Delayed Response of Amylin Levels After an Oral Glucose Challenge in Children with Prader-Willi Syndrome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multifaceted Physiological Roles of Adiponectin in Inflammation And
International Journal of Molecular Sciences Review Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases Hyung Muk Choi 1, Hari Madhuri Doss 1,2 and Kyoung Soo Kim 1,2,* 1 Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Korea; [email protected] (H.M.C.); [email protected] (H.M.D.) 2 East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Gandong-gu, Seoul 02447, Korea * Correspondence: [email protected]; Tel.: +82-2-961-9619 Received: 3 January 2020; Accepted: 10 February 2020; Published: 12 February 2020 Abstract: Adiponectin is the richest adipokine in human plasma, and it is mainly secreted from white adipose tissue. Adiponectin circulates in blood as high-molecular, middle-molecular, and low-molecular weight isoforms. Numerous studies have demonstrated its insulin-sensitizing, anti-atherogenic, and anti-inflammatory effects. Additionally, decreased serum levels of adiponectin is associated with chronic inflammation of metabolic disorders including Type 2 diabetes, obesity, and atherosclerosis. However, recent studies showed that adiponectin could have pro-inflammatory roles in patients with autoimmune diseases. In particular, its high serum level was positively associated with inflammation severity and pathological progression in rheumatoid arthritis, chronic kidney disease, and inflammatory bowel disease. Thus, adiponectin seems to have both pro-inflammatory and anti-inflammatory effects. This indirectly indicates that adiponectin has different physiological roles according to an isoform and effector tissue. Knowledge on the specific functions of isoforms would help develop potential anti-inflammatory therapeutics to target specific adiponectin isoforms against metabolic disorders and autoimmune diseases. -
(Title of the Thesis)*
THE PHYSIOLOGICAL ACTIONS OF ADIPONECTIN IN CENTRAL AUTONOMIC NUCLEI: IMPLICATIONS FOR THE INTEGRATIVE CONTROL OF ENERGY HOMEOSTASIS by Ted Donald Hoyda A thesis submitted to the Department of Physiology In conformity with the requirements for the degree of Doctor of Philosophy Queen‟s University Kingston, Ontario, Canada (September, 2009) Copyright © Ted Donald Hoyda, 2009 ABSTRACT Adiponectin regulates feeding behavior, energy expenditure and autonomic function through the activation of two receptors present in nuclei throughout the central nervous system, however much remains unknown about the mechanisms mediating these effects. Here I investigate the actions of adiponectin in autonomic centers of the hypothalamus (the paraventricular nucleus) and brainstem (the nucleus of the solitary tract) through examining molecular, electrical, hormonal and physiological consequences of peptidergic signalling. RT-PCR and in situ hybridization experiments demonstrate the presence of AdipoR1 and AdipoR2 mRNA in the paraventricular nucleus. Investigation of the electrical consequences following receptor activation in the paraventricular nucleus indicates that magnocellular-oxytocin cells are homogeneously inhibited while magnocellular-vasopressin neurons display mixed responses. Single cell RT-PCR analysis shows oxytocin neurons express both receptors while vasopressin neurons express either both receptors or one receptor. Co-expressing oxytocin and vasopressin neurons express neither receptor and are not affected by adiponectin. Median eminence projecting corticotropin releasing hormone neurons, brainstem projecting oxytocin neurons, and thyrotropin releasing hormone neurons are all depolarized by adiponectin. Plasma adrenocorticotropin hormone concentration is increased following intracerebroventricular injections of adiponectin. I demonstrate that the nucleus of the solitary tract, the primary cardiovascular regulation site of the medulla, expresses mRNA for AdipoR1 and AdipoR2 and mediates adiponectin induced hypotension. -
A Plant-Based Meal Increases Gastrointestinal Hormones
nutrients Article A Plant-Based Meal Increases Gastrointestinal Hormones and Satiety More Than an Energy- and Macronutrient-Matched Processed-Meat Meal in T2D, Obese, and Healthy Men: A Three-Group Randomized Crossover Study Marta Klementova 1, Lenka Thieme 1 , Martin Haluzik 1, Renata Pavlovicova 1, Martin Hill 2, Terezie Pelikanova 1 and Hana Kahleova 1,3,* 1 Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; [email protected] (M.K.); [email protected] (L.T.); [email protected] (M.H.); [email protected] (R.P.); [email protected] (T.P.) 2 Institute of Endocrinology, 113 94 Prague, Czech Republic; [email protected] 3 Physicians Committee for Responsible Medicine, Washington, DC 20016, USA * Correspondence: [email protected]; Tel.: +1-202-527-7379 Received: 6 December 2018; Accepted: 9 January 2019; Published: 12 January 2019 Abstract: Gastrointestinal hormones are involved in regulation of glucose metabolism and satiety. We tested the acute effect of meal composition on these hormones in three population groups. A randomized crossover design was used to examine the effects of two energy- and macronutrient-matched meals: a processed-meat and cheese (M-meal) and a vegan meal with tofu (V-meal) on gastrointestinal hormones, and satiety in men with type 2 diabetes (T2D, n = 20), obese men (O, n = 20), and healthy men (H, n = 20). Plasma concentrations of glucagon-like peptide -1 (GLP-1), amylin, and peptide YY (PYY) were determined at 0, 30, 60, 120 and 180 min. Visual analogue scale was used to assess satiety. We used repeated-measures Analysis of variance (ANOVA) for statistical analysis. -
