The Challenge for Nicotinic Receptor Research Bruce K.Cassels,Isabel Bermúdez,Federico Dajas,J.Andrés Abin-Carriquiry and Susan Wonnacott

Total Page:16

File Type:pdf, Size:1020Kb

The Challenge for Nicotinic Receptor Research Bruce K.Cassels,Isabel Bermúdez,Federico Dajas,J.Andrés Abin-Carriquiry and Susan Wonnacott REVIEWS From ligand design to therapeutic efficacy: the challenge for nicotinic receptor research Bruce K.Cassels,Isabel Bermúdez,Federico Dajas,J.Andrés Abin-Carriquiry and Susan Wonnacott S-Nicotine, the principal psychoactive constituent of Nicotiana tabacum, underpins addiction to tobacco smoking. Although tobacco consumption is a leading cause of death worldwide, nicotine itself is also proposed to have potential therapeutic benefits for a diverse range of conditions. Nicotine interacts with its cognate receptors in the central nervous system to exert a predominantly modulatory influence, making neuronal nicotinic receptors attractive therapeutic targets. Here, we focus on three natural products as lead compounds for drug discovery programs, nicotine, epibatidine and cytisine, and consider the aims and limitations that shape these drug discovery endeavors. Heterogeneity of nicotinic acetylcholine their high relative permeability to Ca2+[2]. In contrast receptor: which subtype to target? to the well-defined roles of nAChRs in mediating Bruce K. Cassels Nicotine (Figure 1) is the classical agonist of a fam- synaptic transmission at muscle end plates and in Department of Chemistry, Faculty of Sciences, ily of ligand-gated cation channels that also respond autonomic ganglia, neuronal nAChRs in the brain University of Chile, to acetylcholine (ACh, Figure 2) as the endogenous have rarely been shown to fulfill this function, instead Casilla 653, Santiago, ligand, hence defined as nicotinic acetylcholine being found on presynaptic terminals or at extrasy- Chile receptors (nAChRs). These pentameric receptors are naptic locations on soma and dendrites. Together e-mail:[email protected] generated from different sets of subunits expressed with their capacity for interfacing with cellular sig- Isabel Bermúdez School of Biological and in mammalian skeletal muscle (α1, β1, γ, δ, ε), neurons naling pathways, this has generated the view that Molecular Sciences, (α2–α7, β2–β4) and sensory epithelia (α9, α10). In neuronal nAChRs exert a predominantly modulatory Oxford Brookes University, Gipsy Lane, autonomic neurons, nAChRs responsible for synaptic influence in the CNS [3]. Oxford OX3 0BP, transmission comprise α3 and β4 subunits, with the A modulatory action offers attractive therapeutic UK possible addition of α5 and/or β2 subunits (hence opportunities and interest has focused on emulating Federico Dajas J. Andrés Abin-Carriquiry α3β4*, where * indicates the presence of one or more nicotine’s effects by generating agonist molecules. Instituto de Investigaciones additional types of subunit [1]). α3β4* nAChRs are However, nicotine activates all subtypes of nAChRs Biológicas Clemente Estable, α α Avenida Italia 3318, also expressed in the central nervous system (CNS) (except those comprising 9 and 10 subunits [4]), C.P.11600 Montevideo, to a limited extent, whereas the α4 subunit is exclu- albeit with different potencies. Issues for drug discov- Uruguay sively expressed in the CNS. In combination with the ery include nAChR subtype selectivity and addiction Susan Wonnacott β α β Department of Biology and 2 subunit, 4 2* nAChRs are the most abundant liability. In addition to generating agonists with low Biochemistry, and widespread nAChR subtypes in the brain, potency at muscle and ganglionic nAChRs (to min- University of Bath, exhibiting high affinity for nicotine. Homomeric α7 imize peripheral side effects), is it advantageous to tar- Bath BA2 7AY, UK nAChRs are also prevalent and are distinguished by get specific neuronal nAChR subtypes (e.g. α7 versus REVIEWS self-administration, accompanied by plenty of associated H3C H3C cues and Pavlovian reinforcement; nicotine replacement N N therapies demonstrate the low liability associated with alternative routes of delivery. H3C O Reviews • N N Agonist,antagonist or partial agonist? Nicotine ABT-418 To achieve clinical efficacy, is activation or inhibition of DRUG DISCOVERY TODAY DRUG DISCOVERY OCH H 3 nicotinic signaling required? This is a challenging question O N and the answer is likely to depend on the particular nico- NH tinic contribution to each