required biophysical datasets and datalayers for Marine Protected Areas network planning and wider marine spatial planning purposes Report No 8: Task 2A. Mapping of Geological and Geomorphological Features Project Code: MB0102 Marine Biodiversity R&D Programme Defra Contract Manager: Jo Myers Funded by: Department for Environment Food and Rural Affairs (Defra) Marine and Fisheries Science Unit Marine Directorate Nobel House 17 Smith Square London SW1P 3JR Joint Nature Conservation Committee (JNCC) Monkstone House City Road Peterborough PE1 1JY Countryside Council for Wales (CCW) Maes y Ffynnon Penrhosgarnedd Bangor LL57 2DW Natural England (NE) North Minister House Peterborough PE1 1UA Scottish Government (SG) Marine Nature Conservation and Biodiversity Marine Strategy Division Room GH-93 Victoria Quay Edinburgh EH6 6QQ Department of Environment Northern Ireland (DOENI) Room 1306 River House 48 High Street Belfast BT1 2AW 2 Isle of Man Government (IOM) Department of Agriculture Fisheries and Forestry Rose House 51-59 Circular Road Douglas Isle of Man IM1 1AZ Authorship: A. J. Brooks ABP Marine Environmental Research Ltd [email protected] H. Roberts ABP Marine Environmental Research Ltd [email protected] N. H. Kenyon Associate [email protected] A. J. Houghton ABP Marine Environmental Research Ltd [email protected] ABP Marine Environmental Research Ltd Suite B Waterside House Town Quay Southampton Hampshire SO14 2AQ www.abpmer.co.uk Disclaimer: The content of this report does not necessarily reflect the views of Defra, nor is Defra liable for the accuracy of the information provided, nor is Defra responsible for any use of the reports content. -
Oce1001, Introduction to Oceanography, Fall, 2005
OCE1001, INTRODUCTION TO OCEANOGRAPHY, Fall, 2018 THIRD MID-TERM EXAMINATION Test No. 0001 Name: __________________________ READ THIS!!!! Put your name in the blank above. Read all questions carefully, and answer only the question which is asked. You may find the following equations useful: C = (gL/2) = 1.25 L (m/s) Where: C = speed of a wave and: g = gravity = 9.8 m/s2 C = (gD) = 3.1 D (m/s) L = wavelength of a wave C = 1.56 T (m/s) D = water depth C = L/T T = period of a wave PLEASE WRITE NEATLY. Matching: The Beaches Are Moving (8 pts) Do not put these on the scantron sheet. ____ neap ____ hook A. worldwide change in sea level. B. structure intended to widen a beach. ____ jetty ____ groin C. wall intended to keep a channel open. D. two high and two low tides per day. ____ eustatic E. current parallel to the shore caused by waves. ____ semidiurnal F. twice monthly tide that with a smaller than average range. ____ marine terrace G. bend in end of a spit caused by wave refraction. ____ longshore current H. region eroded flat by waves, elevated above sea level. ____ longitudinal I. disturbance of wave is parallel to wave movement Multiple Choice: (2 pts each) Put the answers to these questions on the scantron sheet. 1. In Figure 1, the features labeled 1, 2, 3, 4, and 5 are, respectively: a. spit, barrier island, baymouth bar, hook, tombolo. b. hook, spit, baymouth bar, barrier island, tombolo. c. tombolo, spit, baymouth bar, barrier island, hook. -
Dictionary of Geotourism Anze Chen • Young Ng • Erkuang Zhang Mingzhong Tian Editors
Dictionary of Geotourism Anze Chen • Young Ng • Erkuang Zhang Mingzhong Tian Editors Dictionary of Geotourism With 635 Figures and 12 Tables Editors Anze Chen Young Ng Chinese Academy of Geological Sciences The Geological Society of Australia Beijing, China Sydney, NSW, Australia Erkuang Zhang Mingzhong Tian The Geological Society of China China University of Geosciences Beijing, China Beijing, China ISBN 978-981-13-2537-3 ISBN 978-981-13-2538-0 (eBook) ISBN 978-981-13-2539-7 (print and electronic bundle) https://doi.org/10.1007/978-981-13-2538-0 Jointly published with Science Press, Beijing, China ISBN: 978-7-03-058981-1 Science Press, Beijing, China © Springer Nature Singapore Pte Ltd. 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for gecneral use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
174 Coastal Processes and Hazards I. WATER, WAVES and COASTAL
