( 12 ) United States Patent
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Dejong Autman
King’s Research Portal Document Version Peer reviewed version Link to publication record in King's Research Portal Citation for published version (APA): De Jong, S., Vidler, L., Mokrab, Y., Collier, D. A., & Breen, G. D. (Accepted/In press). Gene-set analysis based on the pharmacological profiles of drugs to identify repurposing opportunities in schizophrenia. Journal of Psychopharmacology. Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. -
PRODUCT INFORMATION ABT-594 Item No
PRODUCT INFORMATION ABT-594 Item No. 22822 CAS Registry No.: 203564-54-9 Formal Name: 5-[(2R)-2-azetidinylmethoxy]-2- H chloro-pyridine, monohydrochloride N Synonyms: Ebanicline, Tebanicline O MF: C9H11ClN2O • HCl FW: 235.1 N Purity: ≥95% Cl Supplied as: A solid • HCl Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures ABT-594 is supplied as a solid. A stock solution may be made by dissolving the ABT-594 in the solvent of choice. ABT-594 is soluble in the organic solvent DMSO, which should be purged with an inert gas. Description ABT-594 is a potent agonist of neuronal α4β2 subunit-containing nicotinic acetylcholine receptors 1 (nAChRs; Ki = 37 pM in a radioligand binding assay). It is selective for neuronal nAChRs over neuromuscular α1β1δγ subunit-containing nAChRs (Ki = 10,000 nM), α1B-, α2B-, and α2C-adrenergic receptors (Kis = 890, 597, and 342 nM, respectively), and 70 other receptors, enzymes, and transporters 86 + (Kis = >1,000 nM) in radioligand binding assays. ABT-594 induces [ Rb ] efflux in K177 cells transfected with human neuronal α4β2 subunit-containing nAChRs (EC50 = 140 nM). In vivo, ABT-594 (0.05 and 0.01 mg/kg, s.c.) increases latency to paw withdrawal in a hot-plate test in rats.2 It also induces hypothermia, seizures, and an increase in blood pressure. References 1. Donnelly-Roberts, D.L., Puttfarcken, P.S., Kuntzweiler, T.A., et al. ABT-594 [(R)-5-(2-azetidinylmethoxy)- 2-chloropyridine]: A novel, orally effective analgesic acting via neuronal nicotinic acetylcholine receptors: I. -
Chemicals in the Fourth Report and Updated Tables Pdf Icon[PDF
Chemicals in the Fourth National Report on Human Exposure to Environmental Chemicals: Updated Tables, March 2021 CDC’s Fourth National Report on Human Exposure to Environmental Chemicals: Updated Tables, March 2021 provides exposure data on the following chemicals or classes of chemicals. The Updated Tables contain cumulative data from national samples collected beginning in 1999–2000 and as recently as 2015-2016. Not all chemicals were measured in each national sample. The data tables are available at https://www.cdc.gov/exposurereport. An asterisk (*) indicates the chemical has been added since publication of the Fourth National Report on Human Exposure to Environmental Chemicals in 2009. Adducts of Hemoglobin Acrylamide Formaldehyde* Glycidamide Tobacco Alkaloids and Metabolites Anabasine* Anatabine* Cotinine Cotinine-n-oxide* Hydroxycotinine* Trans-3’-hydroxycotinine* 1-(3-Pyridyl)-1-butanol-4-carboxylic acid* Nicotine* Nicotine-N’-oxide* Nornicotine* Tobacco-Specific Nitrosamines (TSNAs) N’-Nitrosoanabasine (NAB)* N’-Nitrosoanatabine (NAT)* N’-Nitrosonornicotine (NNN)* Total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol) (NNAL)* Volatile N-nitrosamines (VNAs) N-Nitrosodiethylamine (NDEA)* N-Nitrosoethylmethylamine (NMEA)* N-Nitrosomorpholine (NMOR)* N-Nitrosopiperidine (NPIP)* N-Nitrosopyrrolidine (NPYR)* Disinfection By-Products Bromodichloromethane Dibromochloromethane Tribromomethane (Bromoform) Trichloromethane (Chloroform) Personal Care and Consumer Product Chemicals and Metabolites Benzophenone-3 Bisphenol A Bisphenol F* Bisphenol -
Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence
Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence Christie D. Fowler, Jill R. Turner, and M. Imad Damaj Contents 1 Introduction 2 Basic Neurocircuitry of Nicotine Addiction 3 Role of Nicotinic Receptors in Nicotine Dependence and Brain Function 4 Modulatory Factors That Influence nAChR Expression and Signaling 5 Genomics and Genetics of Nicotine Dependence 5.1 Overview 5.2 Human and Animal Genetic Studies 5.3 Transcriptionally Adaptive Changes 6 Other Constituents in Nicotine and Tobacco Products Mediating Dependence 7 Therapeutic Approaches for Tobacco and Nicotine Dependence 7.1 Nicotine Replacement Therapies 7.2 Varenicline and Bupropion 7.3 Novel Approaches 8 Conclusion References Abstract Tobacco dependence is a leading cause of preventable disease and death world- wide. Nicotine, the main psychoactive component in tobacco cigarettes, has also C. D. Fowler Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA J. R. Turner Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA M. Imad Damaj (*) Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA Translational Research Initiative for Pain and Neuropathy at VCU, Richmond, VA, USA e-mail: [email protected] # Springer Nature Switzerland AG 2019 Handbook of Experimental Pharmacology, https://doi.org/10.1007/164_2019_252 C. D. Fowler et al. been garnering increased popularity in its vaporized form, as derived from e-cigarette devices. Thus, an understanding of the molecular mechanisms under- lying nicotine pharmacology and dependence is required to ascertain novel approaches to treat drug dependence. In this chapter, we review the field’s current understanding of nicotine’s actions in the brain, the neurocircuitry underlying drug dependence, factors that modulate the function of nicotinic acetylcholine receptors, and the role of specific genes in mitigating the vulnerability to develop nicotine dependence. -
