Neuronal Nicotinic Receptors

Total Page:16

File Type:pdf, Size:1020Kb

Neuronal Nicotinic Receptors NEURONAL NICOTINIC RECEPTORS Dr Christopher G V Sharples and preparations lend themselves to physiological and pharmacological investigations, and there followed a Professor Susan Wonnacott period of intense study of the properties of nAChR- mediating transmission at these sites. nAChRs at the Department of Biology and Biochemistry, muscle endplate and in sympathetic ganglia could be University of Bath, Bath BA2 7AY, UK distinguished by their respective preferences for C10 and C6 polymethylene bistrimethylammonium Susan Wonnacott is Professor of compounds, notably decamethonium and Neuroscience and Christopher Sharples is a hexamethonium,5 providing the first hint of diversity post-doctoral research officer within the among nAChRs. Department of Biology and Biochemistry at Biochemical approaches to elucidate the structure the University of Bath. Their research and function of the nAChR protein in the 1970’s were focuses on understanding the molecular and facilitated by the abundance of nicotinic synapses cellular events underlying the effects of akin to the muscle endplate, in electric organs of the acute and chronic nicotinic receptor electric ray,Torpedo , and eel, Electrophorus . High stimulation. This is with the goal of affinity snakea -toxins, principallyaa -bungarotoxin ( - Bgt), enabled the nAChR protein to be purified, and elucidating the structure, function and subsequently resolved into 4 different subunits regulation of neuronal nicotinic receptors. designateda ,bg , and d .6 An additional subunit, e , was subsequently identified in adult muscle. In the early 1980’s, these subunits were cloned and sequenced, The nicotinic acetylcholine receptor (nAChR) arguably and the era of the molecular analysis of the nAChR has the longest history of experimental study of any commenced. The muscle endplate nAChR has the receptor, and is the prototype ligand-gated ion subunit combination and stoichiometry (a 1)bed 1 , channel (LGIC). nAChRs in muscle and, to a lesser 2 whereas the extrajunctional nAChR (a 1)2bgd 1 extent, in autonomic neurones have been predominates in foetal or denervated muscle. characterised in detail. In contrast, nAChRs in the CNS have only lately become the focus of intense Neuronal nAChRs research efforts. The family of neuronal nAChRs in the brain and spinal cord is increasingly recognised to The biochemical and molecular approaches to have therapeutic potential in a wide range of studying the muscle nAChR eclipsed interest in conditions, yet the physiological functions of these neuronal nAChRs, as no model systems existed for nAChRs remain enigmatic and their subunit these receptors. The credentials for ganglionic composition, assembly, trafficking and regulation, and nAChRs were firmly established from the significance of their heterogeneity, are still to be electrophysiological and pharmacological approaches fully elucidated. Progress in these endeavours has but the notion of nAChRs in the brain was viewed with been hampered by a dearth of subtype-selective scepticism. Whilea -Bgt, the defining ligand of muscle tools. Historically, Nature has provided the majority of nAChRs, specifically bound to brain tissue, it did not nAChR-selective compounds, but the nicotinic antagonise central cholinergic functions.7 However, pharmacopoeia is now expanding with a number of the tobacco smoking habit was increasingly accepted novel synthetic ligands that have been developed in to be an addiction to nicotine, implying that nicotine the last few years. exerts a powerful central effect. In 1980, [3 H]-nicotine was reported to specifically label sites in the rat brain Historical