Rhodes University Research Report 2006 Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
View/Download
CICHLIFORMES: Cichlidae (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 6.0 - 30 April 2021 Order CICHLIFORMES (part 3 of 8) Family CICHLIDAE Cichlids (part 3 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Haplochromis through Konia) Haplochromis Hilgendorf 1888 haplo-, simple, proposed as a subgenus of Chromis with unnotched teeth (i.e., flattened and obliquely truncated teeth of H. obliquidens); Chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), then beginning to be used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Haplochromis acidens Greenwood 1967 acies, sharp edge or point; dens, teeth, referring to its sharp, needle-like teeth Haplochromis adolphifrederici (Boulenger 1914) in honor explorer Adolf Friederich (1873-1969), Duke of Mecklenburg, leader of the Deutsche Zentral-Afrika Expedition (1907-1908), during which type was collected Haplochromis aelocephalus Greenwood 1959 aiolos, shifting, changing, variable; cephalus, head, referring to wide range of variation in head shape Haplochromis aeneocolor Greenwood 1973 aeneus, brazen, referring to “brassy appearance” or coloration of adult males, a possible double entendre (per Erwin Schraml) referring to both “dull bronze” color exhibited by some specimens and to what -
Cytogenetic Mapping and Contribution to the Knowledge of Animal Genomes
In: Advances in Genetics Research. Volume 4 ( in press ) ISBN 978-1-61728-764-0 Editor: Kevin V. Urbano, pp. © 2010 Nova Science Publishers, Inc. Chapter 1 Cytogenetic Mapping and Contribution to the Knowledge of Animal Genomes Cesar Martins, Diogo Cavalcanti Cabral-de-Mello, Guilherme Targino Valente, Juliana Mazzuchelli and Sarah Gomes de Oliveira UNESP – Univ Estadual Paulista, Departamento de Morfologia, Instituto de Biociências, Botucatu, SP, Brazil. Abstract Decades before the recent advances in molecular biology and the knowledge of the complete nucleotide sequence of several genomes, cytogenetic analysis provided the first information concerning the genome organization. Since the beginning of cytogenetics, great effort has been applied for understanding the chromosome evolution in a wide range of taxonomic groups. The exploration of molecular biology techniques in the cytogenetic area represents a powerful tool for advancement in the construction of physical chromosome maps of the genomes. The most important contribution of cytogenetics is related to the physical anchorage of genetic linkage maps in the chromosomes through the hybridization of DNA markers onto chromosomes. Several technologies, such as polymerase chain reaction (PCR), enzymatic restriction, flow sorting, chromosome microdissection and BAC library construction, associated with distinct labeling methods and fluorescent detection systems have allowed for the generation of a range of useful DNA probes applied in chromosome physical mapping. Concerning the probes used for molecular cytogenetics, the repetitive DNA is amongst the most explored nucleotide sequences. The recent development of bacterial artificial chromosomes (BACs) as vectors for carrying large genome fragments has allowed for the utilization of BACs as probes for the purpose of chromosome mapping. -
Indian and Madagascan Cichlids
FAMILY Cichlidae Bonaparte, 1835 - cichlids SUBFAMILY Etroplinae Kullander, 1998 - Indian and Madagascan cichlids [=Etroplinae H] GENUS Etroplus Cuvier, in Cuvier & Valenciennes, 1830 - cichlids [=Chaetolabrus, Microgaster] Species Etroplus canarensis Day, 1877 - Canara pearlspot Species Etroplus suratensis (Bloch, 1790) - green chromide [=caris, meleagris] GENUS Paretroplus Bleeker, 1868 - cichlids [=Lamena] Species Paretroplus dambabe Sparks, 2002 - dambabe cichlid Species Paretroplus damii Bleeker, 1868 - damba Species Paretroplus gymnopreopercularis Sparks, 2008 - Sparks' cichlid Species Paretroplus kieneri Arnoult, 1960 - kotsovato Species