clinical target. Nicotine, the OCH H3C 3 prototype with credentials for improving several conditions, N Cl O is regarded as an agonist of muscle and neuronal nAChRs PNU-120596 but it is also a powerful desensitizing ligand that can pro- duce functional deactivation of nAChR after a few sec- onds or minutes of exposure (depending on nAChR sub- FIGURE 1 type and nicotine concentration) [8]. Functionally, nAChR Chemical structures of nicotine, its isoxazole analogue ABT-418 and α7-specific potentiator PNU-120596. Reversing the heteroatom can exist in four distinct conformations: resting, open and positions in the isoxazole ring and introducing a hydrophobic two desensitized states. The latter are refractory to activa- extension of the basic sidechain changes an agonist into a positive tion on a time scale of milliseconds or minutes depending allosteric modulator. on the desensitized state but have high affinity (pM–nM) for agonists. Chronic nicotine exposure can induce a long- Cl lasting functional deactivation as a result of rapid and per- CH3 sistent desensitization. Clinical prescription of drugs will + H3C N H N involve chronic administration and the interplay of acti- H3C CH3 vation and desensitization is likely to be crucial, as well as O NH O O the contribution of potentially bioactive metabolites. At Acetylcholine PNU-282987 present, modeling this relationship for human brain Cl nAChRs is simplistic, even for nicotine in relation to S N N cigarette smoking [9], and impossible to predict for novel HN N ligands. However, because cognitive enhancing and neu- O O roprotective effects of nicotine are abolished by coad- O O ministration of nAChR antagonists [5,6,10], activation of AR-R17779 Mitsubishi compound nAChRs is generally sought and attention has focused on generating small agonist ligands. Tourette’s syndrome, on FIGURE 2 the other hand, might present a case for nAChR antagonists The acetylcholine pharmacophore, held in a rigid scaffold, (see below). produces selective α7 nAChR agonists. Partial agonists provide a compromise solution that could have particular utility, for example, for smoking ces- α4β2*)? Although the answer will differ for different clin- sation. In this regard, cytisine was noted for its selective ical scenarios, some studies have implied that α7 and β2* partial agonism at α4β2* nAChR: this subtype plays a subtypes conspire together to effect neuroprotection [5,6], major role in governing mesolimbic dopamine release in in which case selectivity would be inappropriate unless response to nicotine, which underlies the reinforcing combination therapy with complementary subtype-se- properties of the drug. In fact, cytisine (Tabex®) is marketed lective drugs could be achieved. And which nAChR sub- in Eastern Europe as an aid for smokers wishing to break types to target? To date, most effort has focused on tar- their habit. It has been argued that binding of a partial geting the most prevalent subtypes, α7 or α4β2 nAChRs agonist at this receptor would provide a modicum of [7]. Less abundant subtypes with more restrictedpatterns dopamine release to compensate for the absence of nico- of localization could offer more-selective therapeutic tar- tine (providing some relief from withdrawal symptoms), gets, but the potential for nAChR heterogeneity arising from whereas occupancy of the nAChR prevents nicotine from different subunit combinations, with subtle differences in binding [11,12]. The molecular interactions that result in properties or regulation, far exceeds our current knowledge partial agonism are not understood and it is problematic of native nAChR subtypes, making informed decisions to predict the activity of any derivative. about more-complex combinations difficult or impossi- Although beyond the remit of this review, it is worth ble at present. Addiction liability is probably not a major mentioning the current interest in another class of nico- concern, unless novel compounds are likely to be smoked: tinic ligand, nAChR potentiators [13]. Such molecules cigarettes provide the optimum delivery device for nicotine produce no obvious nicotinic response alone but enhance REVIEWS responses to conventional agonists (including endoge- [22,23]. The latter appear to reflect autonomic stimulation nous ACh). The Alzheimer’s disease (AD) drug galan- and emphasize the need for better subtype-selective thamine is credited with allosteric potentiation of nicotinic nAChR agonists. The