perspective1 that have a unique nicotinic pharmacology.83 [ H]- The use of nicotine as an experimental tool was Nicotine binding was not blocked bya -Bgt, and the pivotal in Langley’s formulation of the concept of a anatomical distributions of binding sites for these two nicotinic ligands were quite distinct, raising the (then) ‘receptive substance’.2 In these studies he showed that ‘nicotine causes tonic contraction of certain novel and controversial prospect of nAChR muscles of fowl, frog and toad, and that this heterogeneity in the brain. The first publication of a contraction is prevented… by curare’. Subsequently, cloned neuronal nAChR subunit (a 3) appeared in Loewi and Dale developed the theory of 1986.9,10 The nAChR credentials of thea -Bgt binding neurohumoural transmission, and recognised site in neurones were conclusively provided by acetylcholine (ACh) as an endogenous transmitter.3 cloning of thea 7 nAChR subunit gene in 1990.11 The Dale distinguished the actions of muscarine and current tally of neuronal nAChR subunits in mammals nicotine, leading to the recognition of two is eleven (aaaa 2- 7, 9, 10,bb 2- 4), with an additional pharmacologically distinct (and now known to be subunit,a 8, identified in avian species.12,13 structurally and functionally unrelated) families of receptors for ACh, that take their names from these A distinct but related gene family ofa andb subunits natural products.4 Neuromuscular and ganglionic has been revealed in invertebrates.14 The C. elegans Tocris Cookson Ltd., UK Tocris Cookson Inc., USA Tel: + 44 (0)117 982 6551 Tel: (800) 421-3701 Fax: + 44 (0)117 982 6552 www.tocris.com Fax: (800) 483-1993 e-mail: [email protected] [email protected] e-mail: [email protected] genome sequence incorporates 17 candidate nAChR nAChRs are present (albeit in relatively low subunits; nAChRs in nematodes are the target for the abundance) throughout the central and peripheral anthelmintic levamisole. In insects, nAChRs are the nervous systems. In contrast to their pivotal role in principal excitatory receptors in the CNS, and autonomic neurotransmission and in the initiation of constitute a major pesticide target (e.g. for muscle contraction, nAChRs in the CNS are imidacloprid). Here we will focus on vertebrate considered to exert a more modulatory influence.16,17 nAChRs; the reader is referred to a recent review14 Neuronal nAChRs are gaining credence as significant for a comprehensive account of insect nAChRs. players in the nervous system from their relationship with a number of disease states in which they are Heterogeneity of neuronal nAChR subunits and perceived as novel drug targets.18 These include subtypes Alzheimer’s and Parkinson’s diseases, schizophrenia, nAChRs are pentameric LGICs and members of the Tourette’s Syndrome and attention deficit disorder. In superfamily of neurotransmitter receptors that addition, neuronal nAChRs are also targets for includes the GABA , glycine and 5-HT receptors.15 analgesia, anxiolysis, neuroprotection and smoking A3 cessation. Figure 1. nAChR structure and heterogeneity A. Structure of a neuronal nAChR subunit. N-Terminal Glycosylation Cys Cys C-Terminal M1 M2 M3 M4 P Phosphorylation B. Structural overview of a nAChR with one subunit removed revealing channel lumen. Shown are binding sites for agonists (including agonist binding site loop model), competitive antagonists, non-competitive antagonists and positive allosteric modulators.38 A F Agonist/Competitive Non-competitive antagonist antagonist interacting with B E K+ extracellular domain CD Positive allosteric modulator a b subunit subunit AGONIST BINDING SITE LOOP MODEL Channel blocking non-competitive antagonist Ca2+/Na+ C. Major nAChR subtypes present in the CNS and