Can Gut Hormones Control Appetite and Prevent Obesity?

Total Page:16

File Type:pdf, Size:1020Kb

Can Gut Hormones Control Appetite and Prevent Obesity? SECTION III Can Gut Hormones Control Appetite and Prevent Obesity? OWAIS B. CHAUDHRI, PHD ters are the subject of some contention. KATIE WYNNE, PHD The proximity of both the hypothalamus STEPHEN R. BLOOM, MD, DSC and brainstem to structures with a relative deficiency of blood-brain barrier (the me- dian eminence in the case of the hypothal- The current obesity epidemic is fuelled by the availability of highly palatable, calorie-dense food, amus and the area postrema in respect of and the low requirement for physical activity in our modern environment. If energy intake the brainstem) may allow circulating fac- exceeds energy use, the excess calories are stored as body fat. Although the body has mechanisms tors direct access to CNS neurons. There that act to maintain body weight over time, they primarily defend against starvation and are less is a growing body of evidence, however, robust in preventing the development of obesity. Knowledge of this homeostatic system that that points to the vagus nerve as a primary controls body weight has increased exponentially over the last decade and has revealed new site of action of some appetite-modulating possibilities for the treatment of obesity and its associated comorbidities. One therapeutic target is the development of agents based on the gastrointestinal hormones that control appetite. This hormones (11–15). From a therapeutic review discusses the hormones oxyntomodulin, peptide YY, glucagon-like peptide 1, pancreatic perspective, targeting the interaction of polypeptide, and ghrelin and their emerging potential as anti-obesity treatments. appetite signals with their receptors in the vagal nerve offers the potential advantage Diabetes Care 31 (Suppl. 2):S284–S289, 2008 of being able to manipulate appetite at a site distant from the CNS. he grave personal, societal, and eco- lay information to important CNS cen- nomic consequences presaged by ters, including the hypothalamus and the GUT HORMONES — The GI-pan- T the continued worldwide rise in the brainstem (7). These CNS structures have creatic complex is the largest endocrine prevalence of obesity are well docu- extensive reciprocal connections and organ in the body and a source of impor- mented (1,2). Currently, licensed non- both receive neuronal input from the pe- tant regulatory peptides. Cholecystokinin surgical interventions are of limited riphery, with the brainstem-vagus nerve was the first to be implicated in the short- efficacy (3–6). This relative failure of complex being of particular significance term control of food intake (16), and available therapies has imparted impetus in the control of feeding (8–10). other appetite-regulating hormones have to work directed at harnessing the physi- Neuronal activity in hypothalamic subsequently been characterized. Of ological mechanisms of appetite control. and brainstem nuclei is susceptible to in- these, ghrelin is the only known orexi- The pursuit of the body’s own satiety sig- fluence by circulating hormones. In the genic gut hormone, whereas a number of nals as therapeutic targets promises effec- hypothalamic arcuate nucleus (Arc), sig- satiety factors exist, including glucagon- tive reductions in body weight with nals from the periphery result in changes like peptide (GLP)-1, oxyntomodulin minimum disruption to other systems, in the relative activity of two subpopula- (OXM), peptide YY (PYY), and pancreatic avoiding the side effects that occur as an tions of neurons: an orexigenic popula- polypeptide (PP) (7). Unlike leptin, unwanted consequence of therapies tar- tion co-expressing the neurotransmitters which is thought to signal longer-term en- geting ubiquitous neurotransmitter and neuropeptide Y and agouti-related pep- ergy status, these gut hormones appear to receptor complexes. tide and an anorexigenic population co- act as meal initiators and terminators. Al- expressing pro-opiomelanocortin and terations in levels of gut hormones after THE GUT-BRAIN AXIS — The cocaine- and amphetamine-regulated bariatric surgery may contribute to the lines of communication between the gas- transcript. Alterations in the release of appetite suppression and sustained trointestinal (GI) tract and central ner- these neuropeptides affect feeding behav- weight loss seen in patients undergoing vous system (CNS) form a key component ior and energy expenditure, resulting in this procedure and supports the develop- in a recently established model of appetite the maintenance of energy homeostasis. ment of these hormones as therapeutic regulation. This gut-brain axis has both The mechanisms by which hor- targets (17,18). neural and humoral components that re- mones interact with CNS appetite cen- ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● From the Department of Metabolic Medicine, Imperial College London, Hammersmith Hospital, London, Ghrelin U.K. This28–aminoacidpeptideissynthe- Address correspondence and reprint requests to Professor S.R. Bloom, Department of Metabolic Medicine, sized