Adrenoceptor (1) Antibiotic (2) Cyclic Nucleotide (4) Dopamine (5) Hormone (6) Serotonin (8) Other (9) Phosphorylation (7) Ca2+

Total Page:16

File Type:pdf, Size:1020Kb

Adrenoceptor (1) Antibiotic (2) Cyclic Nucleotide (4) Dopamine (5) Hormone (6) Serotonin (8) Other (9) Phosphorylation (7) Ca2+ Supplementary Fig. 1 Lifespan-extending compounds can show structural similarity or have common substructures. Cl NO2 H doxycycline (2) N N NH 2 O H O H O O H O O O O O H O NH NH Cl O O 2 N N guanfacine (1) O H N N H H H nitrendipine (3) S Cl N H promethazine (9) NO2 F N NH2 F N demeclocycline (2) O H O O H O O F N NH O O H O O Cl S N NH N guanabenz (1) O O 2 fluphenthixol (5) Br CN O H N H N nicardipine (3) S N H Cl O H N N propionylpromazine (5) O O H O H O O H O O O H Cl N S Br LFM−A13 (7) NH2 S S O H H H chlorprothixene (5) thioridazine (5) N N O H minocycline (2) HO S O β-estradiol (6) O H H N H N H O H O danazol (6) N N cyproterone (6) H N H O H O methylergonovine (5) HO H pergolide (5) O N O O O N O HN O O H O N N H 3C H H O O H Cl H O H C H 3 O H N N H N H N H H O metergoline (8) dihydroergocristine (5) Cortexolone (5) HO O N (R,R)−cis−Diethyltetrahydro−2,8−chrysenediol (6) O H O H N O vincristine (9) N H N HN H O H H N H O N N N N O N H O O O N N dihydroergotamine (8) H O Cl O H O H O nortriptyline (1) S O mianserin (8) octoclothepin (5) loratadine (9) H N N Cl N N N cinnarizine (3) O N N N H Cl N Cl N N N O O N loxapine (5) N amoxapine (1) oxatomide (9) O O Adrenoceptor (1) Antibiotic (2) Ca2+ Channel (3) Cyclic Nucleotide (4) Dopamine (5) Hormone (6) Phosphorylation (7) Serotonin (8) Other (9) Supplementary Fig. 1. Lifespan-extending compounds show structural similarity or have common substructures. Names of the compounds are color coded and numbered according to pharmacological class, as indicated. Supplementary Fig. 2. Structures of lifespan-extending compounds and their effects on stress resistance. O O N NO2 oxatomide (9) O N N O O O O Cl H eliprodil (9) N N N doxazosin (1) N N N O O O F N NH nicardipine (3) 2 N O H H N Protect from O H N-(2-[4-(4-Chloro... (5)* N vincristine (9) Cl dihydroergocristine (5) H H O cinnarizine (3) N oxidative N O O O N N O O H N F O H N N N N N H O N N O stress N O H O HO O H O H O H O H O H O N N naftopidil (1) H O S H N O N Cl H H N NH2 N NO methylergonovine (5) 2 O F amperozide (8) N N N NH Cl O H N Cl O O N H H N H dihydroergotamine (8) O O guanabenz (1) O O N pergolide (5) O amoxapine (1) H H N O O N N H N H cyclosporin A (7) HN H O N O nitrendipine (3) N N H O Structure: undecapeptide N N N H F N Cl N ketanserin (8) N O H Cl O O H N N O N S loxapine (5) S N octoclothepin (5) N N HN N N S doxycycline (2) LY−367,265 (8) nortriptyline (1) S O H O O H O O mianserin (8) O H thioridazine (5) F F NH F 2 N O F Cl O H H H O N N N N N N H H NH2 N H PAPP/LY-165,163 (8) metergoline (8) S N N promethazine (9) HO Si N N Cl O O CN O HN loratadine (9) S + NH N N demeclocycline (2) chlorprothixene (5) O O H N trequinsin (4) F O H O O H O O N O H 4-phenyl-3-..