peripheral nervous system (PNS). Blue circles represent putative agonist binding sites at subunit interfaces. b2 a7 b4 a4 a4 a7 a7 a3 a3 b2 b2 a7 a7 a5 bx CNS CNS/PNS PNS 2 Neuronal nAChRs are composed of pentameric (M1-M4) that transverse the plasma membrane combinations ofab and subunits, giving the potential (Figure 1A); evidence indicates that M2 isa -helical for a great variety of native neuronal nAChRs.12 and lines the cation pore.1,37 M3 and M4 are Heterologous expression of nAChRs in Xenopus separated by a large, variable, intracellular loop which oocytes and mammalian cell lines has established contains putative phosphorylation sites for Ser/Thr certain rules of assembly that limit the subtypes of kinases. native nAChRs that may exist. Pairwise combinations Five subunits assemble to form a pentameric nAChR. ofab 2,aa 3 or 4 subunits with 2 and b 4 subunits can Cryo-electron microscopy at 4.6Å resolution of form functional nAChRs, whereas thea 5 andb 3 Torpedo nAChRs in a resting, non-activated state has subunits are generally unable to participate revealed a membrane spanning protein in which the successfully in pairwise combinations, but they have bulk of the structure is extracellular.39 It been expressed in heteromers with at least two other accommodates a cation conducting pore which types of subunits.12,19,20,21,22 Thea 6 subunit has been narrows to a putative gate within the membrane shown to form a functional nAChR in combination bilayer. Two agonist binding sites are located at the withb 4, but higher levels of expression were interfaces of theTorpedo aa /gd and / subunits observed whena 6 was co-expressed with at least (analogous toa /b subunit interfaces in neuronal two other types of subunit, includingb 3.23,24 In nAChRs, Figure 1C), approximately 20-40 Å from the contrast, theaa 7, 8 and a 9 subunits are ion channel.37,40 Most features deduced from this distinguished by their ability to form robust homomeric moderately resolvedTorpedo nAChR structure have receptors in expression systems, althoughaa 7 8 been confirmed with the determination of a high heteromers also occur in avian tissues.11,25,26,27
Recommended publications
  • PRODUCT INFORMATION ABT-594 Item No
    PRODUCT INFORMATION ABT-594 Item No. 22822 CAS Registry No.: 203564-54-9 Formal Name: 5-[(2R)-2-azetidinylmethoxy]-2- H chloro-pyridine, monohydrochloride N Synonyms: Ebanicline, Tebanicline O MF: C9H11ClN2O • HCl FW: 235.1 N Purity: ≥95% Cl Supplied as: A solid • HCl Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures ABT-594 is supplied as a solid. A stock solution may be made by dissolving the ABT-594 in the solvent of choice. ABT-594 is soluble in the organic solvent DMSO, which should be purged with an inert gas. Description ABT-594 is a potent agonist of neuronal α4β2 subunit-containing nicotinic acetylcholine receptors 1 (nAChRs; Ki = 37 pM in a radioligand binding assay). It is selective for neuronal nAChRs over neuromuscular α1β1δγ subunit-containing nAChRs (Ki = 10,000 nM), α1B-, α2B-, and α2C-adrenergic receptors (Kis = 890, 597, and 342 nM, respectively), and 70 other receptors, enzymes, and transporters 86 + (Kis = >1,000 nM) in radioligand binding assays. ABT-594 induces [ Rb ] efflux in K177 cells transfected with human neuronal α4β2 subunit-containing nAChRs (EC50 = 140 nM). In vivo, ABT-594 (0.05 and 0.01 mg/kg, s.c.) increases latency to paw withdrawal in a hot-plate test in rats.2 It also induces hypothermia, seizures, and an increase in blood pressure. References 1. Donnelly-Roberts, D.L., Puttfarcken, P.S., Kuntzweiler, T.A., et al. ABT-594 [(R)-5-(2-azetidinylmethoxy)- 2-chloropyridine]: A novel, orally effective analgesic acting via neuronal nicotinic acetylcholine receptors: I.