Coastal Processes and Hazards I. WATER, WAVES AND COASTAL DYNAMICS A. Beach and coastal areas represent sites of dynamic sedimentation, erosion and re- working of river-borne sediments as they reach coastal regions 1. Dynamic interaction between wind, waves, sedimentation and erosion 2. Coastal areas noted for extremely variable meteorologic conditions 3. Hurricanes and storms profoundly influence coastal morphology a. Wave energy and wind energy during coastal storms exhibit great capability to do work in the form of erosion and transportation of sediment (1) Eg. storm wash-over processes (2) storm surges (3) changes in coastal morphology via erosion and sedimentation 4. Gross coastal configuration primarily a function of plate tectonic history, however relentless wave processes modify coast through erosion and sedimentation B. The Ocean and Wave Activity 1. Beach/coastal sand/sediment profoundly influenced by wave action a. waves provide motion/energy for transportation and erosion of sediment 2. Waves generated by wind shear blowing across ocean surface for long distances a. shear creates orbital rotation of water to form water waves (1) orbital motion = circular to and fro motion, diminishing in intensity at depth from surface (2) Although the wave is passed through the water as a medium; actual water molecules are NOT displaced as the wave is propagated b. Wave form controlled by: (1) wind velocity (2) duration of wind (3) fetch- distance over which wind blows (length across water) (> fetch, > wave amplitude) 3. Wave Morphology a. Wave crest: high upper peak of wave train b. Wave trough: low separating two crests c. Wave Height: vertical distance between crest and trough (1) Avg. -
Shoreline Changes in the Isles Dernieres Barrier Island Arc: 1887-1996 Terrebonne Parish, Louisiana
SHORELINE CHANGES IN THE ISLES DERNIERES BARRIER ISLAND ARC: 1887-1996 TERREBONNE PARISH, LOUISIANA Shea Penland11, Chris Zganjar22, Karen A. Westphal2, Paul Connor1 Jeff List3 and S. Jeffress Williams3 INTRODUCTION The U.S. Geological Survey (USGS), in cooperation with the Coastal Research Laboratory in the Department of Geology and Geophysics at the University of New Orleans (UNO) and the Center for Coastal Energy and Environmental Resources at Louisiana State University (LSU), is investigating the processes of coastal erosion and wetland loss in Louisiana (Sallenger and others, 1987; Sallenger and Williams 1989; Penland and others, 1992). Building on the USGS Louisiana Barrier Island Study (Williams and others, 1992) and the USGS Hurricane Andrew impact assessment (Penland and others, 1998), this USGS Open-File Report depicts shoreline changes between 1887 and 1996, which provides an 8-year update of McBride and others (1992). The Isles Dernieres are located about 120 km southwest of New Orleans (Figure 1). This barrier island shoreline is 32 km long and extends from Caillou Bayou east to Wine Island Pass. The Isles Dernieres represent a barrier island arc developed from the reworking and erosion of an abandoned distributary of the Lafourche delta complex within the Mississippi River delta plain (Penland and others, 1988). Previous work by McBride and others (1992) documented a long-term (1887-1988) gulfside erosion rate of -11.1 m/yr and a short-term (1978-1988) gulfside erosion rate of -19.2 m/yr. The long- term bayside (1906-1988) erosion rate was measured at -0.6 m/yr and the short-term (1978-1988) bayside erosion rate was measured at -5.2 m/yr. -
Deposition Sites Erosional and Depositional Ar1n Counties
