Coevolution: a Pattern of Reciprocal Adaptation, Caused by Two Species Evolving in Close Association

Total Page:16

File Type:pdf, Size:1020Kb

Coevolution: a Pattern of Reciprocal Adaptation, Caused by Two Species Evolving in Close Association Coevolution: a pattern of reciprocal adaptation, caused by two species evolving in close association. coevolution is a change in the genetic composition of one species (or group) in response to a genetic change in another. More generally, the idea of some reciprocal evolutionary change in interacting species is a requisite for coevolution – Host-parasite – Plant- herbivore – Predator-Prey – Mutualisms Parasites may evolve rapidly due to: Short generation times High fecundity Founder effects and drift High mutation rates Consider plants and insects: it is sometimes difficult to determine whether plants' secondary compounds arose for the purpose of preventing herbivores from eating plant tissue. Certain plants may have produced certain compounds as waste products and herbivores attacked those plants that they could digest. Parasites and hosts: when a parasite invades a host, it will successfully invade those hosts whose defence traits it can circumvent because of the abilities it carries at that time. Thus presence of a parasite on a host does not constitute evidence for coevolution. These criticisms are quite distinct from the opportunity for coevolution once a parasite has established itself on a host. The main point is that any old interaction, symbiosis, mutualism, etc. is not synonymous with coevolution. In one sense there has definitely been "evolution together" but whether this fits our strict definition of coevolution needs to be determined by careful 1) observation, 2) experimentation and 3) phylogenetic analysis The classic analogy is the coevolutionary arms race: a plant has chemical defenses, an insect evolves the biochemistry to detoxify these compounds, the plant in turn evolves new defenses that the insect in turn "needs" to further detoxify. At present the evidence for these types of reciprocal adaptations is limited, but the suggestive evidence of plant animal interactions is widespread. An important point is the relative timing of the evolution of the various traits that appear to be part of the coevolution. If the presumed reciprocally induced, sequential traits actually evolved in the plant host before the insect became associated with it, we should not call it coevolution. That is, the central problem in coevolutionary studies is to understand the ecological and genetic conditions that permit interacting species to undergo repeated bouts of reciprocal genetic change specifically because of the interaction Coevolution, Coexistence, Conflict ? Conventional thought: the good, or better adapted, parasite does not unduly harm its host. Any exceptions can be viewed as new or more recent associations compared with benign interactions Therefore are all the parasites we have seen new associations? When hosts encounter “harmful” parasites, that drain resources and take actions to counter the effect of the parasites- is this peaceful coexistence or a stalemate? Should the relationship develop towards commensalism- or can a certain level of pathogenicity be tolerated? Coevolution between hosts and parasites is continuous reciprocal evolution. As parasites are suggested to track the common host genotypes coevolution can lead to adaptation by parasites to their local hosts. Isolation of populations may enhance the local adaptation process by diverging selection and reducing migration. Selection for parasites depends on the host resistance alleles present in the population and the host’s alleles for resistance are themselves under selection by parasites. In small isolated populations the probability of mating among relatives is increased. Host inbreeding might affect the observation of local adaptation by parasites in two ways. First, due to inbreeding the within population variation in host resistance might be fixed within homozygous lineages thereby enforcing local coevolutionary processes. On the other hand, inbreeding might confound the observation of local adaptation by parasites as the resulting inbreeding depression may increase the hosts’ susceptibility. The concept that parasite-host relationships evolve / coevolve to negligible pathogenicity has become so strong that it now acts as a paradigm. Should parasites be virulent or avirulent? • Virulence is the harm done by a pathogen to the host following an infection; parasite-mediated morbidity and mortality in infected hosts • Virulence is of course the result of complex interactions between both the parasite and its host. • “Harm” here can mean specific symptoms and pathologies (clinician’s definition) or a reduction in host fitness (population biologist’s definition) EvolutionEvolution ofof virulencevirulence • Why are some symbionts commensal and others virulent? • Why do mortality rates following infection vary? • What causes qualitative and quantitative variation in disease symptoms? TheThe conventionalconventional wisdomwisdom • Biologists traditionally believed that all pathogen populations would evolve toward ever-lower virulence • Why? Damage to the host must ultimately be detrimental to the interests of the pathogens that live within it. TheThe conventionalconventional wisdomwisdom • The logic behind this view is pleasing to human sensibilities: a fully-evolved parasite would not harm the host it needs for its survival, proliferation, and transmission • The corollary is that pathogenesis is evidence of recent associations between parasites and their hosts. Virulence is an indication that not enough time has elapsed for a benign association to evolve…Is this view correct? TheThe conventionalconventional wisdomwisdom • Many observations are consistent with the