Combined GLP-1, Oxyntomodulin, and Peptide YY Improves Body
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Impact of a Plant-Based Diet on Gestational Diabetes:A Review
antioxidants Review The Impact of a Plant-Based Diet on Gestational Diabetes: A Review Antonio Schiattarella 1 , Mauro Lombardo 2 , Maddalena Morlando 1 and Gianluca Rizzo 3,* 1 Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; [email protected] (A.S.); [email protected] (M.M.) 2 Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; [email protected] 3 Independent Researcher, Via Venezuela 66, 98121 Messina, Italy * Correspondence: [email protected]; Tel.: +39-320-897-6687 Abstract: Gestational diabetes mellitus (GDM) represents a challenging pregnancy complication in which women present a state of glucose intolerance. GDM has been associated with various obstetric complications, such as polyhydramnios, preterm delivery, and increased cesarean delivery rate. Moreover, the fetus could suffer from congenital malformation, macrosomia, neonatal respiratory distress syndrome, and intrauterine death. It has been speculated that inflammatory markers such as tumor necrosis factor-alpha (TNF-α), interleukin (IL) 6, and C-reactive protein (CRP) impact on endothelium dysfunction and insulin resistance and contribute to the pathogenesis of GDM. Nutritional patterns enriched with plant-derived foods, such as a low glycemic or Mediterranean diet, might favorably impact on the incidence of GDM. A high intake of vegetables, fibers, and fruits seems to decrease inflammation by enhancing antioxidant compounds. This aspect contributes to improving insulin efficacy and metabolic control and could provide maternal and neonatal health benefits. Our review aims to deepen the understanding of the impact of a plant-based diet on Citation: Schiattarella, A.; Lombardo, oxidative stress in GDM. -
Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain. -
Effects of Dietary Macronutrients on Appetite-Related Hormones in Blood on Body Composition of Lean and Obese Rats
Animal Industry Report Animal Industry Report AS 652 ASL R2081 2006 Effects of Dietary Macronutrients on Appetite-Related Hormones in Blood on Body Composition of Lean and Obese Rats Michelle Bohan Iowa State University Lloyd L. Anderson Iowa State University Allen H. Trenkle Iowa State University Donald C. Beitz Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/ans_air Part of the Agriculture Commons, and the Animal Sciences Commons Recommended Citation Bohan, Michelle; Anderson, Lloyd L.; Trenkle, Allen H.; and Beitz, Donald C. (2006) "Effects of Dietary Macronutrients on Appetite-Related Hormones in Blood on Body Composition of Lean and Obese Rats ," Animal Industry Report: AS 652, ASL R2081. DOI: https://doi.org/10.31274/ans_air-180814-908 Available at: https://lib.dr.iastate.edu/ans_air/vol652/iss1/22 This Companion Animal is brought to you for free and open access by the Animal Science Research Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Industry Report by an authorized editor of Iowa State University Digital Repository. For more information, please contact [email protected]. Iowa State University Animal Industry Report 2006 Effects of Dietary Macronutrients on Appetite-Related Hormones in Blood on Body Composition of Lean and Obese Rats A.S. Leaflet R2081 ghrelin. Ghrelin is an antagonist of leptin by acting upon the neuropeptide Y/Y1 receptor pathway. Leptin causes Michelle Bohan, graduate student of biochemistry; satiety, whereas ghrelin stimulates nutrient intake. Leptin Lloyd Anderson, distinguished professor of animal science; and ghrelin thereby regulate the action of each other. -
Secretin and Autism: a Clue but Not a Cure
SCIENCE & MEDICINE Secretin and Autism: A Clue But Not a Cure by Clarence E. Schutt, Ph.D. he world of autism has been shaken by NBC’s broadcast connections could not be found. on Dateline of a film segment documenting the effect of Tsecretin on restoring speech and sociability to autistic chil- The answer was provided nearly one hundred years ago by dren. At first blush, it seems unlikely that an intestinal hormone Bayless and Starling, who discovered that it is not nerve signals, regulating bicarbonate levels in the stomach in response to a but rather a novel substance that stimulates secretion from the good meal might influence the language centers of the brain so cells forming the intestinal mucosa. They called this substance profoundly. However, recent discoveries in neurobiology sug- “secretin.” They suggested that there could be many such cir- gest several ways of thinking about the secretin-autism connec- culating substances, or molecules, and they named them “hor- tion that could lead to the breakthroughs we dream about. mones” based on the Greek verb meaning “to excite”. As a parent with more than a decade of experience in consider- A simple analogy might help. If the body is regarded as a commu- ing a steady stream of claims of successful treatments, and as a nity of mutual service providers—the heart and muscles are the pri- scientist who believes that autism is a neurobiological disorder, I mary engines of movement, the stomach breaks down foods for have learned to temper my hopes about specific treatments by distribution, the liver detoxifies, and so on—then the need for a sys- seeing if I could construct plausible neurobiological mechanisms tem of messages conveyed by the blood becomes clear. -