principally in the stomach (19). It Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Rd., Lon- acts via the growth hormone secretagogue don W12 0NN, U.K. E-mail: [email protected]. receptor to increase food intake in rodents S.R.B. is on the board of and holds stock in Thiakis. O.B.C. and K.W. declare no relevant conflict of interest. (20) and also acts to stimulate food intake This article is based on a presentation at the 1st World Congress of Controversies in Diabetes, Obesity and in humans (21,22). Clinical studies have Hypertension (CODHy). The Congress and the publication of this article were made possible by unrestricted thus far concentrated on its use as an educational grants from MSD, Roche, sanofi-aventis, Novo Nordisk, Medtronic, LifeScan, World Wide, Eli orexigenic agent in conditions character- Lilly, Keryx, Abbott, Novartis, Pfizer, Generx Biotechnology, Schering, and Johnson & Johnson. Abbreviations: CNS, central nervous system; DPP-IV, dipetidyl peptidase IV; GI, gastrointestinal; GLP, ized by anorexia and cachexia (23–26). glucagon-like peptide; OXM, oxyntomodulin; PYY, peptide YY. Antagonists to ghrelin have been used in DOI: 10.2337/dc08-s269 preclinical studies, however, paving the © 2008 by the American Diabetes Association. S284 DIABETES CARE, VOLUME 31, SUPPLEMENT 2, FEBRUARY 2008 Chaudhri, Wynne, and Bloom way for possible future evaluation as a However, like GLP-1, dose-limiting side latter scenario is intriguing, since it of- therapy for obesity in humans (27). effects of nausea and vomiting define the fers another possible point for thera- maximal tolerated dose (35). The use of peutic intervention. GLP-1 exenatide is also associated with hypogly- Like GLP-1, OXM is inactivated in A product of proglucagon cleavage, cemia, although this occurs predomi- large part by DPP-IV, and its advance- GLP-1 is released from the L-cells of the nantly in patients receiving the drug in ment as a clinically useful treatment will GI tract postprandially in proportion to combination with another hypoglycemic be reliant on the development of a the calories ingested. GLP-1 and longer- agent (36). It has been reported that up to breakdown-resistant analog. Thiakis acting GLP-1 receptor agonists, such as 30% of patients taking exenatide develop and Imperial Innovations (London, exendin-4, reduce food intake in rodents antibodies to this foreign peptide, al- U.K.) are in the process of developing when injected into the CNS (28) or pe- though the clinical significance of this re- novel analogs of oxyntomodulin for the ripherally (12,29). Given the observation mains unclear (33). treatment of obesity. of reduced circulating levels of GLP-1 and an attenuated postprandial response in Oxyntomodulin the obese (30), it is not unreasonable to Another product of the tissue-specific dif- Inhibitors of DPP-IV hypothesize that restoration of satiety ferential cleavage of proglucagon, OXM, In the quest for an effective anti-obesity through the use of exogenous GLP-1 re- is co-secreted with GLP-1 and PYY3–36 treatment, some researchers have ceptor agonists might result in weight into the circulation by intestinal L-cells adopted the approach of augmenting the loss. To date, clinical development has fo- after nutrient ingestion (37). OXM is a effectiveness of endogenous gut peptides. cused on its strong incretin effect and its satiety signal and administration reduces Multiple DPP-IV inhibitors have been resultant use as an anti-diabetic agent: a energy intake in both rodents and hu- tested in animals, and although they im- 6-week subcutaneous infusion of GLP-1 mans (38–42). Indeed, preprandial sub- prove glucose levels in rodent models of improved blood glucose levels in poorly cutaneous administration of OXM to type 2 diabetes, their effect on weight is controlled diabetic subjects (31). How- overweight and obese humans over a more equivocal (49–52). A number of ever, in contrast to insulin, GLP-1 results 4-week period resulted in a significant re- DPP-IV inhibitors are at various stages of in a tendency to reduce body weight (32). duction in body weight of 2.3 kg, com- development as adjuvant therapy for use The advantages of a hypoglycemic agent pared with 0.5 kg for the placebo arm in type 2 diabetic subjects with poorly that also promotes weight loss are obvi- (42). In addition, OXM has been found to controlled blood glucose levels. Of these, ous. These results may also be encourag- have a beneficial effect on energy usage, sitagliptin (Januvia, Merck) was granted ing for the use of GLP-1 as an anti-obesity in that it increased activity levels back marketing approval by the Food and Drug therapy. toward normal in overweight and obese Administration in October 2006, and A major hurdle to the therapeutic use volunteers (43). Oxyntomodulin admin- vildagliptin (Glavus, Novartis) is cur- of native GLP-1, and one common to istration was well tolerated in these stud- rently undergoing Food and Drug Ad- many gut hormones, is its short half-life. ies. Longer-term trials are now required to The principle mediator of GLP-1 inactiva- determine whether its beneficial combi- ministration review.
