Synthesis of Amphibian Alkaloids and Development of Acetaminophen Analogues Lei Miao University of New Orleans

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of Amphibian Alkaloids and Development of Acetaminophen Analogues Lei Miao University of New Orleans University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 8-6-2009 Synthesis of Amphibian Alkaloids and Development of Acetaminophen Analogues Lei Miao University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Miao, Lei, "Synthesis of Amphibian Alkaloids and Development of Acetaminophen Analogues" (2009). University of New Orleans Theses and Dissertations. 985. https://scholarworks.uno.edu/td/985 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UNO. It has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. The uthora is solely responsible for ensuring compliance with copyright. For more information, please contact [email protected]. Synthesis of Amphibian Alkaloids and Development of Acetaminophen Analogues A Dissertation Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Lei Miao B.S., Chemistry, University of Science & Technology of China, China, 2003 August 2009 To my family ii ACKNOWLEDGMENTS I would like to express my gratitude to my advisor, Professor Mark L. Trudell, for his support, guidance and encouragement during my doctoral study. His confidence and knowledge helped me to stay on track and achieve my goals. I am also grateful to Professor Bruce C. Gibb , Professor Branco S. Jursic, Professor Guijun Wang and Professor John B. Wiley for being part of my committee. I wish to thank Corinne Gibb for her kind help on the NMR all the time. I wish to thank Professor Edwin D. Stevens for the X-Ray crystallographic data. I wish to thank Professor Edwin Vedejs at the University of Michigan in Ann Arbor for the assistance during the aftermath of Hurricane Katrina. I wish to thank Johanna and Kenneth Ludema for their kindness and help when I was in Ann Arbor, Michigan. I wish to thank some of the past and present members of the Trudell group for their help and support: Dr. Liang Xu, Dr. Suhong Zhang, Dr. Shaine Cararas, Dr. Harneet Kaur, Hong Shu, April Noble, Xiaobo Gu, Andrea Forsyth, Abha Verma, Kim Slaughter and Dr. Murali Reddy. Finally, I wish to thank my lovely wife Ying Long, my family and all my friends. They have been my real inspiration and my strength to succeed in my doctoral studies. iii TABLE OF CONTENTS LIST OF TABLES.......................................................................................................................vii LIST OF SCHEMES..................................................................................................................viii LIST OF FIGURES.......................................................................................................................x ABSTRACT...................................................................................................................................xi CHAPTER 1. INTRODUCTION....................................................................................................1 1.1. Nicotinic acetylcholine receptors..............................................................................................1 1.2. Nicotinic acetylcholine receptor structure and receptor subtypes............................................2 1.3. Nicotinic acetylcholine receptor subunits.................................................................................4 1.4. Nicotinic acetylcholine receptor notable variations..................................................................5 1.5. Nicotinic acetylcholine receptor binding the channel...............................................................6 1.6. Nicotinic acetylcholine receptor opening the channel..............................................................7 1.7. Nicotinic acetylcholine receptor effects....................................................................................8 1.8. Nicotinic acetylcholine receptor regulation of desensitization.................................................8 1.9. Nicotinic acetylcholine receptor roles......................................................................................9 1.10. Nicotine...................................................................................................................................9 1.11. Epibatidine............................................................................................................................11 1.12. Half maximal inhibitory concentration (IC50).......................................................................13 1.13. Half maximal effective concentration (EC50).......................................................................15 1.14. Amphibian alkaloids.............................................................................................................16 1.15. Anabasine..............................................................................................................................18 1.16. Noranabasamine....................................................................................................................19 1.17. Gephyrotoxin........................................................................................................................21 1.18. References.............................................................................................................................22 iv CHAPTER 2. Hydroxyarylketones via Regioselective Ring-Opening Reactions of Lactones with Aryllithium Reagents.....................................................................................................................27 2.1. Abstract...................................................................................................................................27 2.2. Introduction.............................................................................................................................27 2.3. Results and discussion............................................................................................................28 2.4. Conclusion..............................................................................................................................33 2.5. Acknowledgment....................................................................................................................33 2.6. Experimental section...............................................................................................................33 