Glucagon and Gastrointestinal Motility in Relation to Thyroid-Parathyroid Function
Upsala J Med Sci 77: 183-188, 1972 Glucagon and Gastrointestinal Motility in Relation to Thyroid-Parathyroid Function HENRY JOHANSSON and ANDERS SEGERSTROM From the Department of Surgery, University Hospital, Uppsala, Sweden ABSTRACT MATERIAL Gastrointestinal propulsive motility was studied after The material consisted of 109 male albino rats (Sprague- inhgastric deposition of a non-absorbable isotope in Dawley) fed on laboratory food and with free access to rats after subcutaneous glucagon injections. Glucagon water. The animals were distributed at random in fol- administration was followed by retardation of gastric lowing series: emptying. The results indicated that the retarding effect Series I of glucagon on gastrointestinal propulsion was independent The influence of glucagon on gastrointestinal motility in of the presence of both thyroid and parathyroid tissue. intact rats. The observation period was 7 days. The hypocalcemic effect of glucagon was exerted in- dependently of the presence of thyroid tissue, Le. thyro- 1. Intact rats given 1.2 mg glucagon/kg body weight calcitonin. (GN-A, n= 6) 2. Intact rats given 4.8 mg glucagon/kg body weight (GN-B, n= 5) 3. Intact rats given 9.6 mg glucagon/kg body weight INTRODUCTION (GN-C, n= 12) 4. Intact rats given glucine buffert (GLY, n= 10). Glucagon is known to influence gastrointestinal Series I1 motility. In man, Dotevall & Kock (2) observed The influence of glucagon on gastrointestinal motility in that glucagon retarded gastrointestinal motility parathyroidectomized rats. The animals were given 4.8 independently of the hyperglucemia. In dogs, mg glucagon/kg body weight. The observation period glucagon retarded motility of the stomach ani was 90 days. -
AVP-Induced Counter-Regulatory Glucagon Is Diminished in Type 1 Diabetes
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30.927426; this version posted January 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. AVP-induced counter-regulatory glucagon is diminished in type 1 diabetes Angela Kim1,2, Jakob G. Knudsen3,4, Joseph C. Madara1, Anna Benrick5, Thomas Hill3, Lina Abdul Kadir3, Joely A. Kellard3, Lisa Mellander5, Caroline Miranda5, Haopeng Lin6, Timothy James7, Kinga Suba8, Aliya F. Spigelman6, Yanling Wu5, Patrick E. MacDonald6, Ingrid Wernstedt Asterholm5, Tore Magnussen9, Mikkel Christensen9,10,11, Tina Vilsboll9,10,12, Victoria Salem8, Filip K. Knop9,10,12,13, Patrik Rorsman3,5, Bradford B. Lowell1,2, Linford J.B. Briant3,14,* Affiliations 1Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. 2Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA. 3Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX4 7LE, UK. 4Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen. 5Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Göteborg, 405 30, Göteborg, Sweden. 6Alberta Diabetes Institute, 6-126 Li Ka Shing Centre for Health Research Innovation, Edmonton, Alberta, T6G 2E1, Canada. 7Department of Clinical Biochemistry, John Radcliffe, Oxford NHS Trust, OX3 9DU, Oxford, UK. 8Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, W12 0NN, UK. -
Localization of Glucokinase Gene Expression in the Rat Brain Ronald M
Localization of Glucokinase Gene Expression in the Rat Brain Ronald M. Lynch, Linda S. Tompkins, Heddwen L. Brooks, Ambrose A. Dunn-Meynell, and Barry E. Levin The brain contains a subpopulation of glucosensing neu- rons that alter their firing rate in response to elevated glucose concentrations. In pancreatic -cells, gluco- ammalian feeding behavior and general energy kinase (GK), the rate-limiting enzyme in glycolysis, medi- homeostasis appear to be regulated by circu- ates glucose-induced insulin release by regulating intra- lating levels of nutrients (glucose) and pep- cellular ATP production. A similar role for GK is pro- tides (e.g., leptin, insulin). Sensors to detect lev- posed to underlie neuronal glucosensing. Via in situ M els of these factors have been found to reside within specific hybridization, GK mRNA was localized to hypothalamic areas that are thought to contain relatively large popu- nuclei of the hypothalamus (1–8), where central regulation of lations of glucosensing neurons (the arcuate, ventrome- energy homeostasis is believed