conventional wisdom: Legionnaire’s disease, Lyme disease, ebola, and SARS are consequences of human infection with symbionts of other species that have recently jumped into humans • In other older diseases, like rabies, humans play a negligible role in the transmission of the parasite TheThe conventionalconventional wisdomwisdom • Other observations don’t fit so well, however. • For some virulent pathogens like Shigella and Neisseria gonorrhoeae humans are the unique or dominant host • For other, like malaria and tuberculosis, there is evidence of a long association with humans • Is “long” not long enough, or could it be that some pathogens evolve to become increasingly virulent? TheThe conventionalconventional wisdomwisdom • The conventional wisdom runs up against a big problem when it comes to articulating the mechanism responsible for the alleged evolutionary pressure toward benign associations • For a parasite to evolve to become gentle and prudent in its treatment of its host requires some form of group selection since natural selection operating at the level of the individual parasite often favors virulence TheThe conventionalconventional wisdomwisdom • In the 1980, evolutionary biologists realized that if transmission and virulence were positively coupled, natural selection acting on individuals could favor the evolution and maintenance of some level of virulence • It comes down to elucidating the relationship between the rate of parasite-mediated mortality and the rate of transmission. If the relationship is positive, some level of virulence may be favored • In other words, if killing your host is correlated with higher transmission, natural selection may well favor virulence Coevolution: a pattern of reciprocal adaptation, caused by two species evolving in close association. coevolution is a change in the genetic composition of one species (or group) in response to a genetic change in another. More generally, the idea of some reciprocal evolutionary change in interacting species is a requisite for coevolution Questions: How do parasites and hosts evolve? Do parasites evolve to lose virulence? Should they? Do parasites cause less disease because hosts mount counter measures? Are we in an arm’s race or in a negotiated settlement? Can the parasite increase virulence and the host increase defences indefinitely? Can this continue forever? What about the costs to the parasite and host of increasing virulence and defences? Will overall fitness of both be affected? In theory when costs are present on either side some “compromise” is likely History of myxomatosis virus. Isolated in S. America 1890s sent to Australia Introduced into Australia in 1950s. Intention: kill introduced rabbits. Initially killed 100% of infected hosts. Kill rate declined over time. Rabbits evolved resistance. Myxomatosis evolved lower virulence- why? 1 High 1 3 4 Grade 107 Low 5 5 time time Now host responses maintain low viremia: virus increasing viremia just to reach threshold to maintain transmission Coevolution of parasites and their hosts MyxomaMyxoma virusvirus • Trade-off between virulence and transmission: highly virulent forms killed too quickly, reducing chance of being picked up by vector • Viruses that were too attenuated (mild) had fewer lesions and lower viral load, again translating into less chance of being picked up by vector • Happy medium selected for, rather than ever-more benign forms RR0:: TheThe basicbasic reproductivereproductive raterate The fundamental epidemiological quantity RR0 represents the average number of secondary infections generated by one primary case in a susceptible population Can be used to estimate the level of immunization or behavioural change required to control an epidemic R0 = βH α + µ + b β =transmission rate, H= number of hosts α = parasite induced host mortality (a measure of virulence) µ= parasite mortality rate within the host, b=natural host death Parasite-imposed and
Recommended publications
  • The Pandemic Exposes Human Nature: 10 Evolutionary Insights PERSPECTIVE Benjamin M
    PERSPECTIVE The pandemic exposes human nature: 10 evolutionary insights PERSPECTIVE Benjamin M. Seitza,1, Athena Aktipisb, David M. Bussc, Joe Alcockd, Paul Bloome, Michele Gelfandf, Sam Harrisg, Debra Liebermanh, Barbara N. Horowitzi,j, Steven Pinkerk, David Sloan Wilsonl, and Martie G. Haseltona,1 Edited by Michael S. Gazzaniga, University of California, Santa Barbara, CA, and approved September 16, 2020 (received for review June 9, 2020) Humans and viruses have been coevolving for millennia. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, the virus that causes COVID-19) has been particularly successful in evading our evolved defenses. The outcome has been tragic—across the globe, millions have been sickened and hundreds of thousands have died. Moreover, the quarantine has radically changed the structure of our lives, with devastating social and economic consequences that are likely to unfold for years. An evolutionary per- spective can help us understand the progression and consequences of the pandemic. Here, a diverse group of scientists, with expertise from evolutionary medicine to cultural evolution, provide insights about the pandemic and its aftermath. At the most granular level, we consider how viruses might affect social behavior, and how quarantine, ironically, could make us susceptible to other maladies, due to a lack of microbial exposure. At the psychological level, we describe the ways in which the pandemic can affect mating behavior, cooperation (or the lack thereof), and gender norms, and how we can use disgust to better activate native “behavioral immunity” to combat disease spread. At the cultural level, we describe shifting cultural norms and how we might harness them to better combat disease and the negative social consequences of the pandemic.
