Glucagon-Like Peptide 1 Secretion by the L-Cell the View from Within Gareth E

Total Page:16

File Type:pdf, Size:1020Kb

Glucagon-Like Peptide 1 Secretion by the L-Cell the View from Within Gareth E Glucagon-Like Peptide 1 Secretion by the L-Cell The View From Within Gareth E. Lim1 and Patricia L. Brubaker1,2 Glucagon-like peptide 1 (GLP-1) is a gut-derived peptide GLP-1 receptor antagonists as well as GLP-1 receptor null secreted from intestinal L-cells after a meal. GLP-1 has mice have demonstrated that GLP-1 makes an essential numerous physiological actions, including potentiation of contribution to the “incretin” effect after a meal (3,4). glucose-stimulated insulin secretion, enhancement of However, GLP-1 secretion is reduced in patients with type ␤-cell growth and survival, and inhibition of glucagon 2 diabetes (5–7), and this may contribute in part to the release, gastric emptying, and food intake. These antidia- reduced incretin effect and the hyperglycemia that is betic effects of GLP-1 have led to intense interest in the use observed in these individuals (8). Thus, interest has now of this peptide for the treatment of patients with type 2 focused on the factors that regulate the release of this diabetes. Oral nutrients such as glucose and fat are potent physiological regulators of GLP-1 secretion, but non-nutri- peptide after nutrient ingestion. Many different GLP-1 ent stimulators of GLP-1 release have also been identified, secretagogues have been described in the literature over including the neuromodulators acetylcholine and gastrin- the past few decades, including nutrients, neurotransmit- releasing peptide. Peripheral hormones that participate in ters, neuropeptides, and peripheral hormones (rev. in energy homeostasis, such as leptin, have also been impli- 9,10). However, the specific receptors, ion channels, and cated in the regulation of GLP-1 release. Recent studies intracellular signaling proteins expressed by the GLP-1– have begun to elucidate the intracellular signaling path- producing intestinal L-cell have only recently begun to be ways that mediate the effects of GLP-1 secretagogues on characterized. The purpose of this review is to integrate the intestinal L-cell. The purpose of this review is to the literature regarding the signal transduction pathways summarize the known signaling mechanisms of GLP-1 secretagogues based on the available literature. A better used by the major GLP-1 secretagogues. An improved understanding of the pathways underlying GLP-1 secretion understanding of the mechanisms regulating GLP-1 secre- may lead to novel approaches by which the levels of this tion may lead to novel approaches to enhance GLP-1 levels important insulinotropic hormone can be enhanced in pa- in vivo, thereby providing an alternative approach to the tients with type 2 diabetes. Diabetes 55 (Suppl. 2):S70–S77, use of this peptide in the treatment of patients with type 2 2006 diabetes. SYNTHESIS AND DEGRADATION OF GLP-1 Although the proglucagon gene is expressed in enteroen- lucagon-like peptide 1 (GLP-1) is an intestinal docrine L-cells and pancreatic ␣-cells (11), GLP-1 is hormone that exerts profound effects in the synthesized by posttranslational processing of proglu- regulation of glycemia, stimulating glucose-de- cagon only in the intestine. The L-cells are predomi- pendent insulin secretion, proinsulin gene ex- G ␤ nantly located in the ileum and colon and have been pression, and -cell proliferative and anti-apoptotic identified as open-type epithelial cells that are in direct pathways, as well as inhibiting glucagon release, gastric contact with nutrients in the intestinal lumen (12). emptying, and food intake (1). The demonstrated success Furthermore, L-cells are located in close proximity to of GLP-1 to lower glycemia has led to approval of the both neurons and the microvasculature of the intestine GLP-1 receptor agonist exendin-4 (Byetta) for the treat- (13,14), which allows the L-cell to be affected