(9)***** H O N O O N hexahydro-sila-difenidol (9) NH2 DAPH (7) O H O H N O H O N S N O N H O Cl O H propionylpromazine (5) N S Cl N N NH N O N O Cl N O O H NO F O 2 O O H quinidine (9) F SU 4312 (7) O BRL 50481 (4) vinpocetine (4) F 3,4-DIC** O H O O H O O O H S O H O fluphenthixol (5) NH2 HO O H β O H H BRL 15572 (8) -estradiol (6) O O O N N danazol (6) psora-4 (9) O H N Cl N O H O O minocycline (2) N O H N N N H HO O cyproterone (6) O AMN082 (R,R)−THC (6)**** S O H Cl Br H 3C O H O BTCP (5) Br O H O H 3C H HN Cl Cl HN N H H O N NH N H 2 CN Br O N H O NH O N LFM−A13 (7) cortexolone (5) Cl O guanfacine (1) NH2 kenpaullone (7) tyrphostin AG 1478 (7) Adrenoceptor (1) N Antibiotic (2) Hormone (6) *N−(2−[4−(4−Chlorophenyl)piperazin−1−yl]ethyl)−3−methoxybenzamide N N Ca2+ Channel (3) Phosphorylation (7) 7-cyclopentyl-5-(4-...(7)*** **3,4−dichloroisocoumarin ***7-cyclopentyl-5-(4-phenoxy)phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine Cyclic Nucleotide (4) Serotonin (8) ****(R,R)−cis−Diethyltetrahydro−2,8−chrysenediol Dopamine (5) Other (9) *****4−phenyl−3−furoxancarbonitrile Supplementary Fig. 2. Structures of lifespan-extending compounds and their effects on stress resistance. Structures are shown for compounds that increased C. elegans lifespan. Compounds in the red circle increased oxidative stress resistance in C. elegans. Names of compounds are color coded and numbered according to pharmacological class, as indicated. Full names for compounds marked by asterisks are shown at lower left. Supplementary Fig. 3. Dose response curves for lifespan- extending compounds H N Cl Cl H H Adrenoceptor Class N NH2 N NH 2 N N +60 O NH N NH Cl Cl Cl +40 guanfacine O guanabenz -40 -20 0 +20 amoxapine O O H N N O NN O O N N Change in lifespan [%] N O HO O NH 2 doxazosin [uM] naftopidil nortriptyline 2 3 10 30 100 200 O N OH N HC3 N Dopamine Class OH N N N H HCH3 HO Cl Cl H S O O HO OH cortexolone octoclothepin loxapine propylnorapomorphine +60 Cl N N N +40 O N N N N O F -40 -20 0 +20 N F H Cl N S N F O S S S S N-(2-[4-(4-Chlorophenyl...* chlorprothixene thioridazine propionylpromazine fluphenthixol S Change in lifespan [%] H O H N O O [uM] N OH HN H N N N 2 3 10 30 100 200 N HN N HN H H O H S O OH H N Concentration [uM] H BTCP dihydroergocristine pergolide methylergonovine O O O O S N N ON N Serotonin Class O H H N H +60 N O N HN N N H H HN H O N +40 N HO H metergoline N dihydroergotamine LY−367,265 -40 -20 0 +20 F F mianserin O FF O O F OH N Cl N N N NN N H N F N NH2 Change in lifespan [%] N O F H ketanserin PAPP/LY-165,163 [uM] BRL 15572 amperozide 2 3 10 30 100 200 Phosphorylation Class +60 N O +40 NH Br 2 O Br N -40 -20 0 +20 OH O O HN Cl HN HN N N N O O cyclosporin A H NH N N CN Br N H H N O N H O SU 4312 Change in lifespan [%] kenpaullone LFM−A13 DAPH 7-Cyclopentyl-5-(4-...