to be coordinated. For exam- dial, dorsomedial, and paraventricular nuclei and the lat- ple, large changes in blood glucose are correlated with cen- eral area). GK also was found in brain areas without trally mediated responses such as thermogenesis through known glucosensing neurons (the lateral habenula, the activation of the sympathetic nervous system. These changes bed nucleus stria terminalis, the inferior olive, the are monitored by the brain (9–11), and such responses are retrochiasmatic and medial preoptic areas, and the thal- altered in obesity-prone animals (11–13). Moreover, lesions amic posterior paraventricular, interpeduncular, oculo- of the ventromedial hypothalamus (VMH) prevent the hypo- motor, and anterior olfactory nuclei). -
And Oxytocin-Induced Glucagon Secretion in V1b Vasopressin Receptor Knockout Mice
361 Mutual regulation of vasopressin- and oxytocin-induced glucagon secretion in V1b vasopressin receptor knockout mice Yoko Fujiwara, Masami Hiroyama, Atsushi Sanbe, Junji Yamauchi, Gozoh Tsujimoto1 and Akito Tanoue Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan 1Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University Faculty of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan (Requests for offprints should be addressed to A Tanoue; Email: [email protected]) Abstract [Arg8]-vasopressin (AVP) and oxytocin (OT) are neurohy- CL-14-26 further inhibited AVP- and OT-induced glucagon pophysial hormones which exert various actions, including secretions in islets of V1bRC/C mice (57 and 69% of the the control of blood glucose, in some peripheral tissues. To stimulation values respectively). In addition, both AVP and investigate the type of receptors involved in AVP- and OT stimulated glucagon secretion with the same efficacy in OT-induced glucagon secretion, we investigated the effect V1bRK/K mice as in V1bRC/C mice. AVP- and of these peptides on glucagon secretion in islets of OT-induced glucagon secretion in V1bRK/K mice was wild-type (V1bRC/C) and vasopressin V1b receptor significantly inhibited by CL-14-26. These results demonstrate knockout (V1bRK/K) mice. AVP-induced glucagon that V1b receptors can mediate OT-induced glucagon secretion secretion was significantly inhibited by the selective V1b and OTreceptors can mediate AVP-induced glucagon secretion receptor antagonist, SSR149415 (30%), and OT-induced in islets from V1bRC/C mice in the presence of a heterologous glucagon secretion by the specific OT receptor antagonist, antagonist, while AVP and OT can stimulate glucagon secretion ð Þ ½ ð Þ2; 4; 9 d CH2 5 Tyr Me Thr Tyr-NH2 OVT (CL-14-26) through the OTreceptors in V1bRK/K mice, suggesting that C C (45%), in islets of V1bR / mice. -
Glucagon-Like Peptide 1 Secretion by the L-Cell the View from Within Gareth E
Glucagon-Like Peptide 1 Secretion by the L-Cell The View From Within Gareth E. Lim1 and Patricia L. Brubaker1,2 Glucagon-like peptide 1 (GLP-1) is a gut-derived peptide GLP-1 receptor antagonists as well as GLP-1 receptor null secreted from intestinal L-cells after a meal. GLP-1 has mice have demonstrated that GLP-1 makes an essential numerous physiological actions, including potentiation of contribution to the “incretin” effect after a meal (3,4). glucose-stimulated insulin secretion, enhancement of However, GLP-1 secretion is reduced in patients with type -cell growth and survival, and inhibition of glucagon 2 diabetes (5–7), and this may contribute in part to the release, gastric emptying, and food intake. These antidia- reduced incretin effect and the hyperglycemia that is betic effects of GLP-1 have led to intense interest in the use observed in these individuals (8). Thus, interest has now of this peptide for the treatment of patients with type 2 focused on the factors that regulate the release of this diabetes. Oral nutrients such as glucose and fat are potent physiological regulators of GLP-1 secretion, but non-nutri- peptide after nutrient ingestion. Many different GLP-1 ent stimulators of GLP-1 release have also been identified, secretagogues have been described in the literature over including the neuromodulators acetylcholine and gastrin- the past few decades, including nutrients, neurotransmit- releasing peptide. Peripheral hormones that participate in ters, neuropeptides, and peripheral hormones (rev. in energy homeostasis, such as leptin, have also been impli- 9,10). However, the specific receptors, ion channels, and cated in the regulation of GLP-1 release. -
Biomoleculesbiomolecules