by both ment of patients with type 2 diabetes (2). Studies using neural and hormonal signals. In fetal rat intestinal L-cell cultures and immortalized murine L-cells, proglucagon From the 1Department of Physiology, University of Toronto, Toronto, Ontario, gene expression is enhanced by activation of the protein Canada; and the 2Department of Medicine, University of Toronto, Toronto, kinase A (PKA) pathway (15,16). Although originally Ontario, Canada. thought to be mediated through CREB binding to the Address correspondence and reprint requests to Dr. P.L. Brubaker, Room 3366, Medical Sciences Building, University of Toronto, 1 King’s College cAMP response element in the proglucagon gene, recent Circle, Toronto, ON M5S 1A8 Canada. E-mail: [email protected]. studies have demonstrated that cAMP-dependent pro- Received for publication 23 March 2006 and accepted in revised form 2 May glucagon gene expression in the L-cell occurs via ␤-cate- 2006. P.L.B. has received honoraria from and is a consultant for Amgen. nin–mediated activation of the bipartite transcription This article is based on a presentation at a symposium. The symposium and factor, TCF4 (17). Interestingly, a very recent report has the publication of this article were made possible by an unrestricted educa- linked variants of TCF4 to the risk for development of tional grant from Servier. GABA, ␥-aminobutyric acid; GIP, glucose-dependent insulinotropic peptide; type 2 diabetes (18), implicating GLP-1 in the etiology of GLP-1, glucagon-like peptide 1; GRP, gastrin-releasing peptide; KATP channel, this disease. ATP-sensitive Kϩ channel; MAPK, mitogen-activated protein kinase; MUFA, Tissue-specific expression of prohormone convertase monounsaturated fatty acid; PKA, protein kinase A; PKC, protein kinase C; isoforms directs the synthesis of specific proglucagon- STAT, signal transducer and activator of transcription. DOI: 10.2337/db06-S020 derived peptides in the L-cell and ␣-cell (Fig. 1). Hence, © 2006 by the American Diabetes Association. cleavage of proglucagon by prohormone convertase 1/3, The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance which is expressed in the L-cell, liberates GLP-1 and with 18 U.S.C. Section 1734 solely to indicate this fact. GLP-2, as well as the glucagon-containing peptides, glicen- S70 DIABETES, VOL. 55, SUPPLEMENT 2, DECEMBER 2006 G.E. LIM AND P.L. BRUBAKER FIG. 1. Tissue-specific posttranslational processing of proglucagon liberates different proglucagon-derived peptides. Prohormone conver- tase 2 in the ␣-cell releases glicentin-related pancreatic peptide (GRPP), glucagon, intervening peptide-1 (IP1), and the major proglu- FIG. 2. Regulation of GLP-1 secretion by ingested nutrients. After a cagon fragment. In the L-cell, cleavage of proglucagon by prohormone meal, nutrients in the duodenum activate a proximal-distal neuroen- convertase 1/3 yields glicentin, oxyntomodulin, GLP-1, IP2, and GLP-2. docrine loop, which stimulates GLP-1 secretion from L-cells in the ileum and colon. In rodents, GIP, released from K-cells, activates vagal afferents, which subsequently causes GLP-1 secretion through vagal tin and oxyntomodulin (19,20). In contrast, ␣-cell expres- efferents and enteric neurons that release acetylcholine (Ach) and sion of prohormone convertase 2 leads to synthesis of GRP. Movement of nutrients toward more distal sections of the intestine leads to the direct interaction of nutrients with L-cells, which glucagon, glicentin-related pancreatic peptide, and the also stimulates GLP-1 secretion. major proglucagon fragment, which contains within its sequence both GLP-1 and GLP-2. Early studies on L-cell secretagogues used antibodies that targeted a mid-se- in GLP-1 secretion must be mediated indirectly, through a quence epitope of glucagon, resulting in detection of neuro/endocrine pathway, rather than through direct in- glicentin/oxyntomodulin (i.e., enteroglucagon or gut glu- teractions of the luminal contents with L-cells (27). Al- cagon-like immunoreactivity) as well as of glucagon. Be- though a very recent study has detected GLP-1– cause these peptides, as well as GLP-2, are synthesized immunoreactive cells in the duodenum of humans (30), and secreted from the L-cell in a 1:1 stoichiometric ratio this remains controversial. Therefore, to elucidate the with GLP-1 (21,22), such studies therefore indirectly also mechanism(s) underlying proximal nutrient-stimulated examined GLP-1 synthesis and secretion. Hence, the re- GLP-1 secretion, we developed a rodent model of GLP-1 sults of studies using antisera against any of the intestinal secretion in which nutrient flow to the distal intestine was proglucagon-derived peptides are discussed in this review prevented, thereby excluding the possibility of direct synonymously. Finally, bioactive GLP-1 exists in two equi- 7-36NH2 7-37 interactions of the luminal nutrients with the L-cell (Fig. potent forms, GLP-1 and GLP-1 , in the circula- 2). In this model, placement of glucose or fat into the tion, of which the former is predominant (23). Secreted duodenum induced an immediate and prolonged stimula- GLP-1 is rapidly degraded by the ubiquitous enzyme tion of the L-cell that was comparable in magnitude to dipeptidyl peptidase IV (24), resulting in an extremely increments in proglucagon-derived peptides observed short half-life for GLP-1 of ϳ2 min (23). when nutrients were placed directly into the ileum (27). Furthermore, when nutrients were placed in the duode- SYSTEMIC REGULATION OF GLP-1 SECRETION num of the rat, a prompt rise in glucose-dependent insuli- Nutrient ingestion is the primary physiological stimulus to notropic peptide (GIP) levels was also observed, and the L-cell and results in a biphasic pattern of GLP-1 infusion of GIP or treatment of primary rat L-cells in secretion. An initial rapid rise in circulating GLP-1 levels culture with GIP also stimulated proglucagon-derived pep- occurs 15–30 min after a meal, followed by a second minor tide secretion (22,27,31), thus implicating GIP in the peak at 90–120 min (25).
Recommended publications
  • Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
    Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain.
    [Show full text]
  • Effects of Dietary Macronutrients on Appetite-Related Hormones in Blood on Body Composition of Lean and Obese Rats
    Animal Industry Report Animal Industry Report AS 652 ASL R2081 2006 Effects of Dietary Macronutrients on Appetite-Related Hormones in Blood on Body Composition of Lean and Obese Rats Michelle Bohan Iowa State University Lloyd L. Anderson Iowa State University Allen H. Trenkle Iowa State University Donald C. Beitz Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/ans_air Part of the Agriculture Commons, and the Animal Sciences Commons Recommended Citation Bohan, Michelle; Anderson, Lloyd L.; Trenkle, Allen H.; and Beitz, Donald C. (2006) "Effects of Dietary Macronutrients on Appetite-Related Hormones in Blood on Body Composition of Lean and Obese Rats ," Animal Industry Report: AS 652, ASL R2081. DOI: https://doi.org/10.31274/ans_air-180814-908 Available at: https://lib.dr.iastate.edu/ans_air/vol652/iss1/22 This Companion Animal is brought to you for free and open access by the Animal Science Research Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Industry Report by an authorized editor of Iowa State University Digital Repository. For more information, please contact [email protected]. Iowa State University Animal Industry Report 2006 Effects of Dietary Macronutrients on Appetite-Related Hormones in Blood on Body Composition of Lean and Obese Rats A.S. Leaflet R2081 ghrelin. Ghrelin is an antagonist of leptin by acting upon the neuropeptide Y/Y1 receptor pathway. Leptin causes Michelle Bohan, graduate student of biochemistry; satiety, whereas ghrelin stimulates nutrient intake. Leptin Lloyd Anderson, distinguished professor of animal science; and ghrelin thereby regulate the action of each other.
