Great Lakes Shore Fen (Global Rank NA; State Rank S2)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interdunal Wetland
Interdunal Wetland (Global Rank G2?; State Rank S1) Overview: Distribution, Abundance, Environmental Setting, Ecological Processes !( !( !( Interdunal Wetland is an extremely rare natural community in Wisconsin, where it is restricted to a small number of sites on Great Lakes coasts. By definition, these commu- nities are associated with and dependent on Great Lakes dunes in which wind, water, or currents have created hollows between the dunes or beach ridges that intersect the water !( table. Such sites are colonized by a distinctive assemblage of wetland plants, which include habitat specialists of high con- servation significance because of their rarity, habitat needs, or limited distribution. All Wisconsin occurrences are small, seldom encompass- !( ing more than 10 acres. Great Lakes shoreline environments are extremely dynamic, and interdunal wetlands will shift in !( size, shape, and location as the dunes themselves move. As long as the shoreline processes of sand movement, deposi- tion, and erosion remain functional, new interdunal wetlands will be created as others are destroyed. On Lake Superior, Interdunal Wetlands are associated with sandspits and baymouth bars, which may support low dunes of less than one to several meters in height. The configura- Locations of Interdunal Wetland in Wisconsin. The deeper hues tions of these wetlands may change radically depending on shading the ecological landscape polygons indicate geographic Lake Superior water levels, and the frequency, severity, and areas of greatest abundance. An absence of color indicates that approach direction of major storms. There is at least one Lake the community has not (yet) been documented in that ecological Superior site where human excavations on a sandspit have landscape. -
The Lake Michigan Natural Division Characteristics
The Lake Michigan Natural Division Characteristics Lake Michigan is a dynamic deepwater oligotrophic ecosystem that supports a diverse mix of native and non-native species. Although the watershed, wetlands, and tributaries that drain into the open waters are comprised of a wide variety of habitat types critical to supporting its diverse biological community this section will focus on the open water component of this system. Watershed, wetland, and tributaries issues will be addressed in the Northeastern Morainal Natural Division section. Species diversity, as well as their abundance and distribution, are influenced by a combination of biotic and abiotic factors that define a variety of open water habitat types. Key abiotic factors are depth, temperature, currents, and substrate. Biotic activities, such as increased water clarity associated with zebra mussel filtering activity, also are critical components. Nearshore areas support a diverse fish fauna in which yellow perch, rockbass and smallmouth bass are the more commonly found species in Illinois waters. Largemouth bass, rockbass, and yellow perch are commonly found within boat harbors. A predator-prey complex consisting of five salmonid species and primarily alewives populate the pelagic zone while bloater chubs, sculpin species, and burbot populate the deepwater benthic zone. Challenges Invasive species, substrate loss, and changes in current flow patterns are factors that affect open water habitat. Construction of revetments, groins, and landfills has significantly altered the Illinois shoreline resulting in an immeasurable loss of spawning and nursery habitat. Sea lampreys and alewives were significant factors leading to the demise of lake trout and other native species by the early 1960s. -
Evolution of Glacial & Coastal Landforms