Recommended publications
  • Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
    Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain.
    [Show full text]
  • Effects of Dietary Macronutrients on Appetite-Related Hormones in Blood on Body Composition of Lean and Obese Rats
    Animal Industry Report Animal Industry Report AS 652 ASL R2081 2006 Effects of Dietary Macronutrients on Appetite-Related Hormones in Blood on Body Composition of Lean and Obese Rats Michelle Bohan Iowa State University Lloyd L. Anderson Iowa State University Allen H. Trenkle Iowa State University Donald C. Beitz Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/ans_air Part of the Agriculture Commons, and the Animal Sciences Commons Recommended Citation Bohan, Michelle; Anderson, Lloyd L.; Trenkle, Allen H.; and Beitz, Donald C. (2006) "Effects of Dietary Macronutrients on Appetite-Related Hormones in Blood on Body Composition of Lean and Obese Rats ," Animal Industry Report: AS 652, ASL R2081. DOI: https://doi.org/10.31274/ans_air-180814-908 Available at: https://lib.dr.iastate.edu/ans_air/vol652/iss1/22 This Companion Animal is brought to you for free and open access by the Animal Science Research Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Industry Report by an authorized editor of Iowa State University Digital Repository. For more information, please contact [email protected]. Iowa State University Animal Industry Report 2006 Effects of Dietary Macronutrients on Appetite-Related Hormones in Blood on Body Composition of Lean and Obese Rats A.S. Leaflet R2081 ghrelin. Ghrelin is an antagonist of leptin by acting upon the neuropeptide Y/Y1 receptor pathway. Leptin causes Michelle Bohan, graduate student of biochemistry; satiety, whereas ghrelin stimulates nutrient intake. Leptin Lloyd Anderson, distinguished professor of animal science; and ghrelin thereby regulate the action of each other.
    [Show full text]
  • A Plant-Based Meal Increases Gastrointestinal Hormones
    nutrients Article A Plant-Based Meal Increases Gastrointestinal Hormones and Satiety More Than an Energy- and Macronutrient-Matched Processed-Meat Meal in T2D, Obese, and Healthy Men: A Three-Group Randomized Crossover Study Marta Klementova 1, Lenka Thieme 1 , Martin Haluzik 1, Renata Pavlovicova 1, Martin Hill 2, Terezie Pelikanova 1 and Hana Kahleova 1,3,* 1 Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; [email protected] (M.K.); [email protected] (L.T.); [email protected] (M.H.); [email protected] (R.P.); [email protected] (T.P.) 2 Institute of Endocrinology, 113 94 Prague, Czech Republic; [email protected] 3 Physicians Committee for Responsible Medicine, Washington, DC 20016, USA * Correspondence: [email protected]; Tel.: +1-202-527-7379 Received: 6 December 2018; Accepted: 9 January 2019; Published: 12 January 2019 Abstract: Gastrointestinal hormones are involved in regulation of glucose metabolism and satiety. We tested the acute effect of meal composition on these hormones in three population groups. A randomized crossover design was used to examine the effects of two energy- and macronutrient-matched meals: a processed-meat and cheese (M-meal) and a vegan meal with tofu (V-meal) on gastrointestinal hormones, and satiety in men with type 2 diabetes (T2D, n = 20), obese men (O, n = 20), and healthy men (H, n = 20). Plasma concentrations of glucagon-like peptide -1 (GLP-1), amylin, and peptide YY (PYY) were determined at 0, 30, 60, 120 and 180 min. Visual analogue scale was used to assess satiety. We used repeated-measures Analysis of variance (ANOVA) for statistical analysis.