restricted localization of α6* nAChRs responses, in addition to its anti-cholinesterase activity to catecholamine systems in the brain, where they enhance [13,14]. Whereas galanthamine does not discriminate transmitter release, might make this subtype a credible between nAChR subtypes, an α7-specific potentiator target for PD, if selective agonists could be found [22]. PNU-120596 (Figure 1) has recently been described [15]. A search for a subtype-selective negative modulator, to Schizophrenia depress nAChR responses, has been advocated for treating α7 nAChRs are reduced in number in the post-mortem familial epilepsy [16] (see below). brains of schizophrenic patients and nicotine is beneficial in transiently normalizing the sensory gating deficit, as Clinical targets for nicotinic drugs well as improving some cognitive deficits [24,18]. The DRUG DISCOVERY TODAY DRUG DISCOVERY The development of potential nicotinic therapeutics was association
Recommended publications
  • PRODUCT INFORMATION ABT-594 Item No
    PRODUCT INFORMATION ABT-594 Item No. 22822 CAS Registry No.: 203564-54-9 Formal Name: 5-[(2R)-2-azetidinylmethoxy]-2- H chloro-pyridine, monohydrochloride N Synonyms: Ebanicline, Tebanicline O MF: C9H11ClN2O • HCl FW: 235.1 N Purity: ≥95% Cl Supplied as: A solid • HCl Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures ABT-594 is supplied as a solid. A stock solution may be made by dissolving the ABT-594 in the solvent of choice. ABT-594 is soluble in the organic solvent DMSO, which should be purged with an inert gas. Description ABT-594 is a potent agonist of neuronal α4β2 subunit-containing nicotinic acetylcholine receptors 1 (nAChRs; Ki = 37 pM in a radioligand binding assay). It is selective for neuronal nAChRs over neuromuscular α1β1δγ subunit-containing nAChRs (Ki = 10,000 nM), α1B-, α2B-, and α2C-adrenergic receptors (Kis = 890, 597, and 342 nM, respectively), and 70 other receptors, enzymes, and transporters 86 + (Kis = >1,000 nM) in radioligand binding assays. ABT-594 induces [ Rb ] efflux in K177 cells transfected with human neuronal α4β2 subunit-containing nAChRs (EC50 = 140 nM). In vivo, ABT-594 (0.05 and 0.01 mg/kg, s.c.) increases latency to paw withdrawal in a hot-plate test in rats.2 It also induces hypothermia, seizures, and an increase in blood pressure. References 1. Donnelly-Roberts, D.L., Puttfarcken, P.S., Kuntzweiler, T.A., et al. ABT-594 [(R)-5-(2-azetidinylmethoxy)- 2-chloropyridine]: A novel, orally effective analgesic acting via neuronal nicotinic acetylcholine receptors: I.
    [Show full text]
  • Efforts Towards the Synthesis of Epibatidine By: Marianne Hanna
    Efforts Towards the Synthesis of Epibatidine By: Marianne Hanna (Junior-Biochemistry major) Faculty Advisor: Dr. Thomas Montgomery Duquesne University- Bayer School of Natural Sciences 1 Abstract: Epibatidine is a naturally toxic chemical found in the secretion of poison dart frogs. Given its structural similarities to the compound nicotine epibatidine binds strongly to nicotine receptors in the central nervous system (CTS). Epibatidine’s bioactivity arises from its unique geometry which allows it to bind to the α4β2 subunit in the nicotinic receptor. This triggers an analgesic effect without a release of dopamine, differentiating its activity from opioids. Prior efforts towards synthesizing epibatidine and its analogs have involved many steps making them untenable for pharmaceutical use. By using computational and experimental methods to study the mechanism for an interrupted Polonovski [3+2] cycloaddition which will give direct access to the epibatidine core motif. By synthesizing strategic derivatives of epibatidine through this route we will investigate opioid alternatives which lack many of their addictive qualities. Background: Epibatidine is a toxic alkaloid that is isolated from the skin of poison dart tree frog Epipedobates tricolor, secretions from the frog are used by indigenous tribes in darts for hunting.1 The chemical structure was established in 1992 using NMR spectroscopy (proton NMR).2 Epibatidine possesses significant medicinal properties, it functions as an analgesic agent by binding to the nicotinic acetylcholine receptors (nAChRs) instead of the opioid receptors.3 Moreover it displays an affinity for said receptors that is 100- to 200-fold higher than nicotine. The alkaloid interacts with Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels and are expressed central and peripherally.