Paretroplus lamenabe Sparks, 2008 - big red cichlid Species Paretroplus loisellei Sparks & Schelly, 2011 - Loiselle's cichlid Species Paretroplus maculatus Kiener & Mauge, 1966 - damba mipentina Species Paretroplus maromandia Sparks & Reinthal, 1999 - maromandia cichlid Species Paretroplus menarambo Allgayer, 1996 - pinstripe damba Species Paretroplus nourissati (Allgayer, 1998) - lamena Species Paretroplus petiti Pellegrin, 1929 - kotso Species Paretroplus polyactis Bleeker, 1878 - Bleeker's paretroplus Species Paretroplus tsimoly Stiassny et al., 2001 - tsimoly cichlid GENUS Pseudetroplus Bleeker, in G, 1862 - cichlids Species Pseudetroplus maculatus (Bloch, 1795) - orange chromide [=coruchi] SUBFAMILY Ptychochrominae Sparks, 2004 - Malagasy cichlids [=Ptychochrominae S2002] GENUS Katria Stiassny & Sparks, 2006 - cichlids Species Katria katria (Reinthal & Stiassny, 1997) - Katria cichlid GENUS -
Nuclear and Plastid DNA Phylogeny of the Tribe Cardueae (Compositae
1 Nuclear and plastid DNA phylogeny of the tribe Cardueae 2 (Compositae) with Hyb-Seq data: A new subtribal classification and a 3 temporal framework for the origin of the tribe and the subtribes 4 5 Sonia Herrando-Morairaa,*, Juan Antonio Callejab, Mercè Galbany-Casalsb, Núria Garcia-Jacasa, Jian- 6 Quan Liuc, Javier López-Alvaradob, Jordi López-Pujola, Jennifer R. Mandeld, Noemí Montes-Morenoa, 7 Cristina Roquetb,e, Llorenç Sáezb, Alexander Sennikovf, Alfonso Susannaa, Roser Vilatersanaa 8 9 a Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain 10 b Systematics and Evolution of Vascular Plants (UAB) – Associated Unit to CSIC, Departament de 11 Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de 12 Barcelona, ES-08193 Bellaterra, Spain 13 c Key Laboratory for Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 14 Chengdu, China 15 d Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA 16 e Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA (Laboratoire d’Ecologie Alpine), FR- 17 38000 Grenoble, France 18 f Botanical Museum, Finnish Museum of Natural History, PO Box 7, FI-00014 University of Helsinki, 19 Finland; and Herbarium, Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov str. 20 2, 197376 St. Petersburg, Russia 21 22 *Corresponding author at: Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s. n., ES- 23 08038 Barcelona, Spain. E-mail address: [email protected] (S. Herrando-Moraira). 24 25 Abstract 26 Classification of the tribe Cardueae in natural subtribes has always been a challenge due to the lack of 27 support of some critical branches in previous phylogenies based on traditional Sanger markers. -
Cytogenetics of Gymnogeophagus Setequedas (Cichlidae: Geophaginae), with Comments on Its Geographical Distribution
Neotropical Ichthyology, 15(2): e160035, 2017 Journal homepage: www.scielo.br/ni DOI: 10.1590/1982-0224-20160035 Published online: 26 June 2017 (ISSN 1982-0224) Copyright © 2017 Sociedade Brasileira de Ictiologia Printed: 30 June 2017 (ISSN 1679-6225) Cytogenetics of Gymnogeophagus setequedas (Cichlidae: Geophaginae), with comments on its geographical distribution Leonardo M. Paiz1, Lucas Baumgärtner2, Weferson J. da Graça1,3, Vladimir P. Margarido1,2 and Carla S. Pavanelli1,3 We provide cytogenetic data for the threatened species Gymnogeophagus setequedas, and the first record of that species collected in the Iguaçu River, within the Iguaçu National Park’s area of environmental preservation, which is an unexpected occurrence for that species. We verified a diploid number of 2n = 48 chromosomes (4sm + 24st + 20a) and the presence of heterochromatin in centromeric and pericentromeric regions, which are conserved characters in the Geophagini. The multiple nucleolar organizer regions observed in G. setequedas are considered to be apomorphic characters in the Geophagini, whereas the simple 5S rDNA cistrons located interstitially on the long arm of subtelocentric chromosomes represent a plesiomorphic character. Because G. setequedas