U.S. GEOLOGICAL SURVEY Prepared in cooperation with the DEPARTMENT OF HOUSING DEVELOPMENT Deposition Sites Erosional and Depositional ar1n• Counties, California 1974 Pamphlet to accompany Miscellaneous Fi~ld Studies Map MF-625 Jointly supported by the U.S. Geological Survey and the Department of Housing and Urban Development as part of a program to develop earth-science information in a form applicable to land-use planning and decision making. Pamphlet text to accompany MF-625 SEDIMENT SOURCE AND DEPOSITION SITES AND EROSIONAL AND DEPOSITIONAL PROVINCES MARIN AND SONOMA COUNTIES, CALIFORNIA By William M. Brown III and Lionel E. Jackson, Jr. INTRODUCTION The land surface of Marin and Sonoma Counties is a precise recorder of the natural and artificial factors that have shaped it. It is also an excellent predictor of the forms it will probably have in the future, given an estimate of the human and natural factors expected to act upon it. Studying the land surface for clues about its past and future, therefore, is a necessary aspect of thorough land-use planning and decisionmaking about land-use designs. This report is intended to aid the planner and decisionmaker in studying the land surface of Marin and Sonoma Counties. It is primarily concerned w~th the erosion, transportation, and deposition of sediment as a process that alters the land surface. It attempts to explain what sediment is, where sediment comes from, and where sediment goes. This report also describes how and why sediment moves from one point to another and for areas where data are available describes rates and quantities of sediment movement. -
Review of 15 Pre-Identified Sites
HAWKESBURY SHELF MARINE BIOREGION ASSESSMENT Review of 15 pre-identified sites Background The NSW Marine Estate Management Authority (the Authority) was established by the NSW Government in 2013 to advise on policies, priorities and directions for the NSW marine estate. The NSW marine estate includes marine waters, estuaries and the coast. It extends seaward out to three nautical miles and from the Queensland border in the north to the Victorian border in the south. The full definition and map can be found at www.marine.nsw.gov.au. Contributors The Authority acknowledges the key contributions of officers from the following in preparing this report: • NSW Department of Primary Industries • Office of Environment and Heritage • Transport for NSW • Department of Planning and Environment • Marine Estate Expert Knowledge Panel Published by the NSW Marine Estate Management Authority Hawkesbury Shelf marine bioregion assessment – Review of 15 pre-identified sites First published February 2016 ISBN 978-1-74256-894-2 More information This paper and more information about the Hawkesbury Shelf marine bioregion assessment are available at www.marine.nsw.gov.au. RM8 reference INT15/135534 © State of New South Wales through the Department of Industry, Skills and Regional Development, 2016.This publication is copyright. You may download, display, print and reproduce this material provided that the wording is reproduced exactly, the source is acknowledged, and the copyright, update address and disclaimer notice are retained. To copy, adapt, publish, distribute or commercialise any of this publication you will need to seek permission from the Department of Industry, Skills and Regional Development. Disclaimer: The information contained in this publication is based on knowledge and understanding at the time of writing (February 2016). -
A Data Compilation and Assessment of Coastal Wetlands of Wisconsin's Great Lakes Final Report
A Data Compilation and Assessment of Coastal Wetlands of Wisconsin’s Great Lakes Final Report Authors Eric Epstein, Elizabeth Spencer, Drew Feldkirchner Contributors Craig Anderson, Julie Bleser, Andy Clark, Emmet Judziewicz, Nicole Merryfield, Andy Paulios, Bill Smith Natural Heritage Inventory Program Bureau of Endangered Resources Wisconsin Department of Natural Resources P.O. Box 7921 Madison WI 53707-7921 PUBL ER-803 2002 Copies of this report can be obtained by writing to the Bureau of Endangered Resources at the above address. This publication is available in alternative format (large print, Braille, audiotape, etc) upon request. Please call (608-266-7012) for more information. The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington, D.C. 20240. ACKNOWLEDGMENTS Funding for this project was provided by the Wisconsin Coastal Zone Management Program. This support is gratefully acknowledged with special thanks to Travis Olson, Department of Administration. A number of individuals conducted inventory work and provided support to complete this project. We would like to extend our thanks to those persons listed below for their assistance. We would also like to extend our appreciation to the private landowners who granted us permission to work on or cross their properties. Data Management/GIS/Graphics Development: Julie Bleser, Natural -