1 GEOMORPHOLOGY 201 READER PART IV : EVOLUTION OF GLACIAL & COASTAL LANDFORMS A landform is a small to medium tract or parcel of the earth’s surface. After weathering processes have had their actions on the earth materials making up the surface of the earth, the geomorphic agents like running water, ground water, wind, glaciers, waves perform erosion. The previous sections covered the erosion and deposition and hence landforms caused by running water (fluvial geomorphology) and by wind (aeolian geomorphology). Erosion causes changes on the surface of the earth and is followed by deposition, which likewise causes changes to occur on the surface of the earth. Several related landforms together make up landscapes, thereby forming large tracts of the surface of the earth. Each landform has its own physical shape, size, materials and is a result of the action of certain geomorphic processes and agents. Actions of most of the geomorphic processes and agents are slow, and hence the results take a long time to take shape. Every landform has a beginning. Landforms once formed may change their shape, size and nature slowly or fast due to continued action of geomorphic processes and agents. Due to changes in climatic conditions and vertical or horizontal movements of landmasses, either the intensity of processes or the processes themselves might change leading to new modifications in the landforms. Evolution here implies stages of transformation of either a part of the earth’s surface from one landform into another or transformation of individual landforms after they are once formed. That means, each and every landform has a history of development and changes through time. -
AN OVERVIEW of the GEOLOGY of the GREAT LAKES BASIN by Theodore J
AN OVERVIEW OF THE GEOLOGY OF THE GREAT LAKES BASIN by Theodore J. Bornhorst 2016 This document may be cited as: Bornhorst, T. J., 2016, An overview of the geology of the Great Lakes basin: A. E. Seaman Mineral Museum, Web Publication 1, 8p. This is version 1 of A. E. Seaman Mineral Museum Web Publication 1 which was only internally reviewed for technical accuracy. The Great Lakes Basin The Great Lakes basin, as defined by watersheds that drain into the Great Lakes (Figure 1), includes about 85 % of North America’s and 20 % of the world’s surface fresh water, a total of about 5,500 cubic miles (23,000 cubic km) of water (1). The basin covers about 94,000 square miles (240,000 square km) including about 10 % of the U.S. population and 30 % of the Canadian population (1). Lake Michigan is the only Great Lake entirely within the United States. The State of Michigan lies at the heart of the Great Lakes basin. Together the Great Lakes are the single largest surface fresh water body on Earth and have an important physical and cultural role in North America. Figure 1: The Great Lakes states and Canadian Provinces and the Great Lakes watershed (brown) (after 1). 1 Precambrian Bedrock Geology The bedrock geology of the Great Lakes basin can be subdivided into rocks of Precambrian and Phanerozoic (Figure 2). The Precambrian of the Great Lakes basin is the result of three major episodes with each followed by a long period of erosion (2, 3). Figure 2: Generalized Precambrian bedrock geologic map of the Great Lakes basin. -
GLRI Fact Sheet
WISCONSIN PROJECTS FOR 2010-2011 Great Lakes Restoration Initiative Federal funds support critical restoration and protection work on Wisconsinʼs Great Lakes Wisconsinʼs agencies and Priorities for the Great Lakes. GLRI funds will help Wisconsin address Great Lakes Drainage Basins in Wisconsin organizations received almost $30 these priorities on Lake Michigan and Lake Superior million in grants for the first year of the Great Lakes Restoration Initiative – a Lake Superior. federal basin-wide effort to restore and Economic Benefits of Restoration protect the Great Lakes. Restoring the Great Lakes will bring great benefits to our state. Work done A Vital Economic Asset under the GLRI will create jobs, The Great Lakes have had profound stimulate economic development, and Lake effects on our environment, culture, Michigan improve freshwater resources and ! and quality of life. They have fueled shoreline communities. A study our economic growth in the past and – conducted by the Brookings Institution if properly restored and protected – will Map Scale: found that fully implementing the 1 inch = 39.46 miles help us revitalize our economy in the regional collaboration strategy will future. generate $80-$100 billion in short and Lake Superior and Lake Michigan are affected by the actions of people throughout their watersheds. Lake Lake Michigan and Lake Superior long term benefits, including: Superior’s watershed drains 1,975,902 acres and provide: • $6.5-$11.8 billion in benefits supports 123,000 people. Lake Michigan’s watershed from tourism, fishing and drains 9,105,558 acres and supports 2,352,417 • Sport fishing opportunities for people. more than 250,000 anglers, recreation. -