    [Show full text]
  • Chemicals in the Fourth Report and Updated Tables Pdf Icon[PDF
    Chemicals in the Fourth National Report on Human Exposure to Environmental Chemicals: Updated Tables, March 2021 CDC’s Fourth National Report on Human Exposure to Environmental Chemicals: Updated Tables, March 2021 provides exposure data on the following chemicals or classes of chemicals. The Updated Tables contain cumulative data from national samples collected beginning in 1999–2000 and as recently as 2015-2016. Not all chemicals were measured in each national sample. The data tables are available at https://www.cdc.gov/exposurereport. An asterisk (*) indicates the chemical has been added since publication of the Fourth National Report on Human Exposure to Environmental Chemicals in 2009. Adducts of Hemoglobin Acrylamide Formaldehyde* Glycidamide Tobacco Alkaloids and Metabolites Anabasine* Anatabine* Cotinine Cotinine-n-oxide* Hydroxycotinine* Trans-3’-hydroxycotinine* 1-(3-Pyridyl)-1-butanol-4-carboxylic acid* Nicotine* Nicotine-N’-oxide* Nornicotine* Tobacco-Specific Nitrosamines (TSNAs) N’-Nitrosoanabasine (NAB)* N’-Nitrosoanatabine (NAT)* N’-Nitrosonornicotine (NNN)* Total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol) (NNAL)* Volatile N-nitrosamines (VNAs) N-Nitrosodiethylamine (NDEA)* N-Nitrosoethylmethylamine (NMEA)* N-Nitrosomorpholine (NMOR)* N-Nitrosopiperidine (NPIP)* N-Nitrosopyrrolidine (NPYR)* Disinfection By-Products Bromodichloromethane Dibromochloromethane Tribromomethane (Bromoform) Trichloromethane (Chloroform) Personal Care and Consumer Product Chemicals and Metabolites Benzophenone-3 Bisphenol A Bisphenol F* Bisphenol
    [Show full text]
  • Nicotinic Stimulation Produces Multiple Forms of Increased Glutamatergic Synaptic Transmission
    The Journal of Neuroscience, September 15, 1998, 18(18):7075–7083 Nicotinic Stimulation Produces Multiple Forms of Increased Glutamatergic Synaptic Transmission Kristofer A. Radcliffe and John A. Dani Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030-3498 Synaptic modulation and long-term synaptic changes are initiate calcium-dependent mechanisms that are known to in- thought to be the cellular correlates for learning and memory duce glutamatergic synaptic plasticity. The results with evoked (Madison et al., 1991; Aiba et al., 1994; Goda and Stevens, synaptic currents showed that nAChR activity can alter the 1996). The hippocampus is a center for learning and memory relationship between the incoming presynaptic activity and that receives abundant cholinergic innervation and has a high outgoing postsynaptic signaling along glutamatergic fibers. density of nicotinic acetylcholine receptors (nAChRs) (Wada et Thus, the same information arriving along the same glutama- al., 1989; Woolf, 1991). We report that strong, brief stimulation tergic afferents will be processed differently when properly of nAChRs enhanced hippocampal glutamatergic synaptic timed nicotinic activity converges onto the glutamatergic pre- transmission on two independent time scales and altered the synaptic terminals. Influencing information processing at gluta- relationship between consecutively evoked synaptic currents. matergic synapses may be one way in which nicotinic cholin- The nicotinic synaptic enhancement required extracellular cal- ergic activity influences cognitive processes. Disruption of cium and was produced by the activation of presynaptic a7- these nicotinic cholinergic mechanisms may contribute to the containing nAChRs. Although one form of glutamatergic en- deficits associated with the degeneration of cholinergic func- hancement lasted only for seconds, another form lasted for tions during Alzheimer’s disease.
    [Show full text]
  • Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence
    Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence Christie D. Fowler, Jill R. Turner, and M. Imad Damaj Contents 1 Introduction 2 Basic Neurocircuitry of Nicotine Addiction 3 Role of Nicotinic Receptors in Nicotine Dependence and Brain Function 4 Modulatory Factors That Influence nAChR Expression and Signaling 5 Genomics and Genetics of Nicotine Dependence 5.1 Overview 5.2 Human and Animal Genetic Studies 5.3 Transcriptionally Adaptive Changes 6 Other Constituents in Nicotine and Tobacco Products Mediating Dependence 7 Therapeutic Approaches for Tobacco and Nicotine Dependence 7.1 Nicotine Replacement Therapies 7.2 Varenicline and Bupropion 7.3 Novel Approaches 8 Conclusion References Abstract Tobacco dependence is a leading cause of preventable disease and death world- wide. Nicotine, the main psychoactive component in tobacco cigarettes, has also C. D. Fowler Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA J. R. Turner Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA M. Imad Damaj (*) Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA Translational Research Initiative for Pain and Neuropathy at VCU, Richmond, VA, USA e-mail: [email protected] # Springer Nature Switzerland AG 2019 Handbook of Experimental Pharmacology, https://doi.org/10.1007/164_2019_252 C. D. Fowler et al. been garnering increased popularity in its vaporized form, as derived from e-cigarette devices. Thus, an understanding of the molecular mechanisms under- lying nicotine pharmacology and dependence is required to ascertain novel approaches to treat drug dependence. In this chapter, we review the field’s current understanding of nicotine’s actions in the brain, the neurocircuitry underlying drug dependence, factors that modulate the function of nicotinic acetylcholine receptors, and the role of specific genes in mitigating the vulnerability to develop nicotine dependence.