    [Show full text]
  • A Memetic Framework for Cooperative Coevolution of Recurrent Neural Networks
    Proceedings of International Joint Conference on Neural Networks, San Jose, California, USA, July 31 – August 5, 2011 A Memetic Framework for Cooperative Coevolution of Recurrent Neural Networks Rohitash Chandra, Marcus Frean and Mengjie Zhang Abstract— Memetic algorithms and cooperative coevolution refinement techniques has been a major focus of study in are emerging fields in evolutionary computation which have memetic computation. There is a need to use non-gradient shown to be powerful tools for real-world application problems based local search, especially in problems where gradient- and for training neural networks. Cooperative coevolution decomposes a problem into subcomponents that evolve inde- based approaches fail, as in the case of training recurrent net- pendently. Memetic algorithms provides further enhancement works in problems with long-term dependencies. Crossover- to evolutionary algorithms with local refinement. The use based local search methods are non-gradient based and have of crossover-based local refinement has gained attention in recently gained attention [8], [9]. In crossover based local memetic computing. This paper employs a cooperative coevo- search, efficient crossover operators which have local search lutionary framework that utilises the strength of local refine- ment via crossover. The framework is evaluated by training properties are used for local refinement with a population recurrent neural networks on grammatical inference problems. of a few individuals. They have shown promising results in The results show that the proposed approach can achieve comparison to other evolutionary approaches for problems better performance than the standard cooperative coevolution with high dimensions [9]. framework. Cooperative coevolution (CC) divides a large problem into smaller subcomponents and solves them independently I.
    [Show full text]
  • Natural Selection Plays an Important Role in Shaping the Codon Usage of Structural Genes of the Viruses Belonging to the Coronaviridae Family
    viruses Article Natural Selection Plays an Important Role in Shaping the Codon Usage of Structural Genes of the Viruses Belonging to the Coronaviridae Family Dimpal A. Nyayanit 1,†, Pragya D. Yadav 1,† , Rutuja Kharde 1 and Sarah Cherian 2,* 1 Maximum Containment Facility, ICMR-National Institute of Virology, Sus Road, Pashan, Pune 411021, India; [email protected] (D.A.N.); [email protected] (P.D.Y.); [email protected] (R.K.) 2 Bioinformatics Group, ICMR-National Institute of Virology, Pune 411001, India * Correspondence: [email protected] or [email protected]; Tel.: +91-20-260061213 † These authors equally contributed to this work. Abstract: Viruses belonging to the Coronaviridae family have a single-stranded positive-sense RNA with a poly-A tail. The genome has a length of ~29.9 kbps, which encodes for genes that are essential for cell survival and replication. Different evolutionary constraints constantly influence the codon usage bias (CUB) of different genes. A virus optimizes its codon usage to fit the host environment on which it savors. This study is a comprehensive analysis of the CUB for the different genes encoded by viruses of the Coronaviridae family. Different methods including relative synonymous codon usage (RSCU), an Effective number of codons (ENc), parity plot 2, and Neutrality plot, were adopted to analyze the factors responsible for the genetic evolution of the Coronaviridae family. Base composition and RSCU analyses demonstrated the presence of A-ended and U-ended codons being preferred in the 3rd codon position and are suggestive of mutational selection. The lesser ENc value for the spike ‘S’ gene suggests a higher bias in the codon usage of this gene compared to the other structural Citation: Nyayanit, D.A.; Yadav, P.D.; genes.