    [Show full text]
  • Glucagon-Like Peptide 1 Secretion by the L-Cell the View from Within Gareth E
    Glucagon-Like Peptide 1 Secretion by the L-Cell The View From Within Gareth E. Lim1 and Patricia L. Brubaker1,2 Glucagon-like peptide 1 (GLP-1) is a gut-derived peptide GLP-1 receptor antagonists as well as GLP-1 receptor null secreted from intestinal L-cells after a meal. GLP-1 has mice have demonstrated that GLP-1 makes an essential numerous physiological actions, including potentiation of contribution to the “incretin” effect after a meal (3,4). glucose-stimulated insulin secretion, enhancement of However, GLP-1 secretion is reduced in patients with type ␤-cell growth and survival, and inhibition of glucagon 2 diabetes (5–7), and this may contribute in part to the release, gastric emptying, and food intake. These antidia- reduced incretin effect and the hyperglycemia that is betic effects of GLP-1 have led to intense interest in the use observed in these individuals (8). Thus, interest has now of this peptide for the treatment of patients with type 2 focused on the factors that regulate the release of this diabetes. Oral nutrients such as glucose and fat are potent physiological regulators of GLP-1 secretion, but non-nutri- peptide after nutrient ingestion. Many different GLP-1 ent stimulators of GLP-1 release have also been identified, secretagogues have been described in the literature over including the neuromodulators acetylcholine and gastrin- the past few decades, including nutrients, neurotransmit- releasing peptide. Peripheral hormones that participate in ters, neuropeptides, and peripheral hormones (rev. in energy homeostasis, such as leptin, have also been impli- 9,10). However, the specific receptors, ion channels, and cated in the regulation of GLP-1 release.
    [Show full text]
  • Amylin: Pharmacology, Physiology, and Clinical Potential
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Amylin: Pharmacology, Physiology, and Clinical Potential Hay, Debbie L ; Chen, Steve ; Lutz, Thomas A ; Parkes, David G ; Roth, Jonathan D Abstract: Amylin is a pancreatic ฀-cell hormone that produces effects in several different organ systems. Here, we review the literature in rodents and in humans on amylin research since its discovery as a hormone about 25 years ago. Amylin is a 37-amino-acid peptide that activates its specific receptors, which are multisubunit G protein-coupled receptors resulting from the coexpression of a core receptor protein with receptor activity-modifying proteins, resulting in multiple receptor subtypes. Amylin’s major role is as a glucoregulatory hormone, and it is an important regulator of energy metabolism in health and disease. Other amylin actions have also been reported, such as on the cardiovascular system or on bone. Amylin acts principally in the circumventricular organs of the central nervous system and functionally interacts with other metabolically active hormones such as cholecystokinin, leptin, and estradiol. The amylin-based peptide, pramlintide, is used clinically to treat type 1 and type 2 diabetes. Clinical studies in obesity have shown that amylin agonists could also be useful for weight loss, especially in combination with other agents. DOI: https://doi.org/10.1124/pr.115.010629 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-112571 Journal Article Published Version Originally published at: Hay, Debbie L; Chen, Steve; Lutz, Thomas A; Parkes, David G; Roth, Jonathan D (2015).
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • Anti-Obesity Therapy: from Rainbow Pills to Polyagonists
    1521-0081/70/4/712–746$35.00 https://doi.org/10.1124/pr.117.014803 PHARMACOLOGICAL REVIEWS Pharmacol Rev 70:712–746, October 2018 Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY Attribution 4.0 International license. ASSOCIATE EDITOR: BIRGITTE HOLST Anti-Obesity Therapy: from Rainbow Pills to Polyagonists T. D. Müller, C. Clemmensen, B. Finan, R. D. DiMarchi, and M. H. Tschöp Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (T.D.M., C.C., M.H.T.); German Center for Diabetes Research, Neuherberg, Germany (T.D.M., C.C., M.H.T.); Department of Chemistry, Indiana University, Bloomington, Indiana (B.F., R.D.D.); and Division of Metabolic Diseases, Technische Universität München, Munich, Germany (M.H.T.) Abstract ....................................................................................713 I. Introduction . ..............................................................................713 II. Bariatric Surgery: A Benchmark for Efficacy ................................................714 III. The Chronology of Modern Weight-Loss Pharmacology . .....................................715 A. Thyroid Hormones ......................................................................716 B. 2,4-Dinitrophenol .......................................................................716 C. Amphetamines. ........................................................................717 Downloaded from 1. Methamphetamine
    [Show full text]
  • Gastrointestinal Regulation of Food Intake