*** tyrphostin AG 1478 [uM] 2 3 10 30 100 200 Hormone Class +60 O +40 O Supplementary Fig. 3. OH OH OH O -40 -20 0 +20 Dose response curves for O N lifespan- extending com- HO HO Cl O β-estradiol (R,R)−THC **** cyproterone danazol Change in lifespan [%] pounds. Graphs show [uM] percent increase in lifespan 2 3 10 30 100 200 compared to vehicle control Ca2+ Channel Class +60 (DMSO) as a function of +40 NO compound concentration NO2 2 -40 -20 0 +20 O O O O N N [uM]. Data points indicate O O O O N N N means of different experimen- H H tal populations and error bars nitrendipine nicardipine cinnarizine Change in lifespan [%] [uM] indicate S.E.M.. Results 2 3 10 30 100 200 obtained with the compounds Antibiotic Class +60 at left are shown in different +40 OH O OHO O OHO OHO O OHOOHO O HO OH OH NH -40 -20 0 +20 colors, as indicated. Each 2 NH2 NH2 OH OH OH HH HH compound produced a signifi- Cl OH N N N N cant lifespan increase at two demeclocycline minocycline doxycycline Change in lifespan [%] or more concentrations [uM] 2 3 10 30 100 200 (p<0.05). Cyclic Nucleotides Class +60 +40 *N−(2−[4−(4−Chlorophenyl)piperazin−1−yl]ethyl)−3−methoxybenzamide O H N O -40 -20 0 +20 **3,4−Dichloroisocoumarin O O S ***7-Cyclopentyl-5-(4-phenoxy)phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine N N NH ****(R,R)−cis−Diethyltetrahydro−2,8−chrysenediol NN O O *****4−Phenyl−3−furoxancarbonitrile O NO2 trequinsin BRL 50481 vinpocetine Change in lifespan [%] [uM] 2 3 10 30 100 200 Supplementary Fig.
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0224020 A1 Schoenhard (43) Pub
    US 2004O224020A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0224020 A1 Schoenhard (43) Pub. Date: Nov. 11, 2004 (54) ORAL DOSAGE FORMS WITH (22) Filed: Dec. 18, 2003 THERAPEUTICALLY ACTIVE AGENTS IN CONTROLLED RELEASE CORES AND Related U.S. Application Data IMMEDIATE RELEASE GELATIN CAPSULE COATS (60) Provisional application No. 60/434,839, filed on Dec. 18, 2002. (76) Inventor: Grant L. Schoenhard, San Carlos, CA (US) Publication Classification Correspondence Address: (51) Int. Cl. ................................................... A61K 9/24 Janet M. McNicholas (52) U.S. Cl. .............................................................. 424/471 McAndrews, Held & Malloy, Ltd. 34th Floor (57) ABSTRACT 500 W. Madison Street Chicago, IL 60661 (US) The present invention relates to oral dosage form with active agents in controlled release cores and in immediate release (21) Appl. No.: 10/742,672 gelatin capsule coats. Patent Application Publication Nov. 11, 2004 Sheet 1 of 3 US 2004/0224020 A1 r N 2.S Hr s Patent Application Publication Nov. 11, 2004 Sheet 2 of 3 US 2004/0224020 A1 r CN -8 e N va N . t Cd NOLLYRILNONOO Patent Application Publication Nov. 11, 2004 Sheet 3 of 3 US 2004/0224020 A1 US 2004/0224020 A1 Nov. 11, 2004 ORAL DOSAGE FORMS WITH released formulations, a long t is particularly disadvan THERAPEUTICALLY ACTIVE AGENTS IN tageous to patients Seeking urgent treatment and to maintain CONTROLLED RELEASE CORES AND MEC levels. A second difference in the pharmacokinetic IMMEDIATE RELEASE GELATIN CAPSULE profiles of controlled release in comparison to immediate COATS release drug formulations is that the duration of Sustained plasma levels is longer in the controlled release formula CROSS REFERENCED APPLICATIONS tions.