    [Show full text]
  • Biol B242 - Coevolution
    BIOL B242 - COEVOLUTION http://www.ucl.ac.uk/~ucbhdjm/courses/b242/Coevol/Coevol.html BIOL B242 - COEVOLUTION So far ... In this course we have mainly discussed evolution within species, and evolution leading to speciation. Evolution by natural selection is caused by the interaction of populations/species with their environments. Today ... However, the environment of a species is always partly biotic. This brings up the possiblity that the "environment" itself may be evolving. Two or more species may in fact coevolve. And coevolution gives rise to some of the most interesting phenomena in nature. What is coevolution? At its most basic, coevolution is defined as evolution in two or more evolutionary entities brought about by reciprocal selective effects between the entities. The term was invented by Paul Ehrlich and Peter Raven in 1964 in a famous article: "Butterflies and plants: a study in coevolution", in which they showed how genera and families of butterflies depended for food on particular phylogenetic groupings of plants. We have already discussed some coevolutionary phenomena: For example, sex and recombination may have evolved because of a coevolutionary arms race between organisms and their parasites; the rate of evolution, and the likelihood of producing resistance to infection (in the hosts) and virulence (in the parasites) is enhanced by sex. We have also discussed sexual selection as a coevolutionary phenomenon between female choice and male secondary sexual traits. In this case, the coevolution is within a single species, but it is a kind of coevolution nonetheless. One of our problem sets involved frequency dependent selection between two types of players in an evolutionary "game".
    [Show full text]
  • Cultural Group Selection Plays an Essential Role in Explaining Human Cooperation: a Sketch of the Evidence
    BEHAVIORAL AND BRAIN SCIENCES (2016), Page 1 of 68 doi:10.1017/S0140525X1400106X, e30 Cultural group selection plays an essential role in explaining human cooperation: A sketch of the evidence Peter Richerson Emily K. Newton Department of Environmental Science and Policy, University of California– Department of Psychology, Dominican University of California, San Rafael, CA Davis, Davis, CA 95616 94901 [email protected] [email protected] http://emilyknewton.weebly.com/ www.des.ucdavis.edu/faculty/richerson/richerson.htm Nicole Naar Ryan Baldini Department of Anthropology, University of California–Davis, Graduate Group in Ecology, University of California–Davis, Davis, CA 95616 Davis, CA 95616 [email protected] https://sites.google.com/site/ryanbaldini/ [email protected] Adrian V. Bell Lesley Newson Department of Anthropology, University of Utah, Salt Lake City, UT 84112 Department of Environmental Science and Policy, University of California– [email protected] http://adrianbell.wordpress.com/ Davis, Davis, CA 95616 [email protected] [email protected] Kathryn Demps https://www.researchgate.net/profile/Lesley_Newson/ Department of Anthropology, Boise State University, Boise, ID 83725 [email protected] Cody Ross http://sspa.boisestate.edu/anthropology/faculty-and-staff/kathryn- Santa Fe Institute, Santa Fe, NM 87501 demps/ [email protected] http://scholar.google.com/citations?user=xSugEskAAAAJ Karl Frost Graduate Group in Ecology, University of California–Davis, Davis, CA 95616 Paul E. Smaldino [email protected] https://sites.google.com/site/karljosephfrost/ Department of Anthropology, University of California–Davis, Davis, CA 95616 [email protected] http://www.smaldino.com/ Vicken Hillis Department of Environmental Science and Policy, University of California– Timothy M.