    [Show full text]
  • Anti-Obesity Therapy: from Rainbow Pills to Polyagonists
    1521-0081/70/4/712–746$35.00 https://doi.org/10.1124/pr.117.014803 PHARMACOLOGICAL REVIEWS Pharmacol Rev 70:712–746, October 2018 Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY Attribution 4.0 International license. ASSOCIATE EDITOR: BIRGITTE HOLST Anti-Obesity Therapy: from Rainbow Pills to Polyagonists T. D. Müller, C. Clemmensen, B. Finan, R. D. DiMarchi, and M. H. Tschöp Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (T.D.M., C.C., M.H.T.); German Center for Diabetes Research, Neuherberg, Germany (T.D.M., C.C., M.H.T.); Department of Chemistry, Indiana University, Bloomington, Indiana (B.F., R.D.D.); and Division of Metabolic Diseases, Technische Universität München, Munich, Germany (M.H.T.) Abstract ....................................................................................713 I. Introduction . ..............................................................................713 II. Bariatric Surgery: A Benchmark for Efficacy ................................................714 III. The Chronology of Modern Weight-Loss Pharmacology . .....................................715 A. Thyroid Hormones ......................................................................716 B. 2,4-Dinitrophenol .......................................................................716 C. Amphetamines. ........................................................................717 Downloaded from 1. Methamphetamine
    [Show full text]
  • Gastrointestinal Regulation of Food Intake
    Gastrointestinal regulation of food intake David E. Cummings, Joost Overduin J Clin Invest. 2007;117(1):13-23. https://doi.org/10.1172/JCI30227. Review Series Despite substantial fluctuations in daily food intake, animals maintain a remarkably stable body weight, because overall caloric ingestion and expenditure are exquisitely matched over long periods of time, through the process of energy homeostasis. The brain receives hormonal, neural, and metabolic signals pertaining to body-energy status and, in response to these inputs, coordinates adaptive alterations of energy intake and expenditure. To regulate food consumption, the brain must modulate appetite, and the core of appetite regulation lies in the gut-brain axis. This Review summarizes current knowledge regarding the neuroendocrine regulation of food intake by the gastrointestinal system, focusing on gastric distention, intestinal and pancreatic satiation peptides, and the orexigenic gastric hormone ghrelin. We highlight mechanisms governing nutrient sensing and peptide secretion by enteroendocrine cells, including novel taste- like pathways. The increasingly nuanced understanding of the mechanisms mediating gut-peptide regulation and action provides promising targets for new strategies to combat obesity and diabetes. Find the latest version: https://jci.me/30227/pdf Review series Gastrointestinal regulation of food intake David E. Cummings and Joost Overduin Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA. Despite substantial fluctuations in daily food intake, animals maintain a remarkably stable body weight, because overall caloric ingestion and expenditure are exquisitely matched over long periods of time, through the process of energy homeostasis. The brain receives hormonal, neural, and metabolic signals pertaining to body-energy status and, in response to these inputs, coordinates adaptive alterations of energy intake and expenditure.
    [Show full text]
  • Purification and Sequence of Rat Oxyntomodulin (Enteroglucagon/Peptide/Intestine/Proglucagon/Radlolmmunoassay) NATHAN L
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 9362-9366, September 1994 Biochemistry Purification and sequence of rat oxyntomodulin (enteroglucagon/peptide/intestine/proglucagon/radlolmmunoassay) NATHAN L. COLLIE*t, JOHN H. WALSHO, HELEN C. WONG*, JOHN E. SHIVELY§, MIKE T. DAVIS§, TERRY D. LEE§, AND JOSEPH R. REEVE, JR.t *Department of Physiology, School of Medicine, University of California, Los Angeles, CA 90024; *Center for Ulcer Research and Education, Gastroenteric Biology Center, Department of Medicine, Veterans Administration Wadsworth Center, School of Medicine, University of California, Los Angeles, CA 90073; and §Division of Immunology, Beckman Institute of City of Hope Research Institute, Duarte, CA 91010 Communicated by Jared M. Diamond, May 26, 1994 ABSTRACT Structural information about rat enteroglu- glucagon plus two glucagon-like sequences (GLP-1 and -2) cagon, intestinal peptides containing the pancreatic glucagon arranged in tandem. The present study concerns the enter- sequence, has been based previously on cDNA, immunologic, oglucagon portion of proglucagon (i.e., the N-terminal 69 and chromatographic data. Our interests in testing the phys- residues and its potential cleavage fragments). iological actions of synthetic enteroglucagon peptides in rats Our use of the term "enteroglucagon" refers to intestinal required that we identify precisely the forms present in vivo. peptides containing the pancreatic glucagon sequence. Fig. 1 From knowledge of the proglucagon gene sequence, we syn- shows two proposed enteroglucagon forms, proglucagon-(1- thesized an enteroglucagon C-terminal octapeptide common to 69) (glicentin) and proglucagon-(33-69) (OXN; see Fig. 1). both proposed enteroglucagon forms, glicentin and oxynto- The primary structures based on amino acid sequence data of modulin, but sharing no sequence overlap with glucagon.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy General and Comparative Endocrinology 177 (2012) 322–331 Contents lists available at SciVerse ScienceDirect General and Comparative Endocrinology journal homepage: www.elsevier.com/locate/ygcen Profiles in Comparative Endocrinology Characterization of the neuropeptide Y system in the frog Silurana tropicalis (Pipidae): Three peptides and six receptor subtypes G. Sundström a,1, B. Xu a, T.A. Larsson a,2, J. Heldin a,1, C.A. Bergqvist a, R. Fredriksson a, J.M. Conlon b, a c a, I. Lundell , R.J. Denver , D. Larhammar ⇑ a Department of Neuroscience, Uppsala University, Box 593, SE-75124 Uppsala, Sweden b Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates c Department of Molecular, Cellular and Developmental Biology, The University of Michigan, 3065C Kraus Building, Ann Arbor, MI 48109-1048, USA article info abstract Article history: Neuropeptide Y and its related peptides PYY and PP (pancreatic polypeptide) are involved in feeding Available online 4 May 2012 behavior, regulation of the pituitary and the gastrointestinal tract, and numerous other functions.