is a threatened species that occurs in lotic waters, we recommend the maintenance of undammed environments within its known area of distribution. Keywords: Chromosomes, Conservation, Iguaçu River, Karyotype, Paraná River. Fornecemos dados citogenéticos para a espécie ameaçada Gymnogeophagus setequedas, e o primeiro registro da espécie coletado no rio Iguaçu, na área de preservação ambiental do Parque Nacional do Iguaçu, a qual é uma área de ocorrência inesperada para esta espécie. Verificamos em G. setequedas 2n = 48 cromossomos (4sm + 24st + 20a) e heterocromatina presente nas regiões centroméricas e pericentroméricas, as quais indicam caracteres conservados em Geophagini. -
Genetic Diversity and Evolution in Lactuca L. (Asteraceae)
Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis committee Promotor Prof. Dr M.E. Schranz Professor of Biosystematics Wageningen University Other members Prof. Dr P.C. Struik, Wageningen University Dr N. Kilian, Free University of Berlin, Germany Dr R. van Treuren, Wageningen University Dr M.J.W. Jeuken, Wageningen University This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 25 January 2016 at 1.30 p.m. in the Aula. Zhen Wei Genetic diversity and evolution in Lactuca L. (Asteraceae) - from phylogeny to molecular breeding, 210 pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in Dutch and English ISBN 978-94-6257-614-8 Contents Chapter 1 General introduction 7 Chapter 2 Phylogenetic relationships within Lactuca L. (Asteraceae), including African species, based on chloroplast DNA sequence comparisons* 31 Chapter 3 Phylogenetic analysis of Lactuca L. and closely related genera (Asteraceae), using complete chloroplast genomes and nuclear rDNA sequences 99 Chapter 4 A mixed model QTL analysis for salt tolerance in -
Nov 2 5 2009
U.S. Department of Homeland Security U.S. Citizenship and Immigration Services Ofice ofAdministrative Appeals, MS 2090 Washington, DC 20529-2090 U. S. Citizenship and Immigration NOV 2 5 2009 IN RE: PETITION: Immigrant Petition for Alien Worker as an Alien of Extraordinary Ability Pursuant to Section 203(b)(l)(A) of the Immigration and Nationality Act, 8 U.S.C. 5 1153(b)(l)(A) ON BEHALF OF PETITIONER: INSTRUCTIONS: This is the decision of the Administrative Appeals Office in your case. All documents have been returned to the office that originally decided your case. Any further inquiry must be made to that office. If you believe the law was inappropriately applied or you have additional information that you wish to have considered, you may file a motion to reconsider or a motion to reopen. Please refer to 8 C.F.R. 5 103.5 for the specific requirements. All motions must be submitted to the office that originally decided your case by filing a Form I-290B, Notice of Appeal or Motion, with a fee of $585. Any motion must be filed within 30 days of the decision that the motion seeks to reconsider or reopen, as required by 8 C.F.R. 8 103.5(a)(l)(i). Perry Rhew Chief, Administrative Appeals Office DISCUSSION: The Director, Texas Service Center, initially approved the preference visa petition. Subsequently, the director issued a notice of intent to revoke the approval of the petition (NOIR). In a Notice of Revocation (NOR), the director ultimately revoked the approval of the Immigrant Petition for Alien Worker (Form 1-140). -
Careers Matter May 2015 Changed.Indd
10 Careers Matter, supplement to the Mail & Guardian May 29 to June 4 2015 Helpful contacts General enquiries: [email protected] Johannesburg: Tel 011 327 2002 Durban North: Tel 031 573 2038 King Sabata Dalindyebo FET College Cape Town Campus: PO Box 3423, Fax 086 409 1627 [email protected] Fax: 031 563 2268 (Mthatha) Cape Town 8000 Fax 021 422 1827 Pretoria: Tel 012 346 2189 Fax 086 409 1627 [email protected] Tel 047 505 1000 Fax 047 536 0932 Johannesburg Campus: PO Box 2289, [email protected] www.inscape.co.za Durban West: Tel 031 266 8400 [email protected] Parklands 2121 Fax 011 781 2796 Fax 031 