Great Lakes/Big Rivers Fisheries Operational Plan Accomplishment
U.S. Fish & Wildlife Service Fisheries Operational Plan Accomplishment Report for Fiscal Year 2004 March 2003 Region 3 - Great Lakes/Big Rivers Partnerships and Accountability Aquatic Habitat Conservation and Management Workforce Management Aquatic Species Conservation and Aquatic Invasive Species Management Cooperation with Native Public Use Leadership in Science Americans and Technology To view monthly issues of “Fish Lines”, see our Regional website at: (http://www.fws.gov/midwest/Fisheries/) 2 Fisheries Accomplishment Report - FY2004 Great Lakes - Big Rivers Region Message from the Assistant Regional Director for Fisheries The Fisheries Program in Region 3 (Great Lakes – Big Rivers) is committed to the conservation of our diverse aquatic resources and the maintenance of healthy, sustainable populations of fish that can be enjoyed by millions of recreational anglers. To that end, we are working with the States, Tribes, other Federal agencies and our many partners in the private sector to identify, prioritize and focus our efforts in a manner that is most complementary to their efforts, consistent with the mission of our agency, and within the funding resources available. At the very heart of our efforts is the desire to be transparent and accountable and, to that end, we present this Region 3 Annual Fisheries Accomplishment Report for Fiscal Year 2004. This report captures our commitments from the Region 3 Fisheries Program Operational Plan, Fiscal Years 2004 & 2005. This document cannot possibly capture the myriad of activities that are carried out by any one station in any one year, by all of the dedicated employees in the Fisheries Program, but, hopefully, it provides a clear indication of where our energy is focused. -
Nipigon Bay Area of Concern Status of Beneficial Use Impairments September 2010
Nipigon Bay Area of Concern Status of Beneficial Use Impairments September 2010 Nipigon Bay is in the most northerly area of Lake Superior. The Area of Concern takes in a large portion of Nipigon Bay and the Nipigon River, the largest tributary to Lake Superior, and the communities of Red Rock and Nipigon. There are Ontario Power Generation dams on the Nipigon River for the generation of hydroelectricity. The area supports a variety of wetlands and bird populations, including one of four known pelican colonies in Ontario. The watershed forests on both sides of the Nipigon River have been allocated for forest harvesting. Environmental concerns in the Nipigon Bay Area of Concern are related to water level and flow fluctuations in Lake Nipigon and the Nipigon River from the generation of hydroelectricity. These fluctuations affect stream bank stability, sediment load and fish and wildlife habitat. Other concerns include the accumulation of wood fibre, bark and other organic material from past log drives, and effluent discharges from a linerboard mill (which closed in 2006) and the municipal sewage treatment plants in Nipigon and Red Rock. PARTNERSHIPS IN ENVIRONMENTAL PROTECTION Nipigon Bay was designated an Area of Concern in 1987 under the Canada–United States Great Lakes Water Quality Agreement. Areas of Concern are sites on the Great Lakes system where environmental quality is significantly degraded and beneficial uses are impaired. Currently, there are 9 such designated areas on the Canadian side of the Great Lakes, 25 in the United States, and 5 that are shared by both countries. In each Area of Concern, government, community and industry partners are undertaking a coordinated effort to restore environmental quality and beneficial uses through a remedial action plan. -
An International Journal Published by the Marine Environmental Alabama Sciences Consortium Of