    [Show full text]
  • Addictions and the Brain
    9/18/2012 Addictions and the Brain TAAP Conference September 14, 2012 Acknowledgements • La Hacienda Treatment Center • American Society of Addiction Medicine • National Institute of Drug Abuse © 2012 La Hacienda Treatment Center. All rights reserved. 1 9/18/2012 Definition • A primary, progressive biochemical, psychosocial, genetically transmitted chronic disease of relapse who’s hallmarks are denial, loss of control and unmanageability. DSM IV Criteria for dependency: At least 3 of the 7 below 1. Withdrawal 2. Tolerance 3. The substance is taken in larger amounts or over a longer period than was intended. 4. There is a persistent desire or unsuccessful efforts to cut down or control substance use. 5. A great deal of time is spent in activities necessary to obtain the substance, use the substance, or recover from its effects. 6. Important social, occupational, or recreational activities are given up or reduced because of the substance use. 7. The substance use is continued despite knowledge of having a persistent or recurrent physical or psychological problem that is likely to have been caused or exacerbated by the substance. © 2012 La Hacienda Treatment Center. All rights reserved. 2 9/18/2012 Dispute between behavior and disease Present understanding of the Hypothalamus location of the disease hypothesis. © 2012 La Hacienda Treatment Center. All rights reserved. 3 9/18/2012 © 2012 La Hacienda Treatment Center. All rights reserved. 4 9/18/2012 © 2012 La Hacienda Treatment Center. All rights reserved. 5 9/18/2012 Dispute regarding behavior versus disease © 2012 La Hacienda Treatment Center. All rights reserved. 6 9/18/2012 © 2012 La Hacienda Treatment Center.
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • Sílvia Vilares Conde
    Sílvia Vilares Conde FUNCTIONAL SIGNIFICANCE OF ADENOSINE IN CAROTID BODY CHEMOSENSORY ACTIVITY IN CONTROL AND CHRONICALLY HYPOXIC ANIMALS Lisboa, 2007 a Dissertation presented to obtain the PhD degree in “Ciências da Vida – Especialidade Farmacologia” at the Faculdade de Ciências Médicas, Universidade Nova de Lisboa and Biotecnología: Aplicaciones Biomédicas at the Facultad de Medicina, Universidad de Valladolid Supervised by Profs. Constancio Gonzalez, Emília Monteiro and Ana Obeso. b Realizado com o apoio da Fundação para a Ciência e Tecnologia, SFRH/BD/14178/2003 financiada pelo POCI 2010 no âmbito da Formação avançada para a Ciência, Medida IV.3. c To my mum and dad d This work: Originated the following publications: - Conde S.V., Obeso A., Vicario I., Rigual R., Rocher A. and Gonzalez C. (2006), Caffeine inhibition of rat carotid body chemoreceptors is mediated by A2A and A2B adenosine receptors, J. Neurochem., 98, 616-628. (Chapter 3) - Conde S.V. and Monteiro E.C. (2006), Activation of nicotinic ACh receptors with α4 subunits induces adenosine release at the rat carotid body, Br. J. Pharmacol., 147, 783-789. (Chapter 2) - Conde S.V. and Monteiro E.C. (2004), Hypoxia induces adenosine release from the rat carotid body, J. Neurochem., 89 (5), 1148-1156. (Chapter 1) - Conde S.V. and Monteiro E.C. (2003), Adenosine-acetylcholine interactions at the rat carotid body, In: “Chemoreception: From cellular signalling to functional plasticity”, JM Pequinot et al. (Eds), Klumer Academic Press London, 305-311. (Chapter 2) Won the following awards: - 1st Prize “De Castro-Heymans–Neil Award” awarded by ISAC (International Society for Arterial Chemoreception) to the best work presented by a Young Researcher each triennial ISAC Meeting, 2002 - Pfizer Honor Young Researcher Prize awarded by the Portuguese Society of Medical Sciences, 2002 e Functional significance of adenosine in carotid body chemoreception PhD thesis, Silvia Vilares Conde INDEX Page List of Figures and Tables………………………………………………………..