    Gastrointestinal regulation of food intake David E. Cummings, Joost Overduin J Clin Invest. 2007;117(1):13-23. https://doi.org/10.1172/JCI30227. Review Series Despite substantial fluctuations in daily food intake, animals maintain a remarkably stable body weight, because overall caloric ingestion and expenditure are exquisitely matched over long periods of time, through the process of energy homeostasis. The brain receives hormonal, neural, and metabolic signals pertaining to body-energy status and, in response to these inputs, coordinates adaptive alterations of energy intake and expenditure. To regulate food consumption, the brain must modulate appetite, and the core of appetite regulation lies in the gut-brain axis. This Review summarizes current knowledge regarding the neuroendocrine regulation of food intake by the gastrointestinal system, focusing on gastric distention, intestinal and pancreatic satiation peptides, and the orexigenic gastric hormone ghrelin. We highlight mechanisms governing nutrient sensing and peptide secretion by enteroendocrine cells, including novel taste- like pathways. The increasingly nuanced understanding of the mechanisms mediating gut-peptide regulation and action provides promising targets for new strategies to combat obesity and diabetes. Find the latest version: https://jci.me/30227/pdf Review series Gastrointestinal regulation of food intake David E. Cummings and Joost Overduin Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA. Despite substantial fluctuations in daily food intake, animals maintain a remarkably stable body weight, because overall caloric ingestion and expenditure are exquisitely matched over long periods of time, through the process of energy homeostasis. The brain receives hormonal, neural, and metabolic signals pertaining to body-energy status and, in response to these inputs, coordinates adaptive alterations of energy intake and expenditure.
    [Show full text]
  • Purification and Sequence of Rat Oxyntomodulin (Enteroglucagon/Peptide/Intestine/Proglucagon/Radlolmmunoassay) NATHAN L
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 9362-9366, September 1994 Biochemistry Purification and sequence of rat oxyntomodulin (enteroglucagon/peptide/intestine/proglucagon/radlolmmunoassay) NATHAN L. COLLIE*t, JOHN H. WALSHO, HELEN C. WONG*, JOHN E. SHIVELY§, MIKE T. DAVIS§, TERRY D. LEE§, AND JOSEPH R. REEVE, JR.t *Department of Physiology, School of Medicine, University of California, Los Angeles, CA 90024; *Center for Ulcer Research and Education, Gastroenteric Biology Center, Department of Medicine, Veterans Administration Wadsworth Center, School of Medicine, University of California, Los Angeles, CA 90073; and §Division of Immunology, Beckman Institute of City of Hope Research Institute, Duarte, CA 91010 Communicated by Jared M. Diamond, May 26, 1994 ABSTRACT Structural information about rat enteroglu- glucagon plus two glucagon-like sequences (GLP-1 and -2) cagon, intestinal peptides containing the pancreatic glucagon arranged in tandem. The present study concerns the enter- sequence, has been based previously on cDNA, immunologic, oglucagon portion of proglucagon (i.e., the N-terminal 69 and chromatographic data. Our interests in testing the phys- residues and its potential cleavage fragments). iological actions of synthetic enteroglucagon peptides in rats Our use of the term "enteroglucagon" refers to intestinal required that we identify precisely the forms present in vivo. peptides containing the pancreatic glucagon sequence. Fig. 1 From knowledge of the proglucagon gene sequence, we syn- shows two proposed enteroglucagon forms, proglucagon-(1- thesized an enteroglucagon C-terminal octapeptide common to 69) (glicentin) and proglucagon-(33-69) (OXN; see Fig. 1). both proposed enteroglucagon forms, glicentin and oxynto- The primary structures based on amino acid sequence data of modulin, but sharing no sequence overlap with glucagon.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy General and Comparative Endocrinology 177 (2012) 322–331 Contents lists available at SciVerse ScienceDirect General and Comparative Endocrinology journal homepage: www.elsevier.com/locate/ygcen Profiles in Comparative Endocrinology Characterization of the neuropeptide Y system in the frog Silurana tropicalis (Pipidae): Three peptides and six receptor subtypes G. Sundström a,1, B. Xu a, T.A. Larsson a,2, J. Heldin a,1, C.A. Bergqvist a, R. Fredriksson a, J.M. Conlon b, a c a, I. Lundell , R.J. Denver , D. Larhammar ⇑ a Department of Neuroscience, Uppsala University, Box 593, SE-75124 Uppsala, Sweden b Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates c Department of Molecular, Cellular and Developmental Biology, The University of Michigan, 3065C Kraus Building, Ann Arbor, MI 48109-1048, USA article info abstract Article history: Neuropeptide Y and its related peptides PYY and PP (pancreatic polypeptide) are involved in feeding Available online 4 May 2012 behavior, regulation of the pituitary and the gastrointestinal tract, and numerous other functions.