    [Show full text]
  • JPET #226803 Title Page Effects of Nicotinic Acetylcholine Receptor
    JPET Fast Forward. Published on September 10, 2015 as DOI: 10.1124/jpet.115.226803 This article has not been copyedited and formatted. The final version may differ from this version. 1 JPET #226803 Title Page Effects of nicotinic acetylcholine receptor agonists in assays of acute pain-stimulated and pain- depressed behaviors in rats Kelen. C. Freitas, F. Ivy Carroll, and S. Stevens Negus Downloaded from Department of Pharmacology and Toxicology, Virginia Commonwealth University, jpet.aspetjournals.org Richmond VA, USA Research Triangle Institute, Research Triangle Park, NC, USA at ASPET Journals on September 26, 2021 JPET Fast Forward. Published on September 10, 2015 as DOI: 10.1124/jpet.115.226803 This article has not been copyedited and formatted. The final version may differ from this version. 2 JPET #226803 Running Title Page Effects of nicotinic drugs on pain-depressed behavior Address correspondence to: Kelen Freitas, Department of Pharmacology and Toxicology, Downloaded from Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298. Telephone: (804) 828-3158 Fax: (804) 828-2117 Email: [email protected] jpet.aspetjournals.org Number of text pages: 37 at ASPET Journals on September 26, 2021 Number of tables: 1 Number of figures: 6 Number of references: 76 Number of words in the abstract: 241 Number of words in the introduction: 746 Number of words in the discussion: 1.250 List of non-standard abbreviations nAChRs, nicotinic acetylcholine receptors DhβE, dihydro-ß-ertyroidine MD-354, Meta-chlorophenylguanidine Nicotine, (-)-nicotine hydrogen tartrate PNU 282987, N-(3R)-1-Azabicyclo[2.2.2]oct-3-yl-4-chlorobenzamide 5-I-A-85380, 5-[123I]iodo-3-[2(S)-2-azetidinylmethoxy]pyridine ICSS, intracranial self-stimulation MCR, maximum control rate %MCR, percentage of MCR ANOVA, analysis of variance JPET Fast Forward.
    [Show full text]
  • Neuronal Nicotinic Receptors
    NEURONAL NICOTINIC RECEPTORS Dr Christopher G V Sharples and preparations lend themselves to physiological and pharmacological investigations, and there followed a Professor Susan Wonnacott period of intense study of the properties of nAChR- mediating transmission at these sites. nAChRs at the Department of Biology and Biochemistry, muscle endplate and in sympathetic ganglia could be University of Bath, Bath BA2 7AY, UK distinguished by their respective preferences for C10 and C6 polymethylene bistrimethylammonium Susan Wonnacott is Professor of compounds, notably decamethonium and Neuroscience and Christopher Sharples is a hexamethonium,5 providing the first hint of diversity post-doctoral research officer within the among nAChRs. Department of Biology and Biochemistry at Biochemical approaches to elucidate the structure the University of Bath. Their research and function of the nAChR protein in the 1970’s were focuses on understanding the molecular and facilitated by the abundance of nicotinic synapses cellular events underlying the effects of akin to the muscle endplate, in electric organs of the acute and chronic nicotinic receptor electric ray,Torpedo , and eel, Electrophorus . High stimulation. This is with the goal of affinity snakea -toxins, principallyaa -bungarotoxin ( - Bgt), enabled the nAChR protein to be purified, and elucidating the structure, function and subsequently resolved into 4 different subunits regulation of neuronal nicotinic receptors. designateda ,bg , and d .6 An additional subunit, e , was subsequently identified in adult muscle. In the early 1980’s, these subunits were cloned and sequenced, The nicotinic acetylcholine receptor (nAChR) arguably and the era of the molecular analysis of the nAChR has the longest history of experimental study of any commenced.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Bioorganic & Medicinal Chemistry Letters