    [Show full text]
  • Expression of Multiple Populations of Nicotinic Acetylcholine
    EXPRESSION OF MULTIPLE POPULATIONS OF NICOTINIC ACETYLCHOLINE RECEPTORS IN BOVINE ADRENAL CHROMAFFIN CELLS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Bryan W. Wenger, B.A. The Ohio State University 2003 Dissertation Committee: Approved by: Professor Dennis B. McKay, Advisor Professor R. Thomas Boyd ________________________ Advisor Professor Popat N. Patil College of Pharmacy Professor Lane Wallace, Ph.D. ABSTRACT The importance of the role of nAChRs in physiological and pathological states is becoming increasingly clear. It is apparent that there are multitudes of nAChR subtypes with different expression patterns, pharmacologies and functions that may be important in various disease states. Therefore, a greater understanding of nAChR subtypes is essential for potential pharmacological intervention in nAChR systems. Bovine adrenal chromaffin cells are a primary culture of a neuronal type cell that express ganglionic types of nAChRs whose activation can be related to a functional response. While much is known about the outcome of functional activation of adrenal nAChRs, little work has been done in characterizing populations of nAChRs in adrenal chromaffin cells. These studies characterize the pharmacology and regulation of populations of nAChRs found in bovine adrenal chromaffin cells. The primary findings of this research include 1) the characterization of an irreversible antagonist of adrenal nAChRs, 2) the discovery of
    [Show full text]
  • Muscle Relaxants Physiologic and Pharmacologic Aspects
    K. Fukushima • R. Ochiai (Eds.) Muscle Relaxants Physiologic and Pharmacologic Aspects With 125 Figures Springer Contents Preface V List of Contributors XVII 1. History of Muscle Relaxants Some Early Approaches to Relaxation in the United Kingdom J.P. Payne 3 The Final Steps Leading to the Anesthetic Use of Muscle Relaxants F.F. Foldes 8 History of Muscle Relaxants in Japan K. Iwatsuki 13 2. The Neuromuscular Junctions - Update Mechanisms of Action of Reversal Agents W.C. Bowman 19 Nicotinic Receptors F.G. Standaert 31 The Neuromuscular Junction—Basic Receptor Pharmacology J.A. Jeevendra Martyn 37 Muscle Contraction and Calcium Ion M. Endo 48 3. Current Basic Experimental Works Related to Neuromuscular Blockade in Present and Future Prejunctional Actions of Neuromuscular Blocking Drugs I.G. Marshall, C. Prior, J. Dempster, and L. Tian 51 VII VIII Approaches to Short-Acting Neuromuscular Blocking Agents J.B. Stenlake 62 Effects Other than Relaxation of Non-Depolarizing Muscle Relaxants E.S. Vizi 67 Regulation of Innervation-Related Properties of Cultured Skeletal Muscle Cells by Transmitter and Co-Transmitters R.H. Henning 82 4. Current Clinical Experimental Works Related to Neuromuscular Blockade in Present and Future Where Should Experimental Works Be Conducted? R.D. Miller 93 Muscle Relaxants in the Intensive Care Unit ! J.E. Caldwell 95 New Relaxants in the Operating Room R.K. Mirakhur 105 Kinetic-Dynamic Modelling of Neuromuscular Blockade C. Shanks Ill 5. Basic Aspects of Neuromuscular Junction Physiology of the Neuromuscular Junction W.C. Bowman 117 Properties of <x7-Containing Acetylcholine Receptors and Their Expression in Both Neurons and Muscle D.K.