    [Show full text]
  • Evolutionary Cognitive Neuroscience Cognitive Neuroscience Michael S
    MD DALIM #870693 9/24/06 GREEN PURPLE Evolutionary Cognitive Neuroscience Cognitive Neuroscience Michael S. Gazzaniga, editor Gary Lynch, Synapses, Circuits, and the Beginning of Memory Barry E. Stein and M. Alex Meredith, The Merging of the Senses Richard B. Ivry and Lynn C. Robertson, The Two Sides of Perception Steven J. Luck, An Introduction to the Event-Related Potential Technique Roberto Cabeza and Alan Kingstone, eds., Handbook of Functional Neuroimaging of Cognition Carl Senior, Tamara Russell, and Michael S. Gazzaniga, eds., Methods in Mind Steven M. Platek, Julian Paul Keenan, and Todd K. Shackelford, eds., Evolutionary Cognitive Neuroscience Evolutionary Cognitive Neuroscience Edited by Steven M. Platek, Julian Paul Keenan, and Todd K. Shackelford The MIT Press Cambridge, Massachusetts London, England © 2007 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or informa- tion storage and retrieval) without permission in writing from the publisher. MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email special_sales@mitpress. mit.edu or write to Special Sales Department, The MIT Press, 55 Hayward Street, Cambridge, MA 02142. This book printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Evolutionary cognitive neuroscience / edited by Steven M. Platek, Julian Paul Keenan, and Todd K. Shackelford. p. cm.—(Cognitive neuroscience) Includes bibliographical references and index. ISBN 13: 978-0-262-16241-8 ISBN 10: 0-262-16241-5 1. Cognitive neuroscience. 2.
    [Show full text]
  • The Coevolution Theory of Autumn Colours Marco Archetti1* and Sam P
    Received 3 December 2003 FirstCite Accepted 25 February 2004 e-publishing Published online The coevolution theory of autumn colours Marco Archetti1* and Sam P. Brown2 1De´partement de Biologie, Section E´ cologie et E´ volution, Universite´ de Fribourg, Chemin du Muse´e 10, 1700 Fribourg, Switzerland 2Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK According to the coevolution theory of autumn colours, the bright colours of leaves in autumn are a warning signal to insects that lay their eggs on the trees in that season. If the colour is linked to the level of defensive commitment of the tree and the insects learn to avoid bright colours, this may lead to a coevolutionary process in which bright trees reduce their parasite load and choosy insects locate the most profitable hosts for the winter. We try to clarify what the theory actually says and to correct some misun- derstandings that have been put forward. We also review current research on autumn colours and discuss what needs to be done to test the theory. Keywords: autumn colours; coevolution; biological signalling; trees; evolution 1. INTRODUCTION that is also variable. Leaf abscission and senescence may be preadaptations to the phenomenon of autumn colours, Why do leaves change their colour in autumn? Bright aut- but they are by no means the same thing. umn colours occur in many deciduous tree species and The second is that bright colours are not just the effect are well known to everybody. However, an evolutionary of the degradation of chlorophyll, but new pigments are explanation to this question has only recently been put actively produced in autumn (Duggelin et al.
    [Show full text]
  • A Group Selection Perspective on Economic Behavior, Institutions and Organizations Jeroen C.J.M
    A Group Selection Perspective on Economic Behavior, Institutions and Organizations Jeroen C.J.M. van den Bergh, John M. Gowdy To cite this version: Jeroen C.J.M. van den Bergh, John M. Gowdy. A Group Selection Perspective on Economic Behavior, Institutions and Organizations. Journal of Economic Behavior and Organization, Elsevier, 2009, 72 (1), pp.1. 10.1016/j.jebo.2009.04.017. hal-00695532 HAL Id: hal-00695532 https://hal.archives-ouvertes.fr/hal-00695532 Submitted on 9 May 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: A Group Selection Perspective on Economic Behavior, Institutions and Organizations Authors: Jeroen C.J.M. van den Bergh, John M. Gowdy PII: S0167-2681(09)00125-5 DOI: doi:10.1016/j.jebo.2009.04.017 Reference: JEBO 2384 To appear in: Journal of Economic Behavior & Organization Received date: 8-4-2008 Revised date: 30-4-2009 Accepted date: 30-4-2009 Please cite this article as: van den Bergh, J.C.J.M., Gowdy, J.M., A Group Selection Perspective on Economic Behavior, Institutions and Organizations, Journal of Economic Behavior and Organization (2008), doi:10.1016/j.jebo.2009.04.017 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Evolutionary Pressure in Lexicase Selection Jared M
    When Specialists Transition to Generalists: Evolutionary Pressure in Lexicase Selection Jared M. Moore1 and Adam Stanton2 1School of Computing and Information Systems, Grand Valley State University, Allendale, MI, USA 2School of Computing and Mathematics, Keele University, Keele, ST5 5BG, UK [email protected], [email protected] Abstract Downloaded from http://direct.mit.edu/isal/proceedings-pdf/isal2020/32/719/1908636/isal_a_00254.pdf by guest on 02 October 2021 Generalized behavior is a long standing goal for evolution- ary robotics. Behaviors for a given task should be robust to perturbation and capable of operating across a variety of envi- ronments. We have previously shown that Lexicase selection evolves high-performing individuals in a semi-generalized wall crossing task–i.e., where the task is broadly the same, but there is variation between individual instances. Further Figure 1: The wall crossing task examined in this study orig- work has identified effective parameter values for Lexicase inally introduced in Stanton and Channon (2013). The ani- selection in this domain but other factors affecting and ex- plaining performance remain to be identified. In this paper, mat must cross a wall of varying height to reach the target we expand our prior investigations, examining populations cube. over evolutionary time exploring other factors that might lead wall-crossing task (Moore and Stanton, 2018). Two key to generalized behavior. Results show that genomic clusters factors contributing to the success of Lexicase were iden- do not correspond to performance, indicating that clusters of specialists do not form within the population. While early tified. First, effective Lexicase parameter configurations ex- individuals gain a foothold in the selection process by spe- perience an increasing frequency of tiebreaks.