Links Between HPA Axis and Adipokines: Clinical Implications in Paradigms of Stress-Related Disorders
Expert Review of Endocrinology & Metabolism ISSN: 1744-6651 (Print) 1744-8417 (Online) Journal homepage: https://www.tandfonline.com/loi/iere20 Links between HPA axis and adipokines: clinical implications in paradigms of stress-related disorders Panagiota Papargyri, Evangelia Zapanti, Nicolaos Salakos, Loukas Papargyris, Alexandra Bargiota & George MASTORAKOS To cite this article: Panagiota Papargyri, Evangelia Zapanti, Nicolaos Salakos, Loukas Papargyris, Alexandra Bargiota & George MASTORAKOS (2018) Links between HPA axis and adipokines: clinical implications in paradigms of stress-related disorders, Expert Review of Endocrinology & Metabolism, 13:6, 317-332, DOI: 10.1080/17446651.2018.1543585 To link to this article: https://doi.org/10.1080/17446651.2018.1543585 Accepted author version posted online: 01 Nov 2018. Published online: 13 Nov 2018. Submit your article to this journal Article views: 55 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=iere20 EXPERT REVIEW OF ENDOCRINOLOGY & METABOLISM 2018, VOL. 13, NO. 6, 317–332 https://doi.org/10.1080/17446651.2018.1543585 REVIEW Links between HPA axis and adipokines: clinical implications in paradigms of stress-related disorders Panagiota Papargyria, Evangelia Zapantib, Nicolaos Salakosc, Loukas Papargyrisd,e, Alexandra Bargiotaf and George MASTORAKOSa aUnit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, School of Medicine, National and Kapodistrian -
Amylin: Pharmacology, Physiology, and Clinical Potential
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Amylin: Pharmacology, Physiology, and Clinical Potential Hay, Debbie L ; Chen, Steve ; Lutz, Thomas A ; Parkes, David G ; Roth, Jonathan D Abstract: Amylin is a pancreatic -cell hormone that produces effects in several different organ systems. Here, we review the literature in rodents and in humans on amylin research since its discovery as a hormone about 25 years ago. Amylin is a 37-amino-acid peptide that activates its specific receptors, which are multisubunit G protein-coupled receptors resulting from the coexpression of a core receptor protein with receptor activity-modifying proteins, resulting in multiple receptor subtypes. Amylin’s major role is as a glucoregulatory hormone, and it is an important regulator of energy metabolism in health and disease. Other amylin actions have also been reported, such as on the cardiovascular system or on bone. Amylin acts principally in the circumventricular organs of the central nervous system and functionally interacts with other metabolically active hormones such as cholecystokinin, leptin, and estradiol. The amylin-based peptide, pramlintide, is used clinically to treat type 1 and type 2 diabetes. Clinical studies in obesity have shown that amylin agonists could also be useful for weight loss, especially in combination with other agents. DOI: https://doi.org/10.1124/pr.115.010629 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-112571 Journal Article Published Version Originally published at: Hay, Debbie L; Chen, Steve; Lutz, Thomas A; Parkes, David G; Roth, Jonathan D (2015). -
Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners. -
Adiponectin Levels Associated with the Development of Hypertension: a Prospective Study
229 Hypertens Res Vol.31 (2008) No.2 p.229-233 Original Article Adiponectin Levels Associated with the Development of Hypertension: A Prospective Study Takuya IMATOH1), Motonobu MIYAZAKI2), Yoshito MOMOSE1), Shinichi TANIHARA1), and Hiroshi UNE1) Adiponectin is a recently discovered protein that seems to be exclusively secreted by adipocytes and is the most abundant adipose tissue–derived protein. While some recent studies have demonstrated an associa- tion between adiponectin levels and hypertension, these studies were cross-sectional in design, and the results have been inconsistent. Therefore we performed a prospective study to elucidate the role of adi- ponectin in the development of hypertension. The results of this study showed that serum adiponectin lev- els were significantly lower in hypertensive subjects than in normotensive subjects. Moreover, in logistic regression analysis, the subjects in the lowest quartile had a 3.72-fold higher risk than those in the highest quartile. Even after adjusting for potential confounding factors, this association was