    [Show full text]
  • Neuronal Nicotinic Receptors: from Structure to Pathology
    Progress in Neurobiology 74 (2004) 363–396 www.elsevier.com/locate/pneurobio Neuronal nicotinic receptors: from structure to pathology C. Gotti, F. Clementi* CNR, Institute of Neuroscience, Cellular and Molecular Pharmacology Section, Department of Medical Pharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy Received 22 July 2004; accepted 29 September 2004 Available online 27 October 2004 Abstract Neuronal nicotinic receptors (NAChRs) form a heterogeneous family of ion channels that are differently expressed in many regions of the central nervous system (CNS) and peripheral nervous system. These different receptor subtypes, which have characteristic pharmacological and biophysical properties, have a pentameric structure consisting of the homomeric or heteromeric combination of 12 different subunits (a2–a10, b2–b4). By responding to the endogenous neurotransmitter acetylcholine, NAChRs contribute to a wide range of brain activities and influence a number of physiological functions. Furthermore, it is becoming evident that the perturbation of cholinergic nicotinic neurotransmission can lead to various diseases involving nAChR dysfunction during development, adulthood and ageing. In recent years, it has been discovered that NAChRs are present in a number of non-neuronal cells where they play a significant functional role and are the pathogenetic targets in several diseases. NAChRs are also the target of natural ligands and toxins including nicotine (Nic), the most widespread drug of abuse. This review will attempt to survey the major achievements reached in the study of the structure and function of NAChRs by examining their regional and cellular localisation and the molecular basis of their functional diversity mainly in pharmacological and biochemical terms.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • The Role of Serotonin in Memory: Interactions with Neurotransmitters and Downstream Signaling
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bushehr University of Medical Sciences Repository Exp Brain Res (2014) 232:723–738 DOI 10.1007/s00221-013-3818-4 REVIEW The role of serotonin in memory: interactions with neurotransmitters and downstream signaling Mohammad Seyedabadi · Gohar Fakhfouri · Vahid Ramezani · Shahram Ejtemaei Mehr · Reza Rahimian Received: 28 April 2013 / Accepted: 20 December 2013 / Published online: 16 January 2014 © Springer-Verlag Berlin Heidelberg 2014 Abstract Serotonin, or 5-hydroxytryptamine (5-HT), is there has been an alteration in the density of serotonergic found to be involved in many physiological or pathophysi- receptors in aging and Alzheimer’s disease, and serotonin ological processes including cognitive function. Seven dis- modulators are found to alter the process of amyloidogen- tinct receptors (5-HT1–7), each with several subpopulations, esis and exert cognitive-enhancing properties. Here, we dis- have been identified for serotonin, which are different in cuss the serotonin-induced modulation of various systems terms of localization and downstream signaling. Because involved in mnesic function including cholinergic, dopa- of the development of selective agonists and antagonists minergic, GABAergic, glutamatergic transmissions as well for these receptors as well as transgenic animal models as amyloidogenesis and intracellular pathways. of cognitive disorders, our understanding of the role of serotonergic transmission in learning and memory has Keywords Serotonin · Memory · Signaling pathways improved in recent years. A large body of evidence indi- cates the interplay between serotonergic transmission and Abbreviations other neurotransmitters including acetylcholine, dopamine, 2PSDT Two-platform spatial discrimination task γ-aminobutyric acid (GABA) and glutamate, in the neu- 3xTg-AD Triple-transgenic mouse model of Alzheimer’s robiological control of learning and memory.
    [Show full text]