2.7. References...............................................................................................................................44 CHAPTER 3. Enantioselective Syntheses of Both Enantiomers of Noranabasamine..................46 3.1. Abstract...................................................................................................................................46 3.2. Introduction.............................................................................................................................47 3.3. Results and discussion............................................................................................................48 3.4. Conclusion..............................................................................................................................58 3.5. Acknowledgment....................................................................................................................58 3.6. Experimental section...............................................................................................................59 3.7. References and notes...............................................................................................................70 CHAPTER 4. A Formal Synthesis of (+)-Gephyrotoxin-Kishi’s Intermediate.............................73 4.1. Abstract...................................................................................................................................73 4.2. Introduction.............................................................................................................................73 4.3. Results and discussion............................................................................................................76 4.4. Conclusion..............................................................................................................................82 4.5. Acknowledgment....................................................................................................................83 4.6. Experimental section...............................................................................................................83 4.7. References...............................................................................................................................92 v CHAPTER 5. First Multi-gram Preparation of SCP-123, A Novel Water Soluble Analgesic........................................................................................................................................94 5.1. Abstract...................................................................................................................................94 5.2. Introduction.............................................................................................................................95 5.3. Results and discussion............................................................................................................96
Recommended publications
  • Roger Lee Papke Box 100267 JHM Health Science Center Gainesville, Florida 32610
    CURRICULUM VITAE Roger Lee Papke DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS UNIVERSITY OF FLORIDA SCHOOL OF MEDICINE Box 100267 J.H.M. Health Science Center Gainesville, Florida 32610 (352) 392-4712, FAX (352) 392-9696 [email protected] BIOGRAPHICAL DATA: Born: October 12, 1953, Kenmore, New York Married: December 24, 1980 to Clare Stokes Citizenship: U. S. A. EDUCATION: Starpoint Central School Pendleton, N. Y. Primary and Secondary N.Y.S. Regents Diploma 1971 New York University Washington Square College of Arts and Sciences 1971 - 1975 Majors in Biology and Classical Civilization Bachelor of Arts awarded May 1975 New York University Graduate school of Arts and Sciences 1975 - 1976 Thesis advisor: Dr. Fleur L. Strand Thesis title: An Alpha Adrenergic Response of Cardiac Muscle at an Alkaline pH Master of Science awarded May 1976 Cornell University Graduate School of Arts and Science 1976-1979: Section of Physiology Graduate Research Assistant in Reproductive Physiology Advisor: Dr. William Hansel Research topic: The endocrine control of delayed implantation in mink Cornell University Graduate School of Arts and Science 1979-1986: Section of Neurobiology and Behavior Thesis Advisor: Dr. Robert Oswald Primary research topic: Pharmacology of nicotinic acetylcholine receptors Thesis Title: The Gating of Single Channel Currents Through the Nicotinic Acetylcholine Receptors of BC3H-1 Cells: Effects of Agonists and Allosteric Ligands Ph.D. conferred January 1987 ACADEMIC APPOINTMENTS: 1987 Postdoctoral Research Associate: Department of Pharmacology,
    [Show full text]
  • Differential Effects of Alkaloids on Memory in Rodents
    www.nature.com/scientificreports OPEN Diferential efects of alkaloids on memory in rodents Patrick M. Callahan1,2, Alvin V. Terry Jr.1,2, Manuel C. Peitsch3, Julia Hoeng3* & Kyoko Koshibu3* Nicotinic acetylcholine receptors (nAChRs) play a critical role in the neuropharmacology of learning and memory. As such, naturally occurring alkaloids that regulate nAChR activity have gained interest for understanding and potentially improving memory function. In this study, we tested the acute efects of three known nicotinic alkaloids, nicotine, cotinine, and anatabine, in suppressing scopolamine-induced memory defcit in rodents by using two classic memory paradigms, Y-maze and novel object recognition (NOR) in mice and rats, respectively. We found that all compounds were able to suppress scopolamine-induced spatial memory defcit in the Y-maze spontaneous alternation paradigm. However, only nicotine was able to suppress the short-term object memory defcit in NOR, despite the higher doses of cotinine and anatabine used to account for their potential diferences in nAChR activity. These results indicate that cotinine and anatabine can uniquely regulate short-term spatial memory, while nicotine seems to have more robust and general role in memory regulation in rodents. Thus, nAChR-activating alkaloids may possess distinct procognitive properties in rodents, depending on the memory types examined. Te cholinergic system of the brain is a critical regulator of attention, memory, and higher-order cognitive processing, and its defcits are central to the etiology of dementia1. As such, nicotinic acetylcholine receptors (nAChRs) have gained much interest as a target of drug development 2. Neuronal nAChRs are pentameric pro- teins composed of various combinations of α (α2–α9) and β (β2–β4) nAChR subunits, diferentially expressed throughout the nervous system.