    Bioorganic & Medicinal Chemistry Letters 18 (2008) 4651–4654 Contents lists available at ScienceDirect Bioorganic & Medicinal Chemistry Letters journal homepage: www.elsevier.com/locate/bmcl Epiboxidine and novel-related analogues: A convenient synthetic approach and estimation of their affinity at neuronal nicotinic acetylcholine receptor subtypes Luca Rizzi a, Clelia Dallanoce a,*, Carlo Matera a, Pietro Magrone a, Luca Pucci b, Cecilia Gotti b, Francesco Clementi b, Marco De Amici a a Istituto di Chimica Farmaceutica e Tossicologica ‘‘Pietro Pratesi”, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy b CNR, Istituto di Neuroscienze, Farmacologia Cellulare e Molecolare e Dipartimento Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy article info abstract Article history: Racemic exo-epiboxidine 3, endo-epiboxidine 6, and the two unsaturated epiboxidine-related derivatives Received 18 June 2008 7 and 8 were efficiently prepared taking advantage of a palladium-catalyzed Stille coupling as the key Revised 3 July 2008 step in the reaction sequence. The target compounds were assayed for their binding affinity at neuronal Accepted 4 July 2008 a4b2 and a7 nicotinic acetylcholine receptors. Epiboxidine 3 behaved as a high affinity a4b2 ligand Available online 10 July 2008 (Ki = 0.4 nM) and, interestingly, evidenced a relevant affinity also for the a7 subtype (Ki = 6 nM). Deriva- tive 7, the closest analogue of 3 in this group, bound with lower affinity at both receptor subtypes Keywords: (K = 50 nM for a4b2 and K = 1.6 lM for a7) evidenced a gain in the a4b2 versus a7 selectivity when Neuronal nicotinic acetylcholine receptors i i compared with the model compound.
    [Show full text]
  • Nicotinic Acetylcholine Receptors
    nAChR Nicotinic acetylcholine receptors nAChRs (nicotinic acetylcholine receptors) are neuron receptor proteins that signal for muscular contraction upon a chemical stimulus. They are cholinergic receptors that form ligand-gated ion channels in the plasma membranes of certain neurons and on the presynaptic and postsynaptic sides of theneuromuscular junction. Nicotinic acetylcholine receptors are the best-studied of the ionotropic receptors. Like the other type of acetylcholine receptor-the muscarinic acetylcholine receptor (mAChR)-the nAChR is triggered by the binding of the neurotransmitter acetylcholine (ACh). Just as muscarinic receptors are named such because they are also activated by muscarine, nicotinic receptors can be opened not only by acetylcholine but also by nicotine —hence the name "nicotinic". www.MedChemExpress.com 1 nAChR Inhibitors & Modulators (+)-Sparteine (-)-(S)-B-973B Cat. No.: HY-W008350 Cat. No.: HY-114269 Bioactivity: (+)-Sparteine is a natural alkaloid acting as a ganglionic Bioactivity: (-)-(S)-B-973B is a potent allosteric agonist and positive blocking agent. (+)-Sparteine competitively blocks nicotinic allosteric modulator of α7 nAChR, with antinociceptive ACh receptor in the neurons. activity [1]. Purity: 98.0% Purity: 99.93% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10mM x 1mL in Water, Size: 10mM x 1mL in DMSO, 100 mg 5 mg, 10 mg, 50 mg, 100 mg (±)-Epibatidine A-867744 (CMI 545) Cat. No.: HY-101078 Cat. No.: HY-12149 Bioactivity: (±)-Epibatidine is a nicotinic agonist. (±)-Epibatidine is a Bioactivity: A-867744 is a positive allosteric modulator of α7 nAChRs (IC50 neuronal nAChR agonist. values are 0.98 and 1.12 μM for human and rat α7 receptor ACh-evoked currents respectively, in X.