    [Show full text]
  • INVESTIGATION of NATURAL PRODUCT SCAFFOLDS for the DEVELOPMENT of OPIOID RECEPTOR LIGANDS by Katherine M
    INVESTIGATION OF NATURAL PRODUCT SCAFFOLDS FOR THE DEVELOPMENT OF OPIOID RECEPTOR LIGANDS By Katherine M. Prevatt-Smith Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. _________________________________ Chairperson: Dr. Thomas E. Prisinzano _________________________________ Dr. Brian S. J. Blagg _________________________________ Dr. Michael F. Rafferty _________________________________ Dr. Paul R. Hanson _________________________________ Dr. Susan M. Lunte Date Defended: July 18, 2012 The Dissertation Committee for Katherine M. Prevatt-Smith certifies that this is the approved version of the following dissertation: INVESTIGATION OF NATURAL PRODUCT SCAFFOLDS FOR THE DEVELOPMENT OF OPIOID RECEPTOR LIGANDS _________________________________ Chairperson: Dr. Thomas E. Prisinzano Date approved: July 18, 2012 ii ABSTRACT Kappa opioid (KOP) receptors have been suggested as an alternative target to the mu opioid (MOP) receptor for the treatment of pain because KOP activation is associated with fewer negative side-effects (respiratory depression, constipation, tolerance, and dependence). The KOP receptor has also been implicated in several abuse-related effects in the central nervous system (CNS). KOP ligands have been investigated as pharmacotherapies for drug abuse; KOP agonists have been shown to modulate dopamine concentrations in the CNS as well as attenuate the self-administration of cocaine in a variety of species, and KOP antagonists have potential in the treatment of relapse. One drawback of current opioid ligand investigation is that many compounds are based on the morphine scaffold and thus have similar properties, both positive and negative, to the parent molecule. Thus there is increasing need to discover new chemical scaffolds with opioid receptor activity.
    [Show full text]
  • Design and Synthesis of Cyclic Analogs of the Kappa Opioid Receptor Antagonist Arodyn
    Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn By © 2018 Solomon Aguta Gisemba Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Dr. Michael Rafferty Dr. Teruna Siahaan Dr. Thomas Tolbert Date Defended: 18 April 2018 The dissertation committee for Solomon Aguta Gisemba certifies that this is the approved version of the following dissertation: Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Date Approved: 10 June 2018 ii Abstract Opioid receptors are important therapeutic targets for mood disorders and pain. Kappa opioid receptor (KOR) antagonists have recently shown potential for treating drug addiction and 1,2,3 4 8 depression. Arodyn (Ac[Phe ,Arg ,D-Ala ]Dyn A(1-11)-NH2), an acetylated dynorphin A (Dyn A) analog, has demonstrated potent and selective KOR antagonism, but can be rapidly metabolized by proteases. Cyclization of arodyn could enhance metabolic stability and potentially stabilize the bioactive conformation to give potent and selective analogs. Accordingly, novel cyclization strategies utilizing ring closing metathesis (RCM) were pursued. However, side reactions involving olefin isomerization of O-allyl groups limited the scope of the RCM reactions, and their use to explore structure-activity relationships of aromatic residues. Here we developed synthetic methodology in a model dipeptide study to facilitate RCM involving Tyr(All) residues. Optimized conditions that included microwave heating and the use of isomerization suppressants were applied to the synthesis of cyclic arodyn analogs.