Coastal Process Study November 2014
Phillip Island Nature Parks’ Coastal Process Study November 2014 Phillip Island Nature Park Coastal Process Study DOCUMENT STATUS Version Doc type Reviewed by Approved by Distributed to Date issued V01 Report CLA CLA Jarvis Weston 03/11/2014 v02 Final Report PINP CLA Jarvis Weston 11/11/2014 PROJECT DETAILS Project Name Coastal Process Study Client Phillip Island Nature Park Client Project Manager Jarvis Weston Water Technology Project Manager Christine Lauchlan Arrowsmith Christine Lauchlan Arrowsmith, Neville Rosengren, Josh Report Authors Mawer, Alison Oates, Doug Frood Job Number 3330-01 Report Number R02 Document Name 3330-01R02v01a_PhillipIsland_CHVA_Summary Cover Photo: Penguin Parade Viewing Stands at Summerland Beach (Photo: Christine Arrowsmith, May 14th 204) Copyright Water Technology Pty Ltd has produced this document in accordance with instructions from Phillip Island Nature Park for their use only. The concepts and information contained in this document are the copyright of Water Technology Pty Ltd. Use or copying of this document in whole or in part without written permission of Water Technology Pty Ltd constitutes an infringement of copyright. Water Technology Pty Ltd does not warrant this document is definitive nor free from error and does not accept liability for any loss caused, or arising from, reliance upon the information provided herein. 15 Business Park Drive Notting Hill VIC 3168 Telephone (03) 8526 0800 Fax (03) 9558 9365 ACN No. 093 377 283 ABN No. 60 093 377 283 3330-01 / R02 v02 - 11/11/2014 ii Phillip Island Nature Park Coastal Process Study TABLE OF CONTENTS 1. Introduction .................................................................................................................. 1 1.1 Project Overview ..................................................................................................................... 1 1.2 Project Team ........................................................................................................................... -
Great Lakes Shore Fen (Global Rank NA; State Rank S2)
Great Lakes Shore Fen (Global Rank NA; State Rank S2) Overview: Distribution, Abundance, !( !( !(!( !( !( Environmental Setting, Ecological Processes !( The Great Lakes Shore Fen is a circumneutral, moderately minerotrophic, open peatland community of intermediate richness that is an integral part of the diverse vegetation mosaics of estuaries and lagoons at sites along Lake Superior in northwestern Wisconsin and at several protected Lake Michigan embayments on the margins of the Door Peninsula. On Lake Superior, the Great Lakes Shore Fens are often !( partially protected from wind, wave, and ice disturbance by a sandspit. On Lake Michigan, horizontal exposures of dolo- mite bedrock, which sometimes extend well out into the lake, may serve a similar function. Many of the documented occurrences are within estuarine wetland complexes that develop at drowned river mouths, especially along Lake Superior’s southwestern shore. Other examples occur in the complex community mosaics associ- ated with Great Lakes coastal lagoons, such as those on Stock- ton, Outer, and Michigan islands in the Apostles Archipelago. Along Lake Superior’s southwestern shore, drowned river mouths are common features because of the geological phe- nomenon referred to as differential isostatic rebound (Lee and Southan 1994). Wetlands along eastern Lake Superior are Locations of Great Lakes Shore Fen in Wisconsin. The deeper hues becoming more separated from the lake as the land rebounds shading the ecological landscape polygons indicate geographic areas of greatest abundance. An absence of color indicates that the from the historical weight of the glacial ice, while lands on the community has not (yet) been documented in that ecological land- western end of the lake—including the coastal wetlands—are scape.