    [Show full text]
  • Ep 2330124 A2
    (19) TZZ ¥¥Z_ T (11) EP 2 330 124 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.06.2011 Bulletin 2011/23 C07K 14/575 (2006.01) (21) Application number: 10012149.0 (22) Date of filing: 11.08.2006 (84) Designated Contracting States: • Lewis, Diana AT BE BG CH CY CZ DE DK EE ES FI FR GB GR San Diego, CA 92121 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Soares, Christopher J. SK TR San Diego, CA 92121 (US) • Ghosh, Soumitra S. (30) Priority: 11.08.2005 US 201664 San Diego, CA 92121 (US) 17.08.2005 US 206903 • D’Souza, Lawrence 12.12.2005 US 301744 San Diego, CA 92121 (US) • Parkes, David G. (62) Document number(s) of the earlier application(s) in San Diego, CA 92121 (US) accordance with Art. 76 EPC: • Mack, Christine M. 06801467.9 / 1 922 336 San Diego, CA 92121 (US) • Forood, Behrouz Bruce (71) Applicant: Amylin Pharmaceuticals Inc. San Diego, CA 92121 (US) San Diego, CA 92121 (US) (74) Representative: Gowshall, Jonathan Vallance et al (72) Inventors: Forrester & Boehmert • Levy, Odile Esther Pettenkoferstrasse 20-22 San Diego, CA 92121 (US) 80336 München (DE) • Hanley, Michael R. San Diego, CA 92121 (US) Remarks: • Jodka, Carolyn M. This application was filed on 30-09-2010 as a San Diego, CA 92121 (US) divisional application to the application mentioned under INID code 62. (54) Hybrid polypeptides with selectable properties (57) The present invention relates generally to novel, tions and disorders include, but are not limited to, hyper- selectable hybrid polypeptides useful as agents for the tension, dyslipidemia, cardiovascular disease, eating treatment and prevention of metabolic diseases and dis- disorders, insulin-resistance, obesity, and diabetes mel- orders which can be alleviated by control plasma glucose litus of any kind, including type 1, type 2, and gestational levels, insulin levels, and/or insulin secretion, such as diabetes.