    [Show full text]
  • Ep 2330124 A2
    (19) TZZ ¥¥Z_ T (11) EP 2 330 124 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.06.2011 Bulletin 2011/23 C07K 14/575 (2006.01) (21) Application number: 10012149.0 (22) Date of filing: 11.08.2006 (84) Designated Contracting States: • Lewis, Diana AT BE BG CH CY CZ DE DK EE ES FI FR GB GR San Diego, CA 92121 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Soares, Christopher J. SK TR San Diego, CA 92121 (US) • Ghosh, Soumitra S. (30) Priority: 11.08.2005 US 201664 San Diego, CA 92121 (US) 17.08.2005 US 206903 • D’Souza, Lawrence 12.12.2005 US 301744 San Diego, CA 92121 (US) • Parkes, David G. (62) Document number(s) of the earlier application(s) in San Diego, CA 92121 (US) accordance with Art. 76 EPC: • Mack, Christine M. 06801467.9 / 1 922 336 San Diego, CA 92121 (US) • Forood, Behrouz Bruce (71) Applicant: Amylin Pharmaceuticals Inc. San Diego, CA 92121 (US) San Diego, CA 92121 (US) (74) Representative: Gowshall, Jonathan Vallance et al (72) Inventors: Forrester & Boehmert • Levy, Odile Esther Pettenkoferstrasse 20-22 San Diego, CA 92121 (US) 80336 München (DE) • Hanley, Michael R. San Diego, CA 92121 (US) Remarks: • Jodka, Carolyn M. This application was filed on 30-09-2010 as a San Diego, CA 92121 (US) divisional application to the application mentioned under INID code 62. (54) Hybrid polypeptides with selectable properties (57) The present invention relates generally to novel, tions and disorders include, but are not limited to, hyper- selectable hybrid polypeptides useful as agents for the tension, dyslipidemia, cardiovascular disease, eating treatment and prevention of metabolic diseases and dis- disorders, insulin-resistance, obesity, and diabetes mel- orders which can be alleviated by control plasma glucose litus of any kind, including type 1, type 2, and gestational levels, insulin levels, and/or insulin secretion, such as diabetes.
    [Show full text]
  • Delayed Response of Amylin Levels After an Oral Glucose Challenge in Children with Prader-Willi Syndrome
    DOI 10.3349/ymj.2011.52.2.257 Original Article pISSN: 0513-5796, eISSN: 1976-2437 Yonsei Med J 52(2):257-262, 2011 Delayed Response of Amylin Levels after an Oral Glucose Challenge in Children with Prader-Willi Syndrome Hae Jeong Lee,1* Yon Ho Choe,2* Jee Hyun Lee,3 Young Bae Sohn,2 Su Jin Kim,2 Sung Won Park,2 Jun Seok Son,4 Seon Woo Kim,5 and Dong-Kyu Jin2 Departments of 1Pediatrics and 4Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon; 2Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul; 3Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul; 5Clinical Research Center, Samsung Biomedical Research Institute, Seoul, Korea. Received: April 7, 2010 Purpose: Amylin secretion is increased parallel to insulin in obese subjects. Despite Revised: July 9, 2010 their marked obesity, a state of relative hypoinsulinemia occurs in children with Accepted: July 12, 2010 Prader-Willi syndrome (PWS). Based on the hypothesis that amylin levels may be Corresponding author: Dr. Dong-Kyu Jin, relatively low in PWS children, contributing to their excessive appetite, we studied Department of Pediatrics, Samsung Medical amylin levels after oral glucose loading in children with PWS and overweight con- Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, trols. Materials and Methods: Plasma levels of amylin, glucagon, insulin, and glu- Seoul 135-710, Korea. cose were measured at 0, 30, 60, 90, and 120 min after a glucose challenge in chil- Tel: 82-2-3410-3525, Fax: 82-2-3410-0043 dren with PWS (n = 18) and overweight controls (n = 25); the relationships among E-mail: [email protected] the variables were investigated in these two groups.
    [Show full text]