    [Show full text]
  • Information to Users
    The direct and modulatory antinociceptive actions of endogenous and exogenous opioid delta agonists Item Type text; Dissertation-Reproduction (electronic) Authors Vanderah, Todd William. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 04/10/2021 00:14:57 Link to Item http://hdl.handle.net/10150/187190 INFORMATION TO USERS This ~uscript }las been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely. event that the author did not send UMI a complete mannscript and there are missing pages, these will be noted Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginnjng at the upper left-hand comer and contimJing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,492.445 B2 Bazhina Et Al
    USOO9492445B2 (12) United States Patent (10) Patent No.: US 9,492.445 B2 Bazhina et al. (45) Date of Patent: *Nov. 15, 2016 (54) PERIPHERAL OPIOID RECEPTOR (58) Field of Classification Search ANTAGONSTS AND USES THEREOF USPC .................................................. 514/282, 289 See application file for complete search history. (71) Applicant: Wyeth LLC, Madison, NJ (US) (56) References Cited (72) Inventors: Nataliya Bazhina, Tappan, NY (US); U.S. PATENT DOCUMENTS George Joseph Donato, III, Swarthmore, PA (US); Steven R. 3,714,159 A 1/1973 Janssen et al. Fabian, Barnegat, NJ (US); John 3,723.440 A 3, 1973 Freter et al. 3,854,480 A 12/1974 Zaffaroni Lokhnauth, Fair Lawn, NJ (US); 3,884,916 A 5, 1975 Janssen et al. Sreenivasulu Megati, New City, NY 3,937,801 A 2/1976 Lippmann (US); Charles Melucci, Highland Mills, 3.996,214 A 12/1976 Dajani et al. NY (US); Christian Ofslager, 4.012,393 A 3, 1977 Markos et al. 4,013,668 A 3, 1977 Adelstein et al. Newburgh, NY (US); Niketa Patel, 4,025,652 A 5, 1977 Diamond et al. Lincoln Park, NJ (US); Galen 4,060.635 A 11/1977 Diamond et al. Radebaugh, Chester, NJ (US); Syed M. 4,066,654 A 1/1978 Adelstein et al. Shah, East Hanover, NJ (US); Jan 4,069,223. A 1/1978 Adelstein Szeliga, Croton On Hudson, NY (US); 4,072,686 A 2f1978 Adelstein et al. Huyi Zhang, Garnerville, NY (US); (Continued) Tianmin Zhu, Monroe, NY (US) FOREIGN PATENT DOCUMENTS (73) Assignee: Wyeth, LLC, Madison, NJ (US) AU 610 561 B2 8, 1988 (*) Notice: Subject to any disclaimer, the term of this AU T58416 B2 3, 2003 patent is extended or adjusted under 35 (Continued) U.S.C.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun
    USOO9687445B2 (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun. 27, 2017 (54) ORAL FILM CONTAINING OPIATE (56) References Cited ENTERC-RELEASE BEADS U.S. PATENT DOCUMENTS (75) Inventor: Michael Hsin Chwen Li, Warren, NJ 7,871,645 B2 1/2011 Hall et al. (US) 2010/0285.130 A1* 11/2010 Sanghvi ........................ 424/484 2011 0033541 A1 2/2011 Myers et al. 2011/0195989 A1* 8, 2011 Rudnic et al. ................ 514,282 (73) Assignee: LTS Lohmann Therapie-Systeme AG, Andernach (DE) FOREIGN PATENT DOCUMENTS CN 101703,777 A 2, 2001 (*) Notice: Subject to any disclaimer, the term of this DE 10 2006 O27 796 A1 12/2007 patent is extended or adjusted under 35 WO WOOO,32255 A1 6, 2000 U.S.C. 154(b) by 338 days. WO WO O1/378O8 A1 5, 2001 WO WO 2007 144080 A2 12/2007 (21) Appl. No.: 13/445,716 (Continued) OTHER PUBLICATIONS (22) Filed: Apr. 12, 2012 Pharmaceutics, edited by Cui Fude, the fifth edition, People's Medical Publishing House, Feb. 29, 2004, pp. 156-157. (65) Prior Publication Data Primary Examiner — Bethany Barham US 2013/0273.162 A1 Oct. 17, 2013 Assistant Examiner — Barbara Frazier (74) Attorney, Agent, or Firm — ProPat, L.L.C. (51) Int. Cl. (57) ABSTRACT A6 IK 9/00 (2006.01) A control release and abuse-resistant opiate drug delivery A6 IK 47/38 (2006.01) oral wafer or edible oral film dosage to treat pain and A6 IK 47/32 (2006.01) substance abuse is provided.