266 9009 Engcobo Campus: Tel 047 548 1467 Intec College (Distance Learning) [email protected] Libode Ntshuba Campus: Tel 083 477 6972 AFDA Film, TV and Performance School Tel 021 417 6700 Fax 021 419 1210 Midrand: Tel 010 224 4300 Mapuzi Campus: Tel 047 575 9044 Cape Town: Tel 021 448 7500 www.intec.edu.za Fax 086 6126058 Mngazi Campus: Tel 047 576 9469 Fax 021 448 7610 [email protected] [email protected] Mthatha Campus: Tel 047 5360 923 Durban: Tel 031 569 2252 / 2317 Leaders in the Science of Fashion (Lisof) Pietermaritzburg: Tel 033 386 2376 Ntabozuko Campus: Tel 047 575 9044 [email protected] Johannesburg: Fax 033 386 3700 www.ksdfetcollege.co.za Johannesburg: Tel 011 482 8345 Tel 086 11 54763 Fax 011 326 1767 [email protected] Fax 011 482 8347 Pretoria: Tel 012 362 6827 Port Elizabeth: PO Box 27436, Lovedale FET College [email protected] Fax 086 695 1843 Greenacres 6057 (King William’s -
Taxonomy, Ecology and Fishery of Lake Victoria Haplochromine Trophic Groups
Taxonomy, ecology and fishery of Lake Victoria haplochromine trophic groups F. Witte & M.J.R van Oijen Witte, F. & M.J.P. van Oijen. Taxonomy, ecology and fishery of Lake Victoria haplochromine trophic groups. Zool. Verh. Leiden 262, 15.xi.1990: 1-47, figs. 1-16, tables 1-6.— ISSN 0024-1652. Based on ecological and morphological features, the 300 or more haplochromine cichlid species of Lake Victoria are classified into fifteen (sub)trophic groups. A key to the trophic groups, mainly based on external morphological characters, is presented. Of each trophic group a description is given com- prising data on taxonomy, ecology and fishery. As far as possible data from the period before the Nile perch upsurge and from the present situation are compared. A list of described species classified into trophic groups is added. Key words: ecology; fishery; Haplochromis; haplochromine cichlids; key; Lake Victoria; taxonomy; trophic groups. F. Witte, Research Group in Ecological Morphology, Zoologisch Laboratorium, Rijksuniversiteit Leiden, Postbus 9516, 2300 RA Leiden, The Netherlands. M.J.P. van Oijen, Nationaal Natuurhistorisch Museum (Rijksmuseum van Natuurlijke Historie), Postbus 9517, 2300 RA Leiden, The Netherlands. Contents Introduction 4 Material, techniques and definitions 5 Lake Victoria haplochromine cichlids in general 6 Key to the trophic groups 11 Description of the trophic groups 12 Detritivores/phytoplanktivores 12 Phytoplanktivores 14 Algae grazers 15 A. Epilithic algae grazers 15 B. Epiphytic algae grazers 17 Plant-eaters 18 Molluscivores 19 A. Pharyngeal crushers 20 B. Oral shellers/crushers 22 Zooplanktivores 24 Insectivores 27 Prawn-eaters 29 Crab-eaters 31 Piscivores s.l 32 A. -
14/03/2008 (Internal Question P
NATIONAL ASSEMBLY FOR WRITTEN REPLY QUESTION 473 DATE OF PUBLICATION OF INTERNAL QUESTION PAPER: 14/03/2008 (INTERNAL QUESTION PAPER 09-2008) 473. Mrs D van der Walt (DA) to ask the Minister of Education: (1) In each of the past ten years up to and including 2007, (a)(i) how many education providers were (aa) registered and (bb) accredited by the SA Qualification Authority (Saqa) and (ii) what are their names, (b)(i) how many education providers received provisional accreditation, (ii) what are their names and (iii) when did they receive it and (c)(i) how many of these providers have since received actual or full accreditation and (ii) when did they receive it; (2) whether any education providers lost their accreditation, if so, (a) what are their names, (b) when did this occur and (c) why, in each case? NW1113E REPLY: Private Higher Education Institutions The Department of Education is responsible for the registration of private higher education institutions. The responsibility for accreditation vests with the Higher Education Quality Committee (HEQC) of the Council on Higher Education (CHE). (a) (i) In the period up to 2007, 443 institutions lodged applications for registration as private higher education institutions in terms of the Higher Education Act, 1997 (Act No 101 of 1997). Of these, the Department registered 144 institutions, either provisionally or with full registration.. (bb) All institutions that have been granted registration would have obtained accreditation initially by SAQA and later by the Council on Higher Education (CHE). (ii) The 144 registered institutions that were registered by the Department after undergoing a quality assurance evaluation are listed in Table 1. -