    [Show full text]
  • PRODUCT INFORMATION ABT-594 Item No
    PRODUCT INFORMATION ABT-594 Item No. 22822 CAS Registry No.: 203564-54-9 Formal Name: 5-[(2R)-2-azetidinylmethoxy]-2- H chloro-pyridine, monohydrochloride N Synonyms: Ebanicline, Tebanicline O MF: C9H11ClN2O • HCl FW: 235.1 N Purity: ≥95% Cl Supplied as: A solid • HCl Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures ABT-594 is supplied as a solid. A stock solution may be made by dissolving the ABT-594 in the solvent of choice. ABT-594 is soluble in the organic solvent DMSO, which should be purged with an inert gas. Description ABT-594 is a potent agonist of neuronal α4β2 subunit-containing nicotinic acetylcholine receptors 1 (nAChRs; Ki = 37 pM in a radioligand binding assay). It is selective for neuronal nAChRs over neuromuscular α1β1δγ subunit-containing nAChRs (Ki = 10,000 nM), α1B-, α2B-, and α2C-adrenergic receptors (Kis = 890, 597, and 342 nM, respectively), and 70 other receptors, enzymes, and transporters 86 + (Kis = >1,000 nM) in radioligand binding assays. ABT-594 induces [ Rb ] efflux in K177 cells transfected with human neuronal α4β2 subunit-containing nAChRs (EC50 = 140 nM). In vivo, ABT-594 (0.05 and 0.01 mg/kg, s.c.) increases latency to paw withdrawal in a hot-plate test in rats.2 It also induces hypothermia, seizures, and an increase in blood pressure. References 1. Donnelly-Roberts, D.L., Puttfarcken, P.S., Kuntzweiler, T.A., et al. ABT-594 [(R)-5-(2-azetidinylmethoxy)- 2-chloropyridine]: A novel, orally effective analgesic acting via neuronal nicotinic acetylcholine receptors: I.
    [Show full text]
  • Federal Register/Vol. 82, No. 13/Monday, January 23, 2017/Proposed Rules
    8004 Federal Register / Vol. 82, No. 13 / Monday, January 23, 2017 / Proposed Rules DEPARTMENT OF HEALTH AND comment will be made public, you are www.regulations.gov. Submit both HUMAN SERVICES solely responsible for ensuring that your copies to the Division of Dockets comment does not include any Management. If you do not wish your Food and Drug Administration confidential information that you or a name and contact information to be third party may not wish to be posted, made publicly available, you can 21 CFR Part 1132 such as medical information, your or provide this information on the cover [Docket No. FDA–2016–N–2527] anyone else’s Social Security number, or sheet and not in the body of your confidential business information, such comments and you must identify this Tobacco Product Standard for N- as a manufacturing process. Please note information as ‘‘confidential.’’ Any Nitrosonornicotine Level in Finished that if you include your name, contact information marked as ‘‘confidential’’ Smokeless Tobacco Products information, or other information that will not be disclosed except in identifies you in the body of your accordance with 21 CFR 10.20 and other AGENCY: Food and Drug Administration, comments, that information will be applicable disclosure law. For more HHS. posted on http://www.regulations.gov. information about FDA’s posting of • ACTION: Proposed rule. If you want to submit a comment comments to public dockets, see 80 FR with confidential information that you 56469, September 18, 2015, or access SUMMARY: The Food and Drug do not wish to be made available to the the information at: http://www.fda.gov/ Administration (FDA) is proposing a public, submit the comment as a regulatoryinformation/dockets/ tobacco product standard that would written/paper submission and in the default.htm.