    [Show full text]
  • From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia J
    REVIEW The Neuropsychopharmacology of Phencyclidine: From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia J. David Jentsch, Ph.D., and Robert H. Roth, Ph.D. Administration of noncompetitive NMDA/glutamate effects of these drugs are discussed, especially with regard to receptor antagonists, such as phencyclidine (PCP) and differing profiles following single-dose and long-term ketamine, to humans induces a broad range of exposure. The neurochemical effects of NMDA receptor schizophrenic-like symptomatology, findings that have antagonist administration are argued to support a contributed to a hypoglutamatergic hypothesis of neurobiological hypothesis of schizophrenia, which includes schizophrenia. Moreover, a history of experimental pathophysiology within several neurotransmitter systems, investigations of the effects of these drugs in animals manifested in behavioral pathology. Future directions for suggests that NMDA receptor antagonists may model some the application of NMDA receptor antagonist models of behavioral symptoms of schizophrenia in nonhuman schizophrenia to preclinical and pathophysiological research subjects. In this review, the usefulness of PCP are offered. [Neuropsychopharmacology 20:201–225, administration as a potential animal model of schizophrenia 1999] © 1999 American College of is considered. To support the contention that NMDA Neuropsychopharmacology. Published by Elsevier receptor antagonist administration represents a viable Science Inc. model of schizophrenia, the behavioral and neurobiological KEY WORDS: Ketamine; Phencyclidine; Psychotomimetic; widely from the administration of purportedly psychot- Memory; Catecholamine; Schizophrenia; Prefrontal cortex; omimetic drugs (Snyder 1988; Javitt and Zukin 1991; Cognition; Dopamine; Glutamate Jentsch et al. 1998a), to perinatal insults (Lipska et al. Biological psychiatric research has seen the develop- 1993; El-Khodor and Boksa 1997; Moore and Grace ment of many putative animal models of schizophrenia.
    [Show full text]
  • Opioid Receptorsreceptors
    OPIOIDOPIOID RECEPTORSRECEPTORS defined or “classical” types of opioid receptor µ,dk and . Alistair Corbett, Sandy McKnight and Graeme Genes encoding for these receptors have been cloned.5, Henderson 6,7,8 More recently, cDNA encoding an “orphan” receptor Dr Alistair Corbett is Lecturer in the School of was identified which has a high degree of homology to Biological and Biomedical Sciences, Glasgow the “classical” opioid receptors; on structural grounds Caledonian University, Cowcaddens Road, this receptor is an opioid receptor and has been named Glasgow G4 0BA, UK. ORL (opioid receptor-like).9 As would be predicted from 1 Dr Sandy McKnight is Associate Director, Parke- their known abilities to couple through pertussis toxin- Davis Neuroscience Research Centre, sensitive G-proteins, all of the cloned opioid receptors Cambridge University Forvie Site, Robinson possess the same general structure of an extracellular Way, Cambridge CB2 2QB, UK. N-terminal region, seven transmembrane domains and Professor Graeme Henderson is Professor of intracellular C-terminal tail structure. There is Pharmacology and Head of Department, pharmacological evidence for subtypes of each Department of Pharmacology, School of Medical receptor and other types of novel, less well- Sciences, University of Bristol, University Walk, characterised opioid receptors,eliz , , , , have also been Bristol BS8 1TD, UK. postulated. Thes -receptor, however, is no longer regarded as an opioid receptor. Introduction Receptor Subtypes Preparations of the opium poppy papaver somniferum m-Receptor subtypes have been used for many hundreds of years to relieve The MOR-1 gene, encoding for one form of them - pain. In 1803, Sertürner isolated a crystalline sample of receptor, shows approximately 50-70% homology to the main constituent alkaloid, morphine, which was later shown to be almost entirely responsible for the the genes encoding for thedk -(DOR-1), -(KOR-1) and orphan (ORL ) receptors.