Register of Private Higher Education Institutions
REGISTER OF PRIVATE HIGHER EDUCATION INSTITUTIONS LAST UPDATE 22 MAY 2019 This register of private higher education institutions (hereafter referred to as the Register) is published in accordance with section 54(2)(a)(i) of the Higher Education Act, 1997 (Act No. 101 of 1997) (hereafter referred to as the Act). In terms of section 56(1) (a), any member of the public has the right to inspect the register. IMPORTANT NOTE FOR THE MEDIA The Department of Higher Education and Training recognizes that the information contained in the Register is of public interest and that the media may wish to publish it. In order to avoid misrepresentation in the public domain, the Department of Higher Education and Training kindly requests that all published lists of registered institutions are accompanied by the relevant explanatory information, and include the registered qualifications of each institution. The Register is available for inspection at:http://www.dhet.gov.za: Look under Documents/Registers ‐2 ‐ INTRODUCTION The Register provides the public with information on the registration status of private higher education institutions. Section 54(2)(a)(i) of the Act requires that the Registrar of Private Higher Education Institutions (hereafter referred to as the Registrar) enters the name of the institution in the Register, once an institution is registered. Section 56(1)(b) grants the public the right to view the auditor’s report as issued to the Registrar in terms of section 57(2)(b) of the Act. Copies of registration certificates must be kept as part of the Register, in accordance with Regulation 20. -
Chromosome Differentiation Patterns During Cichlid Fish Evolution
Poletto et al. BMC Genetics 2010, 11:50 http://www.biomedcentral.com/1471-2156/11/50 RESEARCH ARTICLE Open Access ChromosomeResearch article differentiation patterns during cichlid fish evolution Andréia B Poletto1, Irani A Ferreira1, Diogo C Cabral-de-Mello1, Rafael T Nakajima1, Juliana Mazzuchelli1, Heraldo B Ribeiro1, Paulo C Venere2, Mauro Nirchio3, Thomas D Kocher4 and Cesar Martins*1 Abstract Background: Cichlid fishes have been the subject of increasing scientific interest because of their rapid adaptive radiation which has led to an extensive ecological diversity and their enormous importance to tropical and subtropical aquaculture. To increase our understanding of chromosome evolution among cichlid species, karyotypes of one Asian, 22 African, and 30 South American cichlid species were investigated, and chromosomal data of the family was reviewed. Results: Although there is extensive variation in the karyotypes of cichlid fishes (from 2n = 32 to 2n = 60 chromosomes), the modal chromosome number for South American species was 2n = 48 and the modal number for the African ones was 2n = 44. The only Asian species analyzed, Etroplus maculatus, was observed to have 46 chromosomes. The presence of one or two macro B chromosomes was detected in two African species. The cytogenetic mapping of 18S ribosomal RNA (18S rRNA) gene revealed a variable number of clusters among species varying from two to six. Conclusions: The karyotype diversification of cichlids seems to have occurred through several chromosomal rearrangements involving fissions, fusions and inversions. It was possible to identify karyotype markers for the subfamilies Pseudocrenilabrinae (African) and Cichlinae (American). The karyotype analyses did not clarify the phylogenetic relationship among the Cichlinae tribes.