An International Journal Evolution of the Florida State University Coastal and Marine Laboratory MICHAEL J. GREENBERG,WILLIAM F. HERRNKIND, AND FELICIA C. COLEMAN Published by the Marine Environmental Sciences Consortium of Alabama Gulf of Mexico Science, 2010(1–2), pp. 149–163 Evolution of the Florida State University Coastal and Marine Laboratory MICHAEL J. GREENBERG,WILLIAM F. HERRNKIND, AND FELICIA C. COLEMAN SIXTY YEARS OF HISTORY and the toponym Turkey Point Laboratory or, more often, the FSU Marine Laboratory n 1949, just 2 yr after the Florida State College (FSUML) stuck for more than 4 decades. I for Women was transformed into a coeduca- In 2006, Felicia Coleman became the 13th tional institution—The Florida State University director of the Laboratory. She is the first (FSU)—marine science gained a permanent director whose primary workplace is at the foothold on the Tallahassee campus with the laboratory, and the first with an on-site faculty formation of The Oceanographic Institute (OI). to manage. And the laboratory became the FSU This institute—within the College of Arts and Coastal and Marine Laboratory (FSUCML). Sciences—was meant to train graduate students The history of these two laboratories, which in marine science, to provide marine research follows, is narrated primarily by three of the 13 facilities for faculty and students and visiting directors. We have divided the narrative into four investigators, to conduct interdisciplinary basic distinct periods: The Genesis, 15 yr at Alligator research in the northeastern Gulf of Mexico, and Harbor; The Great Move from Alligator Harbor also to conduct applied research directed toward to Turkey Point, 7 yr of change; The Long improving Florida’s fishing industry and devel- Struggle at Turkey Point, 34 yr of intermittent, oping other marine resources. -
Lake Superior Food Web MENT of C
ATMOSPH ND ER A I C C I A N D A M E I C N O I S L T A R N A T O I I O T N A N U E .S C .D R E E PA M RT OM Lake Superior Food Web MENT OF C Sea Lamprey Walleye Burbot Lake Trout Chinook Salmon Brook Trout Rainbow Trout Lake Whitefish Bloater Yellow Perch Lake herring Rainbow Smelt Deepwater Sculpin Kiyi Ruffe Lake Sturgeon Mayfly nymphs Opossum Shrimp Raptorial waterflea Mollusks Amphipods Invasive waterflea Chironomids Zebra/Quagga mussels Native waterflea Calanoids Cyclopoids Diatoms Green algae Blue-green algae Flagellates Rotifers Foodweb based on “Impact of exotic invertebrate invaders on food web structure and function in the Great Lakes: NOAA, Great Lakes Environmental Research Laboratory, 4840 S. State Road, Ann Arbor, MI A network analysis approach” by Mason, Krause, and Ulanowicz, 2002 - Modifications for Lake Superior, 2009. 734-741-2235 - www.glerl.noaa.gov Lake Superior Food Web Sea Lamprey Macroinvertebrates Sea lamprey (Petromyzon marinus). An aggressive, non-native parasite that Chironomids/Oligochaetes. Larval insects and worms that live on the lake fastens onto its prey and rasps out a hole with its rough tongue. bottom. Feed on detritus. Species present are a good indicator of water quality. Piscivores (Fish Eaters) Amphipods (Diporeia). The most common species of amphipod found in fish diets that began declining in the late 1990’s. Chinook salmon (Oncorhynchus tshawytscha). Pacific salmon species stocked as a trophy fish and to control alewife. Opossum shrimp (Mysis relicta). An omnivore that feeds on algae and small cladocerans. -
2018 Roadmap to Fishing Lake Superior: Have a Super Time!
Roadmap to Fishing Lake Superior: Have a Super Time! Want to fish Lake Superior, but aren’t sure when or where to go? This roadmap is a starting point to provide you with information on many fishing sites and times of the year when great opportunities exist. Please note this is not an exhaustive list. Eagle HarborCopper Harbor Traverse Bay Ontonagon Keweenaw Bay Black River Harbor Grand Marais Marquette Au Train-Shelter Bay St. Marys River Munising Black River Au Train- Ontonagon Eagle Harbor Copper Harbor Traverse Bay Keweenaw Bay Marquette Munising Grand Marais St. Marys River Port Harbor Shelter Bay brown trout, Chinook, cisco, coho, brown trout, Chinook, cisco, brown trout, Chinook, cisco, coho, brown