Addictions and the Brain
9/18/2012 Addictions and the Brain TAAP Conference September 14, 2012 Acknowledgements • La Hacienda Treatment Center • American Society of Addiction Medicine • National Institute of Drug Abuse © 2012 La Hacienda Treatment Center. All rights reserved. 1 9/18/2012 Definition • A primary, progressive biochemical, psychosocial, genetically transmitted chronic disease of relapse who’s hallmarks are denial, loss of control and unmanageability. DSM IV Criteria for dependency: At least 3 of the 7 below 1. Withdrawal 2. Tolerance 3. The substance is taken in larger amounts or over a longer period than was intended. 4. There is a persistent desire or unsuccessful efforts to cut down or control substance use. 5. A great deal of time is spent in activities necessary to obtain the substance, use the substance, or recover from its effects. 6. Important social, occupational, or recreational activities are given up or reduced because of the substance use. 7. The substance use is continued despite knowledge of having a persistent or recurrent physical or psychological problem that is likely to have been caused or exacerbated by the substance. © 2012 La Hacienda Treatment Center. All rights reserved. 2 9/18/2012 Dispute between behavior and disease Present understanding of the Hypothalamus location of the disease hypothesis. © 2012 La Hacienda Treatment Center. All rights reserved. 3 9/18/2012 © 2012 La Hacienda Treatment Center. All rights reserved. 4 9/18/2012 © 2012 La Hacienda Treatment Center. All rights reserved. 5 9/18/2012 Dispute regarding behavior versus disease © 2012 La Hacienda Treatment Center. All rights reserved. 6 9/18/2012 © 2012 La Hacienda Treatment Center. -
Anti-Inflammatory Effects of Amantadine and Memantine
Journal of Personalized Medicine Communication Anti-Inflammatory Effects of Amantadine and Memantine: Possible Therapeutics for the Treatment of Covid-19? Félix Javier Jiménez-Jiménez 1,* , Hortensia Alonso-Navarro 1 , Elena García-Martín 2 and José A. G. Agúndez 2 1 Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; [email protected] 2 University Institute of Molecular Pathology Biomarkers, UNEx. ARADyAL Instituto de Salud Carlos III, E-10071 Cáceres, Spain; [email protected] (E.G.-M.); [email protected] (J.A.G.A.) * Correspondence: [email protected]; Tel.: +34-636968395 Received: 2 October 2020; Accepted: 6 November 2020; Published: 9 November 2020 Abstract: We have reviewed current data on the anti-inflammatory effects of amantadine and memantine in clinical and in vivo models of inflammation, and we propose that these effects have potential interest for the treatment of the SARS-CoV-2 infection (COVID-19 disease). To that end, we performed a literature search using the PubMed Database from 1966 up to October 31 2020, crossing the terms “amantadine” and “memantine” with “inflammation” and “anti-inflammatory”. Amantadine and/or memantine have shown anti-inflammatory effects in chronic hepatitis C, in neuroinflammation induced by sepsis and by lipopolysaccharides, experimental models of multiple sclerosis, spinal cord injury, and respiratory diseases. Since the inflammatory response is one of the main pathogenetic mechanisms in the progression of the SARS-CoV-2 infection, anti-inflammatory effects of amantadine and memantine could be hypothetically useful in the treatment of this condition. This potential utility deserves further research. Keywords: amantadine; memantine; anti-inflammatory effects; SARS-Cov-2; COVID-19; therapy 1. -
(12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig. -
Nicotinic Receptors in Neurodegeneration
Send Orders of Reprints at [email protected] 298 Current Neuropharmacology, 2013, 11, 298-314 Nicotinic Receptors in Neurodegeneration Inmaculada Posadas, Beatriz López-Hernández and Valentín Ceña* Unidad Asociada Neurodeath. CSIC-Universidad de Castilla-La Mancha, Departamento de Ciencias Médicas. Albacete, Spain and CIBERNED, Instituto de Salud Carlos III, Spain Abstract: Many studies have focused on expanding our knowledge of the structure and diversity of peripheral and central nicotinic receptors. Nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily of pentameric ligand-gated ion channels, which include GABA (A and C), serotonin, and glycine receptors. Currently, 9 alpha (2-10) and 3 beta (2-4) subunits have been identified in the central nervous system (CNS), and these subunits assemble to form a variety of functional nAChRs. The pentameric combination of several alpha and