    [Show full text]
  • Evaluating the Real-World Effectiveness of Bupropion Versus Varenicline for Smoking Cessation: Exploring the Role of Nicotine Metabolism and Medication Adherence
    Evaluating the Real-World Effectiveness of Bupropion Versus Varenicline for Smoking Cessation: Exploring the Role of Nicotine Metabolism and Medication Adherence By Jiahui Zhang A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Pharmacology and Toxicology University of Toronto © Copyright by Jiahui Zhang (2017) Evaluating the Real-World Effectiveness of Bupropion Versus Varenicline for Smoking Cessation: Exploring the Role of Nicotine Metabolism and Medication Adherence Jiahui Zhang Degree of Master of Science Graduate Department of Pharmacology and Toxicology University of Toronto ABSTRACT Bupropion and varenicline are effective, first-line prescription-only pharmacotherapies for smoking cessation; however, their real-world use is limited by affordability and accessibility. Using a novel internet-based randomized design, we evaluated the real-world effectiveness of mailed bupropion and varenicline, as well as the roles of nicotine metabolism (NMR) and medication adherence, in a sample of interested smokers using web-based recruitment and follow up. Quit rates at end of treatment (EOT) were significantly higher for varenicline (30.2%) compared to bupropion (19.6%). Quit rates at 6 months (14.0%) and 12 months (12.1%) were not significantly different between bupropion and varenicline. Increased medication compliance significantly improved cessation outcomes at EOT. NMR was associated with nicotine dependence. Varenicline benefited Slow Metabolizers of nicotine whilst bupropion benefited Normal Metabolizers. Even though real-world quit rates were comparable to clinical trials, improving medication compliance and implementing personalized pharmacological and behavioral interventions are promising approaches to increase efficacy of smoking cessation pharmacotherapies. ii ACKNOWLEDGEMENTS First and foremost, I would like to express my sincerest appreciation to my supervisor, Dr.
    [Show full text]
  • Sílvia Vilares Conde
    Sílvia Vilares Conde FUNCTIONAL SIGNIFICANCE OF ADENOSINE IN CAROTID BODY CHEMOSENSORY ACTIVITY IN CONTROL AND CHRONICALLY HYPOXIC ANIMALS Lisboa, 2007 a Dissertation presented to obtain the PhD degree in “Ciências da Vida – Especialidade Farmacologia” at the Faculdade de Ciências Médicas, Universidade Nova de Lisboa and Biotecnología: Aplicaciones Biomédicas at the Facultad de Medicina, Universidad de Valladolid Supervised by Profs. Constancio Gonzalez, Emília Monteiro and Ana Obeso. b Realizado com o apoio da Fundação para a Ciência e Tecnologia, SFRH/BD/14178/2003 financiada pelo POCI 2010 no âmbito da Formação avançada para a Ciência, Medida IV.3. c To my mum and dad d This work: Originated the following publications: - Conde S.V., Obeso A., Vicario I., Rigual R., Rocher A. and Gonzalez C. (2006), Caffeine inhibition of rat carotid body chemoreceptors is mediated by A2A and A2B adenosine receptors, J. Neurochem., 98, 616-628. (Chapter 3) - Conde S.V. and Monteiro E.C. (2006), Activation of nicotinic ACh receptors with α4 subunits induces adenosine release at the rat carotid body, Br. J. Pharmacol., 147, 783-789. (Chapter 2) - Conde S.V. and Monteiro E.C. (2004), Hypoxia induces adenosine release from the rat carotid body, J. Neurochem., 89 (5), 1148-1156. (Chapter 1) - Conde S.V. and Monteiro E.C. (2003), Adenosine-acetylcholine interactions at the rat carotid body, In: “Chemoreception: From cellular signalling to functional plasticity”, JM Pequinot et al. (Eds), Klumer Academic Press London, 305-311. (Chapter 2) Won the following awards: - 1st Prize “De Castro-Heymans–Neil Award” awarded by ISAC (International Society for Arterial Chemoreception) to the best work presented by a Young Researcher each triennial ISAC Meeting, 2002 - Pfizer Honor Young Researcher Prize awarded by the Portuguese Society of Medical Sciences, 2002 e Functional significance of adenosine in carotid body chemoreception PhD thesis, Silvia Vilares Conde INDEX Page List of Figures and Tables………………………………………………………..