    [Show full text]
  • The Future Role of Gut Hormones in the Treatment of Obesity
    TAJ5110.1177/2040622313506730Therapeutic Advances in Chronic DiseaseR C Troke 5067302013 Therapeutic Advances in Chronic Disease Review Ther Adv Chronic Dis The future role of gut hormones in the (2014) 5(1) 4 –14 DOI: 10.1177/ treatment of obesity 2040622313506730 © The Author(s), 2013. Reprints and permissions: Rachel C. Troke, Tricia M. Tan and Steve R. Bloom http://www.sagepub.co.uk/ journalsPermissions.nav Abstract: The obesity pandemic presents a significant burden, both in terms of healthcare and economic outcomes, and current medical therapies are inadequate to deal with this challenge. Bariatric surgery is currently the only therapy available for obesity which results in long-term, sustained weight loss. The favourable effects of this surgery are thought, at least in part, to be mediated via the changes of gut hormones such as GLP-1, PYY, PP and oxyntomodulin seen following the procedure. These hormones have subsequently become attractive novel targets for the development of obesity therapies. Here, we review the development of these gut peptides as current and emerging therapies in the treatment of obesity. Keywords: GLP-1, obesity, oxyntomodulin, peptide YY, therapeutic Background not provide a long-term treatment option for the Correspondence to: Steve R. Bloom, MD FRS The current obesity pandemic is posing a major majority of obese individuals. Orlistat is the only Department of challenge to healthcare providers. According to currently licensed medical treatment for obesity Investigative Medicine, Division of Diabetes, World Health Organization (WHO) global statis- in the UK. It is a pancreatic lipase inhibitor which Endocrinology and tics, in 2008 10% of men and 14% of women prevents fat absorption, but achieves only a mod- Metabolism, Imperial College London, 6th Floor, were classified as obese, with a further 35% of est weight loss of 2.9 kg compared with placebo Commonwealth Building, adults categorized as overweight [WHO, 2012] [Rucker et al.
    [Show full text]
  • Exclusive China Licensing of Lilly's Diabetes Drug, Oxyntomodulin
    Exclusive China Licensing of Lilly’s Diabetes Drug, Oxyntomodulin Analog Investor Webcast, August 22, 2019 Disclaimer This presentation includes forward-looking statements. All statements contained in this presentation other than statements of historical facts, including statements regarding future results of operations and financial position of Innovent Biologics (“Innovent” “we,” “us” or “our”), our business strategy and plans, the clinical development of our product candidates and our objectives for future operations, are forward- looking statements. The words “anticipate,” believe,” “continue,” “estimate,” “expect,” “intend,” “may,” “will” and similar expressions are intended to identify forward-looking statements. We have based these forward-looking statements largely on our current expectations and projections about future events and financial trends that we believe may affect our financial condition, results of operations, business strategy, clinical development, short-term and long-term business operations and objectives and financial needs. These forward-looking statements are subject to a number of risks, uncertainties and assumptions. Moreover, we operate in a very competitive and rapidly changing environment. New risks emerge from time to time. It is not possible for our management to predict all risks, nor can we assess the impact of all factors on our business or the extent to which any factor, or combination of factors, may cause actual results to differ materially from those contained in any forward-looking statements we may make. In light of these risks, uncertainties and assumptions, the future events and trends discussed in this presentation may not occur and actual results could differ materially and adversely from those anticipated or implied in the forward-looking statements.
    [Show full text]
  • Can Gut Hormones Control Appetite and Prevent Obesity?
    SECTION III Can Gut Hormones Control Appetite and Prevent Obesity? OWAIS B. CHAUDHRI, PHD ters are the subject of some contention. KATIE WYNNE, PHD The proximity of both the hypothalamus STEPHEN R. BLOOM, MD, DSC and brainstem to structures with a relative deficiency of blood-brain barrier (the me- dian eminence in the case of the hypothal- The current obesity epidemic is fuelled by the availability of highly palatable, calorie-dense food, amus and the area postrema in respect of and the low requirement for physical activity in our modern environment. If energy intake the brainstem) may allow circulating fac- exceeds energy use, the excess calories are stored as body fat. Although the body has mechanisms tors direct access to CNS neurons. There that act to maintain body weight over time, they primarily defend against starvation and are less is a growing body of evidence, however, robust in preventing the development of obesity. Knowledge of this homeostatic system that that points to the vagus nerve as a primary controls body weight has increased exponentially over the last decade and has revealed new site of action of some appetite-modulating possibilities for the treatment of obesity and its associated comorbidities. One therapeutic target is the development of agents based on the gastrointestinal hormones that control appetite. This hormones (11–15). From a therapeutic review discusses the hormones oxyntomodulin, peptide YY, glucagon-like peptide 1, pancreatic perspective, targeting the interaction of polypeptide, and ghrelin and their emerging potential as anti-obesity treatments. appetite signals with their receptors in the vagal nerve offers the potential advantage Diabetes Care 31 (Suppl.