1414Unit Objectives BiomoleculesBiomolecules After studying this Unit, you will be able to • explain the characteristics of “It is the harmonious and synchronous progress of chemical biomolecules like carbohydrates, reactions in body which leads to life”. proteins and nucleic acids and hormones; • classify carbohydrates, proteins, A living system grows, sustains and reproduces itself. nucleic acids and vitamins on the The most amazing thing about a living system is that it basis of their structures; is composed of non-living atoms and molecules. The • explain the difference between pursuit of knowledge of what goes on chemically within DNA and RNA; a living system falls in the domain of biochemistry. Living • describe the role of biomolecules systems are made up of various complex biomolecules in biosystem. like carbohydrates, proteins, nucleic acids, lipids, etc. Proteins and carbohydrates are essential constituents of our food. These biomolecules interact with each other and constitute the molecular logic of life processes. In addition, some simple molecules like vitamins and mineral salts also play an important role in the functions of organisms. Structures and functions of some of these biomolecules are discussed in this Unit. 14.114.114.1 Carbohydrates Carbohydrates are primarily produced by plants and form a very large group of naturally occurring organic compounds. Some common examples of carbohydrates are cane sugar, glucose, starch, etc. Most of them have a general formula, Cx(H2O)y, and were considered as hydrates of carbon from where the name carbohydrate was derived. For example, the molecular formula of glucose (C6H12O6) fits into this general formula, C6(H2O)6. But all the compounds which fit into this formula may not be classified as carbohydrates. -
Anti-Obesity Therapy: from Rainbow Pills to Polyagonists
1521-0081/70/4/712–746$35.00 https://doi.org/10.1124/pr.117.014803 PHARMACOLOGICAL REVIEWS Pharmacol Rev 70:712–746, October 2018 Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY Attribution 4.0 International license. ASSOCIATE EDITOR: BIRGITTE HOLST Anti-Obesity Therapy: from Rainbow Pills to Polyagonists T. D. Müller, C. Clemmensen, B. Finan, R. D. DiMarchi, and M. H. Tschöp Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (T.D.M., C.C., M.H.T.); German Center for Diabetes Research, Neuherberg, Germany (T.D.M., C.C., M.H.T.); Department of Chemistry, Indiana University, Bloomington, Indiana (B.F., R.D.D.); and Division of Metabolic Diseases, Technische Universität München, Munich, Germany (M.H.T.) Abstract ....................................................................................713 I. Introduction . ..............................................................................713 II. Bariatric Surgery: A Benchmark for Efficacy ................................................714 III. The Chronology of Modern Weight-Loss Pharmacology . .....................................715 A. Thyroid Hormones ......................................................................716 B. 2,4-Dinitrophenol .......................................................................716 C. Amphetamines. ........................................................................717 Downloaded from 1. Methamphetamine -
Gastrointestinal Regulation of Food Intake
Gastrointestinal regulation of food intake David E. Cummings, Joost Overduin J Clin Invest. 2007;117(1):13-23. https://doi.org/10.1172/JCI30227. Review Series Despite substantial fluctuations in daily food intake, animals maintain a remarkably stable body weight, because overall caloric ingestion and expenditure are exquisitely matched over long periods of time, through the process of energy homeostasis. The brain receives hormonal, neural, and metabolic signals pertaining to body-energy status and, in response to these inputs, coordinates adaptive alterations of energy intake and expenditure. To regulate food consumption, the brain must modulate appetite, and the core of appetite regulation lies in the gut-brain axis. This Review summarizes current knowledge regarding the neuroendocrine regulation of food intake by the gastrointestinal system, focusing on gastric distention, intestinal and pancreatic satiation peptides, and the orexigenic gastric hormone ghrelin. We highlight mechanisms governing nutrient sensing and peptide secretion by enteroendocrine cells, including novel taste- like pathways. The increasingly nuanced understanding of the mechanisms mediating gut-peptide regulation and action provides promising targets for new strategies to combat obesity and diabetes. Find the latest version: https://jci.me/30227/pdf Review series Gastrointestinal regulation of food intake David E. Cummings and Joost Overduin Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA. Despite substantial fluctuations in daily food intake, animals maintain a remarkably stable body weight, because overall caloric ingestion and expenditure are exquisitely matched over long periods of time, through the process of energy homeostasis. The brain receives hormonal, neural, and metabolic signals pertaining to body-energy status and, in response to these inputs, coordinates adaptive alterations of energy intake and expenditure.