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • Efforts Towards the Synthesis of Epibatidine By: Marianne Hanna
    Efforts Towards the Synthesis of Epibatidine By: Marianne Hanna (Junior-Biochemistry major) Faculty Advisor: Dr. Thomas Montgomery Duquesne University- Bayer School of Natural Sciences 1 Abstract: Epibatidine is a naturally toxic chemical found in the secretion of poison dart frogs. Given its structural similarities to the compound nicotine epibatidine binds strongly to nicotine receptors in the central nervous system (CTS). Epibatidine’s bioactivity arises from its unique geometry which allows it to bind to the α4β2 subunit in the nicotinic receptor. This triggers an analgesic effect without a release of dopamine, differentiating its activity from opioids. Prior efforts towards synthesizing epibatidine and its analogs have involved many steps making them untenable for pharmaceutical use. By using computational and experimental methods to study the mechanism for an interrupted Polonovski [3+2] cycloaddition which will give direct access to the epibatidine core motif. By synthesizing strategic derivatives of epibatidine through this route we will investigate opioid alternatives which lack many of their addictive qualities. Background: Epibatidine is a toxic alkaloid that is isolated from the skin of poison dart tree frog Epipedobates tricolor, secretions from the frog are used by indigenous tribes in darts for hunting.1 The chemical structure was established in 1992 using NMR spectroscopy (proton NMR).2 Epibatidine possesses significant medicinal properties, it functions as an analgesic agent by binding to the nicotinic acetylcholine receptors (nAChRs) instead of the opioid receptors.3 Moreover it displays an affinity for said receptors that is 100- to 200-fold higher than nicotine. The alkaloid interacts with Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels and are expressed central and peripherally.
    [Show full text]
  • Studies on New Pharmacological Treatments for Alcohol Dependence - and the Importance of Objective Markers of Alcohol Consumption
    Studies on new pharmacological treatments for alcohol dependence - and the importance of objective markers of alcohol consumption Andrea de Bejczy 2016 Addiction Biology Unit Section of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology Sahlgrenska Academy at University of Gothenburg Sweden Cover illustration: by A. de Bejczy Inspired by Stan Lee’s “The Invincible Ironman. The empty shell”, Marvel Comics “…HIS VOICE IS HOARSE, HIS HAND TREMBLING AS HE REACHES FOR THE GLEAMING OBJECT THAT SEEMS BOTH WONDERFUL AND TERRIBLE TO HIM…” Studies on new pharmacological treatments for alcohol dependence ©Andrea de Bejczy [email protected] ISBN: 978-91-628-9788-8 (printed publication) ISBN: 978-91-628-9789-5 (e-publication) http://hdl.handle.net/2077/42349 Printed in Gothenburg, Sweden 2016 By INEKO ii La familia iii iv Studies on new pharmacological treatments for alcohol dependence - and the importance of objective markers of alcohol consumption Andrea de Bejczy Addiction Biology Unit Section of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology Sahlgrenska Academy at University of Gothenburg ABSTRACT This thesis will guide you through three randomized controlled trials (RCT) on three pharmacotherapies for alcohol dependence; the antidepressant drug mirtazapine, the smoking cessation drug varenicline and the glycine-uptake inhibitor Org 25935. The mirtazapine study was an investigator initiated single- center harm-reduction study with alcohol consumption measured by self-report in a diary as main outcome. The results indicated that mirtazapine reduced alcohol consumption in males with heredity for alcohol use disorder (AUD). The Org 25935 study was an international multi-center study with abstinence as treatment goal, main time to relapse and alcohol consumption was measured by self-report collected by the Time Line Follow Back method (TLFB).