found to be significant. Low serum adiponectin levels were found to be independently associated with a higher risk for the devel- opment of hypertension. Our results therefore suggest that hypoadiponectinemia is a novel predictor of hypertension. (Hypertens Res 2008; 31: 229–233) Key Words: hypertension, adiponectin, prospective study, epidemiological study adipocytes and is the most abundant adipose tissue–derived 1 2 Introduction protein ( , ). Plasma adiponectin levels in humans are lower in obese than in non-obese subjects, in patients with coronary The latest World Health Organization (WHO) projections artery disease and diabetes mellitus type 2 than in healthy indicate that approximately 1.6 billion adults (aged ≥15 subjects, higher in women than in men. -
Ep 2330124 A2
(19) TZZ ¥¥Z_ T (11) EP 2 330 124 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.06.2011 Bulletin 2011/23 C07K 14/575 (2006.01) (21) Application number: 10012149.0 (22) Date of filing: 11.08.2006 (84) Designated Contracting States: • Lewis, Diana AT BE BG CH CY CZ DE DK EE ES FI FR GB GR San Diego, CA 92121 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Soares, Christopher J. SK TR San Diego, CA 92121 (US) • Ghosh, Soumitra S. (30) Priority: 11.08.2005 US 201664 San Diego, CA 92121 (US) 17.08.2005 US 206903 • D’Souza, Lawrence 12.12.2005 US 301744 San Diego, CA 92121 (US) • Parkes, David G. (62) Document number(s) of the earlier application(s) in San Diego, CA 92121 (US) accordance with Art. 76 EPC: • Mack, Christine M. 06801467.9 / 1 922 336 San Diego, CA 92121 (US) • Forood, Behrouz Bruce (71) Applicant: Amylin Pharmaceuticals Inc. San Diego, CA 92121 (US) San Diego, CA 92121 (US) (74) Representative: Gowshall, Jonathan Vallance et al (72) Inventors: Forrester & Boehmert • Levy, Odile Esther Pettenkoferstrasse 20-22 San Diego, CA 92121 (US) 80336 München (DE) • Hanley, Michael R. San Diego, CA 92121 (US) Remarks: • Jodka, Carolyn M. This application was filed on 30-09-2010 as a San Diego, CA 92121 (US) divisional application to the application mentioned under INID code 62. (54) Hybrid polypeptides with selectable properties (57) The present invention relates generally to novel, tions and disorders include, but are not limited to, hyper- selectable hybrid polypeptides useful as agents for the tension, dyslipidemia, cardiovascular disease, eating treatment and prevention of metabolic diseases and dis- disorders, insulin-resistance, obesity, and diabetes mel- orders which can be alleviated by control plasma glucose litus of any kind, including type 1, type 2, and gestational levels, insulin levels, and/or insulin secretion, such as diabetes. -
Endocrine Pancreas Plasticity Under Physiological and Pathological Conditions Catherine Bernard-Kargar and Alain Ktorza
Endocrine Pancreas Plasticity Under Physiological and Pathological Conditions Catherine Bernard-Kargar and Alain Ktorza Endocrine pancreas plasticity may be defined as the of -cell mass in relation to prevailing insulin demand; i.e., the ability of the organ to adapt the -cell mass to the vari- ability of the -cell mass to expand in response to insulin resis- ations in insulin demand. For example, during late tance is altered. pregnancy and obesity, the increase of the -cell mass, We review here the main factors involved in islet plastic-  in association with -cell hyperactivity, contributes to ity in adults and the possible causes of its deterioration in insulin oversecretion in response to insulin resistance. type 2 diabetes. There is increasing evidence that the ability of the  -cell mass to expand in adult mammals is much higher  than previously thought. During pregnancy, placental FACTORS INVOLVED IN -CELL MASS CHANGES hormones, especially placental lactogens, are mainly IN THE ADULT responsible for the changes in -cell mass. The factors During development, endocrine cells arise from undifferen- involved in -cell growth in obesity are far from clear, tiated stem cells located in pancreatic ducts, which migrate although increased free fatty acids seem to be the main into the exocrine pancreas to form the islets of Langerhans candidate. Many data suggest that the impairment of (neogenesis). Then, differentiated -cells proliferate within insulin secretion in type 2 diabetes is partly related to the islets (replication). These processes are essential during  reduction of -cell mass, at least relative to prevailing development of the endocrine pancreas, but they are also nec- insulin demand. -
Adiponectin and Resistin: Potential Metabolic Signals Affecting Hypothalamo-Pituitary Gonadal Axis in Females and Males of Different Species