    [Show full text]
  • NIDA Drug Supply Program Catalog, 25Th Edition
    RESEARCH RESOURCES DRUG SUPPLY PROGRAM CATALOG 25TH EDITION MAY 2016 CHEMISTRY AND PHARMACEUTICS BRANCH DIVISION OF THERAPEUTICS AND MEDICAL CONSEQUENCES NATIONAL INSTITUTE ON DRUG ABUSE NATIONAL INSTITUTES OF HEALTH DEPARTMENT OF HEALTH AND HUMAN SERVICES 6001 EXECUTIVE BOULEVARD ROCKVILLE, MARYLAND 20852 160524 On the cover: CPK rendering of nalfurafine. TABLE OF CONTENTS A. Introduction ................................................................................................1 B. NIDA Drug Supply Program (DSP) Ordering Guidelines ..........................3 C. Drug Request Checklist .............................................................................8 D. Sample DEA Order Form 222 ....................................................................9 E. Supply & Analysis of Standard Solutions of Δ9-THC ..............................10 F. Alternate Sources for Peptides ...............................................................11 G. Instructions for Analytical Services .........................................................12 H. X-Ray Diffraction Analysis of Compounds .............................................13 I. Nicotine Research Cigarettes Drug Supply Program .............................16 J. Ordering Guidelines for Nicotine Research Cigarettes (NRCs)..............18 K. Ordering Guidelines for Marijuana and Marijuana Cigarettes ................21 L. Important Addresses, Telephone & Fax Numbers ..................................24 M. Available Drugs, Compounds, and Dosage Forms ..............................25
    [Show full text]
  • Phenotypic Characterization of an Α4 Neuronal Nicotinic Acetylcholine Receptor Subunit Knock-Out Mouse
    The Journal of Neuroscience, September 1, 2000, 20(17):6431–6441 ␣ Phenotypic Characterization of an 4 Neuronal Nicotinic Acetylcholine Receptor Subunit Knock-Out Mouse Shelley A. Ross,1 John Y. F. Wong,1 Jeremiah J. Clifford,3 Anthony Kinsella,4 Jim S. Massalas,1 Malcolm K. Horne,1 Ingrid E. Scheffer,1,5 Ismail Kola,2 John L. Waddington,3 Samuel F. Berkovic,5 and John Drago1 1Neurosciences Group, Monash University Department of Medicine and 2Institute of Reproduction and Development, Monash Medical Centre, Clayton, Victoria, 3168, Australia, 3Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, Dublin 2, Ireland, 4Department of Mathematics, Dublin Institute of Technology, Dublin 8, Ireland, and 5Department of Medicine, University of Melbourne, Austin and Repatriation Medical Centre, Heidelberg, Victoria, 3084, Australia Neuronal nicotinic acetylcholine receptors (nAChR) are present in tions; conversely, heightened levels of behavioral topographies in high abundance in the nervous system (Decker et al., 1995). Mt were reduced by nicotine in the late phase of the unhabitu- There are a large number of subunits expressed in the brain that ated condition. Ligand autoradiography confirmed the lack of combine to form multimeric functional receptors. We have gen- high-affinity binding to radiolabeled nicotine, cytisine, and epiba- ␣ erated an 4 nAChR subunit knock-out line and focus on defining tidine in the thalamus, cortex, and caudate putamen, although the behavioral role of this receptor subunit. Homozygous mutant binding to a number of discrete nuclei remained. The study ␣ mice (Mt) are normal in size, fertility, and home-cage behavior. confirms the pivotal role played by the 4 nAChR subunit in the Spontaneous unconditioned motor behavior revealed an etho- modulation of a number of constituents of the normal mouse gram characterized by significant increases in several topogra- ethogram and in anxiety as assessed using the plus-maze.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,597,284 B2 Ackermann, Jr
    USO0959.7284B2 (12) United States Patent (10) Patent No.: US 9,597,284 B2 Ackermann, Jr. et al. (45) Date of Patent: *Mar. 21, 2017 (54) DRY EYE TREATMENTS (58) Field of Classification Search USPC .......................................................... 424/400 (71) Applicant: Oyster Point Pharma, Inc., South San See application file for complete search history. Francisco, CA (US) (56) References Cited (72) Inventors: Douglas Michael Ackermann, Jr., San Francisco, CA (US); James Loudin, U.S. PATENT DOCUMENTS Houston, TX (US); Kenneth J. 6,277,855 B1 8, 2001 Yerxa, Mandell, Arlington, MA (US) 2006, OO84656 A1 4/2006 Ziegler et al. 2011 OO86086 A1 4/2011 Johnson et al. (73) Assignee: Oyster Point Pharma, Inc., San 2011 O274628 A1 11/2011 Borschke Francisco, CA (US) 2012,0289572 A1 1 1/2012 Mazurov et al. (*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 EP 1214062 B1 11, 2003 U.S.C. 154(b) by 0 days. WO WO-03005998 A2 1, 2003 WO WO-03045394 A1 6, 2003 This patent is Subject to a terminal dis WO WO-2004039366 A1 5, 2004 claimer. WO WO 2006/100075 * 9/2006 WO WO-2008O57938 A1 5, 2008 (21) Appl. No.: 14/887,248 WO WO-2009111550 A1 9, 2009 WO WO-2010O28011 A1 3, 2010 (22) Filed: Oct. 19, 2015 WO WO-2010O28033 A1 3, 2010 (65) Prior Publication Data OTHER PUBLICATIONS US 2016/0106745 A1 Apr. 21, 2016 Mazzanti (Int. J. Devl Neuroscience 25 (2007) 259-264.* Beule (GMS Current Topics in Otorhinolaryngology—Head and Neck Surgery 2010, vol.