beta subunits leads to a great number of nicotinic receptors that vary in their properties, including their sensitivity to nicotine, permeability to calcium and propensity to desensitize. In the CNS, nAChRs play crucial roles in modulating presynaptic, postsynaptic, and extrasynaptic signaling, and have been found to be involved in a complex range of CNS disorders including Alzheimer’s disease (AD), Parkinson’s disease (PD), schizophrenia, Tourette´s syndrome, anxiety, depression and epilepsy. Therefore, there is growing interest in the development of drugs that modulate nAChR functions with optimal benefits and minimal adverse effects. The present review describes the main characteristics of nAChRs in the CNS and focuses on the various compounds that have been tested and are currently in phase I and phase II trials for the treatment of neurodegenerative diseases including PD, AD and age-associated memory and mild cognitive impairment. -
(19) United States (12) Patent Application Publication (10) Pub
US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist. -
From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia J
REVIEW The Neuropsychopharmacology of Phencyclidine: From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia J. David Jentsch, Ph.D., and Robert H. Roth, Ph.D. Administration of noncompetitive NMDA/glutamate effects of these drugs are discussed, especially with regard to receptor antagonists, such as phencyclidine (PCP) and differing profiles following single-dose and long-term ketamine, to humans induces a broad range of exposure. The neurochemical effects of NMDA receptor schizophrenic-like symptomatology, findings that have antagonist administration are argued to support a contributed to a hypoglutamatergic hypothesis of neurobiological hypothesis of schizophrenia, which includes schizophrenia. Moreover, a history of experimental pathophysiology within several neurotransmitter systems, investigations of the effects of these drugs in animals manifested in behavioral pathology. Future directions for suggests that NMDA receptor antagonists may model some the application of NMDA receptor antagonist models of behavioral symptoms of schizophrenia in nonhuman schizophrenia to preclinical and pathophysiological research subjects. In this review, the usefulness of PCP are offered. [Neuropsychopharmacology 20:201–225, administration as a potential animal model of schizophrenia 1999] © 1999 American College of is considered. To support the contention that NMDA Neuropsychopharmacology. Published by Elsevier receptor antagonist administration represents a viable Science Inc. model of schizophrenia, the behavioral and neurobiological KEY WORDS: Ketamine; Phencyclidine; Psychotomimetic; widely from the administration of purportedly psychot- Memory; Catecholamine; Schizophrenia; Prefrontal cortex; omimetic drugs (Snyder 1988; Javitt and Zukin 1991; Cognition; Dopamine; Glutamate Jentsch et al. 1998a), to perinatal insults (Lipska et al. Biological psychiatric research has seen the develop- 1993; El-Khodor and Boksa 1997; Moore and Grace ment of many putative animal models of schizophrenia. -
Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products. -
Efforts Towards the Synthesis of Epibatidine By: Marianne Hanna
Efforts Towards the Synthesis of Epibatidine By: Marianne Hanna (Junior-Biochemistry major) Faculty Advisor: Dr. Thomas Montgomery Duquesne University- Bayer School of Natural Sciences 1 Abstract: Epibatidine is a naturally toxic chemical found in the secretion of poison dart frogs. Given its structural similarities to the compound nicotine epibatidine binds strongly to nicotine receptors in the central nervous system (CTS). Epibatidine’s bioactivity arises from its unique geometry which allows it to bind to the α4β2 subunit in the nicotinic receptor. This triggers an analgesic effect without a release of dopamine, differentiating its activity from opioids. Prior efforts towards synthesizing epibatidine and its analogs have involved many steps making them untenable for pharmaceutical use. By using computational and experimental methods to study the mechanism for an interrupted Polonovski [3+2] cycloaddition which will give direct access to the epibatidine core motif. By synthesizing strategic derivatives of epibatidine through this route we will investigate opioid alternatives which lack many of their addictive qualities. Background: Epibatidine is a toxic alkaloid that is isolated from the skin of poison dart tree frog Epipedobates tricolor, secretions from the frog are used by indigenous tribes in darts for hunting.1 The chemical structure was established in 1992 using NMR spectroscopy (proton NMR).2 Epibatidine possesses significant medicinal properties, it functions as an analgesic agent by binding to the nicotinic acetylcholine receptors (nAChRs) instead of the opioid receptors.3 Moreover it displays an affinity for said receptors that is 100- to 200-fold higher than nicotine. The alkaloid interacts with Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels and are expressed central and peripherally.