REPRODUCTIONREVIEW PROOF ONLY Adiponectin and resistin: potential metabolic signals affecting hypothalamo-pituitary gonadal axis in females and males of different species Agnieszka Rak1, Namya Mellouk2, Pascal Froment2 and Joëlle Dupont2 1Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University in Krakow, Krakow, Poland and 2INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France Correspondence should be addressed to J Dupont; Email: [email protected] Abstract Adipokines, including adiponectin and resistin, are cytokines produced mainly by the adipose tissue. They play a significant role in metabolic functions that regulate the insulin sensitivity and inflammation. Alterations in adiponectin and resistin plasma levels, or their expression in metabolic and gonadal tissues, are observed in some metabolic pathologies, such as obesity. Several studies have shown that these two hormones and the receptors for adiponectin, AdipoR1 and AdipoR2 are present in various reproductive tissues in both sexes of different species. Thus, these adipokines could be metabolic signals that partially explain infertility related to obesity, such as polycystic ovary syndrome (PCOS). Species and gender differences in plasma levels, tissue or cell distribution and hormonal regulation have been reported for resistin and adiponectin. Furthermore, until now, it has been unclear whether adiponectin and resistin act directly or indirectly on the hypothalamo–pituitary–gonadal axis. The objective of this review was to summarise the latest findings and particularly the species and gender differences of adiponectin and resistin on female and male reproduction known to date, based on the hypothalamo–pituitary–gonadal axis. Reproduction (2017) 153 R215–R226 Introduction and pathological processes, such as food intake and metabolic control, diabetes, atherosclerosis, immunity Many authors have observed relationships between and also reproductive functions (Reverchon et al. -
New Insights Into Metabolic Homeostasis Keith Tan
Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2015 Activity Based Profiling: New Insights into Metabolic Homeostasis Keith Tan Follow this and additional works at: http://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons Recommended Citation Tan, Keith, "Activity Based Profiling: New Insights into Metabolic Homeostasis" (2015). Student Theses and Dissertations. Paper 285. This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. ACTIVITY BASED PROFILING: NEW INSIGHTS INTO METABOLIC HOMEOSTASIS A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Keith Tan June 2015 © Copyright by Keith Tan 2015 ACTIVITY BASED PROFILING: NEW INSIGHTS INTO METABOLIC HOMEOSTASIS Keith Tan, Ph.D. The Rockefeller University 2015 There is mounting evidence that demonstrates that body weight and energy homeostasis is tightly regulated by a physiological system. This system consists of sensing and effector components that primarily reside in the central nervous system and disruption to these components can lead to obesity and metabolic disorders. Although many neural substrates have been identified in the past decades, there is reason to believe that there are numerous unidentified neural populations that play a role in energy balance. Besides regulating caloric consumption and energy expenditure, neural components that control energy homeostasis are also tightly intertwined with circadian rhythmicity but this aspect has received less attention. -
Secretion of Adiponectin by Human Placenta: Differential Modulation of Adiponectin and Its Receptors by Cytokines
Diabetologia (2006) 49: 1292–1302 DOI 10.1007/s00125-006-0194-7 ARTICLE J. Chen . B. Tan . E. Karteris . S. Zervou . J. Digby . E. W. Hillhouse . M. Vatish . H. S. Randeva Secretion of adiponectin by human placenta: differential modulation of adiponectin and its receptors by cytokines Received: 18 November 2005 / Accepted: 22 December 2005 / Published online: 29 March 2006 # Springer-Verlag 2006 Abstract Aims/hypothesis: Pregnancy, a state of insulin receptors as well as adiponectin gene expression and resistance, is associated with elevated levels of cytokines secretion. Interestingly, in placentae from women with and profound alterations in metabolism. Serum adiponec- gestational diabetes mellitus, we observed significant tin, an adipokine with anti-inflammatory and insulin- downregulation of adiponectin mRNA, significant upreg- sensitising properties, has been shown to be lower in ulation of ADIPOR1 expression, and a non-significant patients with gestational diabetes mellitus, a state of increase in ADIPOR2 expression. Conclusions/ greater insulin resistance than normal pregnancies. Hy- interpretation: Our results indicate that the human pla- pothesising that the human placenta is a source of centa produces and secretes adiponectin, and that adiponectin, we investigated its expression and secretion, adiponectin and its receptors are differentially regulated and the regulation by cytokines of adiponectin and its by cytokines and their expression altered in women with receptors. Methods: Real-time RT-PCR, radioimmuno- gestational diabetes mellitus. Collectively, our novel data assay, Western blotting, radioligand binding and immuno- suggest that adiponectin may play a role in adapting fluorescent analyses were applied to demonstrate the energy metabolism at the materno-fetal interface. expression, secretion and functionality of placental adiponectin.