    [Show full text]
  • Mu-0Pio:Id Receptor Is Involved in P Endorphin- Induced Feeding in Goldfish
    Peptides, Vol. 17, No. 3, pp. 421-424, 1996 Copyright 0 1996 Elsevier Science Inc. Printed in the USA. All rights reserved 0196-9781196 $15.00 + .@I PIISO196-9781(96)00006-X Mu-0pio:id Receptor Is Involved in P_Endorphin- Induced Feeding in Goldfish NURIA DE PEDRO,’ MARiA VIRTUDES &PEDES, MA&A JESrjS DELGADO AND MERCEDES ALONSO-BEDATE Departamento de Biologia Animal II (Fisiologfa Animal), Facultad de Ciencias Biolbgicas, Universidad Complutense, 28040 Madrid, Spain Received 7 September 1995 DE PEDRO, N., M. V. Cl%PEDES, M. J. DELGADO AND M. ALONSO-BEDATE. Mu-opioid receptor is involved in p- endorphin-inducea'feeding in goldjsh. PEPTIDES 17( 3) 421-424, 1996.-The present study evaluated the central effects of selective opioid receptor subtype agonists and antagonists on food intake in satiated goldfish. Significant increases in feeding behavior occurred .m goldfish injected with P-endorphin, the kappa agonist, U-50488, the delta agonist, [D-Pen’,D-Pen5]enkephalin (DPEN), and the mu agonist, [o-Ala’,N-Me-Phe4,Gly5-ollenkephalin (DAMGO). On the other hand, the different receptor antagonists used: nor-binaltorphamine (nor-BNI) for kappa, 7-benzidilidenenaltrexone (BNTX) for delta,, naltriben for delta,, @imaltrexamine (P-FNA) for mu, and naloxonazine for mu,, by themselves, did not modify ingestion or slightly reduced it. The feeding stimulation by P-endorphin was antagonized by P-FNA and naloxonazine, but not by nor-BNI, BNTX, or naltriben. These data indicate that the mu-opioid receptor is involved in the modulation of the feeding behavior in goldfish. P-Endorphin Food intake Goldfish Opioid receptors Opioid antagonists Mu receptor Delta receptor Kappa receptor THE role of the endogenous opioid system in the regulation of kappa receptor subtypes (34) makes it difficult to identify the ingestive behavior is we:11 established (5,22,25).
    [Show full text]
  • Differential Effects of Novel Kappa Opioid Receptor Antagonists on Dopamine Neurons Using Acute Brain Slice Electrophysiology
    PLOS ONE RESEARCH ARTICLE Differential effects of novel kappa opioid receptor antagonists on dopamine neurons using acute brain slice electrophysiology 1 2 2 2 Elyssa B. MargolisID *, Tanya L. Wallace , Lori Jean Van Orden , William J. Martin 1 Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States of America, 2 BlackThorn Therapeutics, San Francisco, CA, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Activation of the kappa opioid receptor (KOR) contributes to the aversive properties of stress, and modulates key neuronal circuits underlying many neurobehavioral disorders. KOR agonists directly inhibit ventral tegmental area (VTA) dopaminergic neurons, contribut- OPEN ACCESS ing to aversive responses (Margolis et al. 2003, 2006); therefore, selective KOR antagonists Citation: Margolis EB, Wallace TL, Van Orden LJ, represent a novel therapeutic approach to restore circuit function. We used whole cell Martin WJ (2020) Differential effects of novel kappa opioid receptor antagonists on dopamine electrophysiology in acute rat midbrain slices to evaluate pharmacological properties of four neurons using acute brain slice electrophysiology. novel KOR antagonists: BTRX-335140, BTRX-395750, PF-04455242, and JNJ-67953964. PLoS ONE 15(12): e0232864. https://doi.org/ Each compound concentration-dependently reduced the outward current induced by the 10.1371/journal.pone.0232864 KOR selective agonist U-69,593. BTRX-335140 and BTRX-395750 fully blocked U-69,593 Editor: Bradley Taylor, University of Pittsburgh, currents (IC50 = 1.2 ± 0.9 and 1.2 ± 1.3 nM, respectively). JNJ-67953964 showed an IC50 of UNITED STATES 3.0 ± 4.6 nM.