trout, lake trout, lake whitefish, round coho, lake trout, lake whitefish, lake trout, lake whitefish, round coho, lake whitefish, n burbot, coho, cisco, walleye, yellow perch Feb - March whitefish, siscowet, smelt, splake, round whitefish, siscowet, smelt, whitefish, splake, steelhead, pike, yellow perch smelt, steelhead steelhead, yellow perch splake, steelhead, yellow perch yellow perch brown trout, Chinook, coho, lake brown trout, Chinook, coho, brown trout, Chinook, cisco, Chinook, cisco, coho, lake brown trout, Chinook, brown trout, Chinook, cisco, coho, Chinook, trout, lake whitefish, Chinook, coho, lake trout, coho, lake trout, round trout, lake whitefish, n pike, coho, lake trout, lake siscowet lake trout, lake whitefish, siscowet, coho, lake round whitefish, April - May lake trout, siscowet, whitefish, siscowet, smelt, sm bass, -
FOIR-Coongie-Road-Survey-Project
COONGIE ROAD BIRDS, MAMMALS & VEGETATION SURVEY 2014 A project undertaken by the Friends of the Innamincka Reserves Dune near Coongie Road, Innamincka Regional Reserve i REPORT ON THE COONGIE ROAD BIRDS, MAMMALS & VEGETATION SURVEY 2014 CONTENTS Page INTRODUCTION 1 A. Project coordinator and field team 1 B. Background 1 C. Approach 2 D. Objectives 2 E. Programme of research 2 METHODS 3 RESULTS AND DISCUSSION 6 A. Bird survey data 6 B. Habitats 9 C. Flora 11 D. Mammals 13 E. Reptiles and amphibians 15 F. Threats and potential impacting factors 15 G. Archeological sites 18 CONCLUSIONS 19 APPENDIX I - Location of Census Stops 20 APPENDIX II - Transect Bird Data 23 APPENDIX III - Photographic and Habitat Records 27 APPENDIX IV - Using a GPS to Navigate a Transect 49 ii REPORT ON THE COONGIE ROAD BIRDS, MAMMALS & VEGETATION SURVEY 2014 INTRODUCTION A. PROJECT COORDINATOR AND FIELD TEAM Coordinator: Kate Buckley Team Leaders: Euan Moore, Jenny Rolland, Rose Treilibs, Vern Treilibs Field Team: Daphne Hards, Sonja Ross, Karen and Geoff Russell, Jen and Len Kenna, Barbara and Peter Bansemer, Fae and Jim Trueman, Jan and Ray Hutchinson In 2014 this project was carried out as a volunteer activity by members of the Friends of Innamincka Reserves (FOIR). There was no external funding for the project. B. BACKGROUND The Coongie Road extends from Innamincka north- west to Malkumba-Coongie Lakes NP via Kudriemitchie. It passes through a range of habitat types from dry grasslands to wetlands. While average rainfall is low (177 mm per annum), the Innamincka area is in a region of maximum rainfall variability for Australia. -
Line 5 Straits of Mackinac Summary When Michigan Was Granted
Line 5 Straits of Mackinac Summary When Michigan was granted statehood on January 26, 1837, Michigan also acquired ownership of the Great Lakes' bottomlands under the equal footing doctrine.1 However before Michigan could become a state, the United States first had to acquire title from us (Ottawa and Chippewa bands) because Anglo-American law acknowledged that we owned legal title as the aboriginal occupants of the territory we occupied. But when we agreed to cede legal title to the United States in the March 28, 1836 Treaty of Washington ("1836 Treaty", 7 Stat. 491), we reserved fishing, hunting and gathering rights. Therefore, Michigan's ownership of both the lands and Great Lakes waters within the cession area of the 1836 Treaty was burdened with preexisting trust obligations with respect to our treaty-reserved resources. First, the public trust doctrine imposes a duty (trust responsibility) upon Michigan to protect the public trust in the resources dependent upon the quality of the Great Lakes water.2 In addition, Art. IV, § 52 of Michigan's Constitution says "conservation…of the natural resources of the state are hereby declared to be of paramount public concern…" and then mandates the legislature to "provide for the protection of the air, water and other natural resources from 3 pollution, impairment and destruction." 1 The State of Michigan acquired title to these bottomlands in its sovereign capacity upon admission to the Union and holds them in trust for the benefit of the people of Michigan. Illinois Central Railroad Co. v. Illinois, 146 U.S. 387, 434-35 (1892); Nedtweg v.