    [Show full text]
  • JPET #226803 Title Page Effects of Nicotinic Acetylcholine Receptor
    JPET Fast Forward. Published on September 10, 2015 as DOI: 10.1124/jpet.115.226803 This article has not been copyedited and formatted. The final version may differ from this version. 1 JPET #226803 Title Page Effects of nicotinic acetylcholine receptor agonists in assays of acute pain-stimulated and pain- depressed behaviors in rats Kelen. C. Freitas, F. Ivy Carroll, and S. Stevens Negus Downloaded from Department of Pharmacology and Toxicology, Virginia Commonwealth University, jpet.aspetjournals.org Richmond VA, USA Research Triangle Institute, Research Triangle Park, NC, USA at ASPET Journals on September 26, 2021 JPET Fast Forward. Published on September 10, 2015 as DOI: 10.1124/jpet.115.226803 This article has not been copyedited and formatted. The final version may differ from this version. 2 JPET #226803 Running Title Page Effects of nicotinic drugs on pain-depressed behavior Address correspondence to: Kelen Freitas, Department of Pharmacology and Toxicology, Downloaded from Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298. Telephone: (804) 828-3158 Fax: (804) 828-2117 Email: [email protected] jpet.aspetjournals.org Number of text pages: 37 at ASPET Journals on September 26, 2021 Number of tables: 1 Number of figures: 6 Number of references: 76 Number of words in the abstract: 241 Number of words in the introduction: 746 Number of words in the discussion: 1.250 List of non-standard abbreviations nAChRs, nicotinic acetylcholine receptors DhβE, dihydro-ß-ertyroidine MD-354, Meta-chlorophenylguanidine Nicotine, (-)-nicotine hydrogen tartrate PNU 282987, N-(3R)-1-Azabicyclo[2.2.2]oct-3-yl-4-chlorobenzamide 5-I-A-85380, 5-[123I]iodo-3-[2(S)-2-azetidinylmethoxy]pyridine ICSS, intracranial self-stimulation MCR, maximum control rate %MCR, percentage of MCR ANOVA, analysis of variance JPET Fast Forward.
    [Show full text]
  • Evidence-Based Guidelines for the Pharmacological Management of Substance Abuse, Harmful Use, Addictio
    444324 JOP0010.1177/0269881112444324Lingford-Hughes et al.Journal of Psychopharmacology 2012 BAP Guidelines BAP updated guidelines: evidence-based guidelines for the pharmacological management of substance abuse, Journal of Psychopharmacology 0(0) 1 –54 harmful use, addiction and comorbidity: © The Author(s) 2012 Reprints and permission: sagepub.co.uk/journalsPermissions.nav recommendations from BAP DOI: 10.1177/0269881112444324 jop.sagepub.com AR Lingford-Hughes1, S Welch2, L Peters3 and DJ Nutt 1 With expert reviewers (in alphabetical order): Ball D, Buntwal N, Chick J, Crome I, Daly C, Dar K, Day E, Duka T, Finch E, Law F, Marshall EJ, Munafo M, Myles J, Porter S, Raistrick D, Reed LJ, Reid A, Sell L, Sinclair J, Tyrer P, West R, Williams T, Winstock A Abstract The British Association for Psychopharmacology guidelines for the treatment of substance abuse, harmful use, addiction and comorbidity with psychiatric disorders primarily focus on their pharmacological management. They are based explicitly on the available evidence and presented as recommendations to aid clinical decision making for practitioners alongside a detailed review of the evidence. A consensus meeting, involving experts in the treatment of these disorders, reviewed key areas and considered the strength of the evidence and clinical implications. The guidelines were drawn up after feedback from participants. The guidelines primarily cover the pharmacological management of withdrawal, short- and long-term substitution, maintenance of abstinence and prevention of complications, where appropriate, for substance abuse or harmful use or addiction as well management in pregnancy, comorbidity with psychiatric disorders and in younger and older people. Keywords Substance misuse, addiction, guidelines, pharmacotherapy, comorbidity Introduction guidelines (e.g.
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States To
    U.S. International Trade Commission COMMISSIONERS Shara L. Aranoff, Chairman Daniel R. Pearson, Vice Chairman Deanna Tanner Okun Charlotte R. Lane Irving A. Williamson Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement the Dominican Republic- Central America-United States Free Trade Agreement With Respect to Costa Rica Publication 4038 December 2008 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 18, 2008, set forth in the Appendix hereto, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement the Dominican Republic- Central America-United States Free Trade Agreement, as approved in the Dominican Republic-Central America- United States Free Trade Agreement Implementation Act, with respect to Costa Rica. (This page is intentionally blank) Annex I Effective with respect to goods that are entered, or withdrawn from warehouse for consumption, on or after January 1, 2009, the Harmonized Tariff Schedule of the United States (HTS) is modified as provided herein, with bracketed matter included to assist in the understanding of proclaimed modifications. The following supersedes matter now in the HTS. (1). General note 4 is modified as follows: (a). by deleting from subdivision (a) the following country from the enumeration of independent beneficiary developing countries: Costa Rica (b).
    [Show full text]