    [Show full text]
  • Specificity and Sensitivity of Commercially Available Assays For
    M J Bak and others Assays for glucagon and 170:4 529–538 Clinical Study oxyntomodulin Specificity and sensitivity of commercially available assays for glucagon and oxyntomodulin measurement in humans Monika J Bak1,2, Nicolai Wewer Albrechtsen1, Jens Pedersen1, Bolette Hartmann1, Mikkel Christensen3, Tina Vilsbøll3, Filip K Knop3, Carolyn F Deacon1, Lars O Dragsted2 and Jens J Holst1 Correspondence 1NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health Sciences, should be addressed 2Department of Human Nutrition, Faculty of Science, University of Copenhagen, Blegdamsvej 3, Building 12.2, to J J Holst DK-2200 Copenhagen, Denmark and 3Department of Medicine, Copenhagen University Hospital Gentofte, Email Hellerup, DK-2900 Gentofte, Denmark [email protected] Abstract Aim: To determine the specificity and sensitivity of assays carried out using commercially available kits for glucagon and/or oxyntomodulin measurements. Methods: Ten different assay kits used for the measurement of either glucagon or oxyntomodulin concentrations were obtained. Solutions of synthetic glucagon (proglucagon (PG) residues 33–61), oxyntomodulin (PG residues 33–69) and glicentin (PG residues 1–69) were prepared and peptide concentrations were verified by quantitative amino acid analysis and a processing-independent in-house RIA. Peptides were added to the matrix (assay buffer) supplied with the kits (concentration range: 1.25–300 pmol/l) and to human plasma and recoveries were determined. Assays yielding meaningful results were analysed for precision and sensitivity by repeated analysis and ability to discriminate low concentrations. Results and conclusion: Three assays were specific for glucagon (carried out using the Millipore (Billerica, MA, USA), Bio-Rad (Sundbyberg, Sweden), and ALPCO (Salem, NH, USA) and Yanaihara Institute (Shizuoka, Japan) kits), but none was specific for oxyntomodulin.
    [Show full text]
  • Combined GLP-1, Oxyntomodulin, and Peptide YY Improves Body
    EMERGING THERAPIES: DRUGS AND REGIMENS Diabetes Care 1 Preeshila Behary,1 George Tharakan,1 Combined GLP-1, Oxyntomodulin, Kleopatra Alexiadou,1 Nicholas Johnson,2 Nicolai J. Wewer Albrechtsen,3,4 and Peptide YY Improves Julia Kenkre,1 Joyceline Cuenco,1 David Hope,1 Oluwaseun Anyiam,1 Body Weight and Glycemia in Sirazum Choudhury,1 Haya Alessimii,1 Ankur Poddar,1 James Minnion,1 Obesity and Prediabetes/Type Chedie Doyle,1 Gary Frost,1 Carel Le Roux,1,5 Sanjay Purkayastha,6 Krishna Moorthy,6 2 Diabetes: A Randomized Waljit Dhillo,1 Jens J. Holst,7 Ahmed R. Ahmed,6 A. Toby Prevost,2 Single-Blinded Placebo Stephen R. Bloom,1 and Tricia M. Tan1 Controlled Study https://doi.org/10.2337/dc19-0449 OBJECTIVE 1Section of Investigative Medicine, Imperial Col- Roux-en-Y gastric bypass (RYGB) augments postprandial secretion of glucagon-like lege London, London, U.K. 2Imperial Clinical Trials Unit, Imperial College peptide 1 (GLP-1), oxyntomodulin (OXM), and peptide YY (PYY). Subcutaneous London, London, U.K. infusion of these hormones (“GOP”), mimicking postprandial levels, reduces energy 3Department of Clinical Biochemistry, Rigshospi- intake. Our objective was to study the effects of GOP on glycemia and body weight talet, Copenhagen, Denmark 4 when given for 4 weeks to patients with diabetes and obesity. Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Den- RESEARCH DESIGN AND METHODS mark In this single-blinded mechanistic study, obese patients with prediabetes/diabetes 5School of Medicine, University College Dublin, were randomized to GOP (n = 15) or saline (n = 11) infusion for 4 weeks.
    [Show full text]