    [Show full text]
  • Involvement of Nicotinic Receptor Subtypes in the Behavioral Effects of Nicotinic Drugs in Squirrel Monkeys
    1521-0103/366/2/397–409$35.00 https://doi.org/10.1124/jpet.118.248070 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:397–409, August 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Involvement of Nicotinic Receptor Subtypes in the Behavioral Effects of Nicotinic Drugs in Squirrel Monkeys Sarah L. Withey,1 Michelle R. Doyle,1,2 Jack Bergman, and Rajeev I. Desai Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts Received January 27, 2018; accepted May 17, 2018 ABSTRACT Evidence suggests that the a4b2, but not the a7, subtype of the except for lobeline, the nicotinic agonists produced either full nicotinic acetylcholine receptor (nAChR) plays a key role in [(1)-epibatidine, (2)-epibatidine, and nicotine] or partial (vare- Downloaded from mediating the behavioral effects of nicotine and related drugs. nicline, cytisine, anabaseine, and isoarecolone) substitution for However, the importance of other nAChR subtypes remains (1)-epibatidine. In interaction studies with antagonists differing unclear. The present studies were conducted to examine the in selectivity, (1)-epibatidine discrimination was substan- involvement of nAChR subtypes by determining the effects of tively antagonized by mecamylamine, slightly attenuated selected nicotinic agonists and antagonists in squirrel monkeys by hexamethonium (peripherally restricted) or dihydro- b a either 1) responding for food reinforcement or 2) discriminating the -erythroidine, and not altered by methyllycaconitine ( 7 jpet.aspetjournals.org nicotinic agonist (1)-epibatidine (0.001 mg/kg) from vehicle. In selective). Varenicline and cytisine enhanced (1)-epibati- food-reinforcement studies, nicotine, (1)-epibatidine, varenicline dine’s discriminative-stimulus effects.
    [Show full text]
  • Review 0103 - 5053 $6.00+0.00
    http://dx.doi.org/10.5935/0103-5053.20150045 J. Braz. Chem. Soc., Vol. 26, No. 5, 837-850, 2015. Printed in Brazil - ©2015 Sociedade Brasileira de Química Review 0103 - 5053 $6.00+0.00 Recent Syntheses of Frog Alkaloid Epibatidine Ronaldo E. de Oliveira Filho and Alvaro T. Omori* Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André-SP, Brazil Many natives from Amazon use poison secreted by the skin of some colorful frogs (Dendrobatidae) on the tips of their arrows to hunt. This habit has generated interest in the isolation of these toxins. Among the over 500 isolated alkaloids, the most important is undoubtedly (-)-epibatidine. First isolated in 1992, by Daly from Epipedobates tricolor, this compound is highly toxic (LD50 about 0.4 µg per mouse). Most remarkably, its non-opioid analgesic activity was found to be about 200 times stronger than morphine. Due to its scarcity, the limited availability of natural sources, and its intriguing biological activity, more than 100 synthetic routes have been developed since the epibatidine structure was assigned. This review presents the recent formal and total syntheses of epibatidine since the excellent review published in 2002 by Olivo et al.1 Mainly, this review is summarized by the method used to obtain the azabicyclic core. Keywords: epibatidine, organic synthesis, azanorbornanes H Cl H 1. Introduction N N O N N At an expedition to Western Ecuador in 1974, Daly and Myers isolated traces of an alkaloid with potential biological (–)-Epibatidine(1) Epiboxidine(1a) activity from the skin of the species Epipedobastes tricolor.
    [Show full text]