    [Show full text]
  • Tolerance to Μ-Opioid Agonists in Human Neuroblastoma SH-SY5Y
    British Journal of Pharmacology (1997) 121, 1422 ± 1428 1997 Stockton Press All rights reserved 0007 ± 1188/97 $12.00 Tolerance to m-opioid agonists in human neuroblastoma SH-SY5Y cells as determined by changes in guanosine-5'-O-(3-[35S]-thio)triphosphate binding Jackie Elliott, Li Guo & 1John R. Traynor Department of Chemistry, Loughborough University, Leics., LE11 3TU and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, U.S.A. 1 The agonist action of morphine on membranes prepared from human neuroblastoma SH-SY5Y cells was measured by an increase in the binding of the GTP analogue [35S]-GTPgS. Morphine increased the 35 71 binding of [ S]-GTPgS to SH-SY5Y cell membranes by 30 fmol mg protein with an EC50 value of 76+10 nM. 2 Incubation of SH-SY5Y cells with 10 mM morphine for 48 h caused a tolerance to morphine manifested by a 2.5 fold shift to the right in the EC50 value with a 31+6% decrease in the maximum stimulation of [35 S]-GTPgS binding. The response caused by the partial agonist pentazocine was reduced to a greater extent. 3 Chronic treatment of the cells with the more ecacious m-ligand [D-Ala2, MePhe4, Gly-ol5]enkephalin (DAMGO, 10 mM) for 48 h aorded a greater eect than treatment with morphine. The maximal agonist eect of morphine was reduced to 58.9+6% of that seen in control cells while the maximal eect of DAMGO was reduced to 62.8+4%. There was a complete loss of agonist activity for pentazocine.
    [Show full text]
  • Role of Μ, Κ, and Δ Opioid Receptors in Tibial Inhibition of Bladder Overactivity in Cats
    JPET Fast Forward. Published on September 9, 2015 as DOI: 10.1124/jpet.115.226845 This article has not been copyedited and formatted. The final version may differ from this version. JPET #226845 Role of µ, κ, and δ Opioid Receptors in Tibial Inhibition of Bladder Overactivity in Cats Zhaocun Zhang, Richard C. Slater, Matthew C. Ferroni, Brian Kadow, Timothy D. Lyon Bing Shen, Zhiying Xiao, Jicheng Wang, Audry Kang James R. Roppolo, William C. de Groat, Changfeng Tai Downloaded from Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (Z.Z.) Department of Urology, University of Pittsburgh, Pittsburgh, PA, USA (Z.Z, R.C.S, M.C.F., B.K., T.D.L., B.S., Z.X., J.W., A.K., C.T.) Department of Urology, The Second Hospital, Shandong University, Jinan, P.R. China (Z.X.) jpet.aspetjournals.org Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA (J.R.R., W.C.D., C.T.) at ASPET Journals on September 25, 2021 Page 1 JPET Fast Forward. Published on September 9, 2015 as DOI: 10.1124/jpet.115.226845 This article has not been copyedited and formatted. The final version may differ from this version. JPET #226845 Running title: Opioid receptors in tibial inhibition of bladder Number of pages: 24 Number of figures: 9 Number of references: 32 Number of words in abstract: 236 Downloaded from Number of words in introduction: 385 Number of words in discussion: 1432 jpet.aspetjournals.org Abbreviations: AA, acetic acid; CMG, cystometrogram; FDA, Food and Drug Administration; OAB, overactive bladder; OR, opioid receptor; PAG, periaqueductal gray; PMC, pontine micturition center; TNS, tibial nerve stimulation; T, threshold Recommended Section: Gastrointestinal, Hepatic, Pulmonary, and Renal at ASPET Journals on September 25, 2021 Corresponding to: Changfeng Tai, Ph.D.
    [Show full text]