    [Show full text]
  • Information Systems Theorizing Based on Evolutionary Psychology: an Interdisciplinary Review and Theory Integration Framework1
    Kock/IS Theorizing Based on Evolutionary Psychology THEORY AND REVIEW INFORMATION SYSTEMS THEORIZING BASED ON EVOLUTIONARY PSYCHOLOGY: AN INTERDISCIPLINARY REVIEW AND THEORY INTEGRATION FRAMEWORK1 By: Ned Kock on one evolutionary information systems theory—media Division of International Business and Technology naturalness theory—previously developed as an alternative to Studies media richness theory, and one non-evolutionary information Texas A&M International University systems theory, channel expansion theory. 5201 University Boulevard Laredo, TX 78041 Keywords: Information systems, evolutionary psychology, U.S.A. theory development, media richness theory, media naturalness [email protected] theory, channel expansion theory Abstract Introduction Evolutionary psychology holds great promise as one of the possible pillars on which information systems theorizing can While information systems as a distinct area of research has take place. Arguably, evolutionary psychology can provide the potential to be a reference for other disciplines, it is the key to many counterintuitive predictions of behavior reasonable to argue that information systems theorizing can toward technology, because many of the evolved instincts that benefit from fresh new insights from other fields of inquiry, influence our behavior are below our level of conscious which may in turn enhance even more the reference potential awareness; often those instincts lead to behavioral responses of information systems (Baskerville and Myers 2002). After that are not self-evident. This paper provides a discussion of all, to be influential in other disciplines, information systems information systems theorizing based on evolutionary psych- research should address problems that are perceived as rele- ology, centered on key human evolution and evolutionary vant by scholars in those disciplines and in ways that are genetics concepts and notions.
    [Show full text]
  • Persistent Misunderstandings of Inclusive Fitness and Kin Selection Park, Justin H
    University of Groningen Persistent misunderstandings of inclusive fitness and kin selection Park, Justin H. Published in: Evolutionary Psychology DOI: 10.1177/147470490700500414 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2007 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Park, J. H. (2007). Persistent misunderstandings of inclusive fitness and kin selection: Their ubiquitous appearance in social psychology textbooks. Evolutionary Psychology, 5(4), 860 - 873. https://doi.org/10.1177/147470490700500414 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Insufficient Emotion: Soul-Searching by a Former Indicter of Strong
    Emotion Review Vol. 2, No. 3 (July 2010) 234–239 © 2010 SAGE Publications and The International Society for Research on Emotion Insufficient Emotion: Soul-searching by a Former ISSN 1754-0739 DOI: 10.1177/1754073910362598 Indicter of Strong Emotions er.sagepub.com George Loewenstein Department of Social & Decision Sciences, Carnegie Mellon University, USA Abstract Contrary to the many accounts of the destructive effects of strong emotions, this article argues that the most serious problems facing the world are caused by a deficiency rather than an excess of emotions. It then shows how an evolutionary account of emotion can explain when and why such deficiencies occur. Keywords decision making, emotion At that moment I was fully aware for the first time how far advanced the researchers have argued that these types of emotions are benefi- process of paralysis already was in me – it was if I were moving through cial, based on the finding that their absence, whether due to brain flowing, bright water without being halted or taking root anywhere, and I damage (Damasio, 1994) or experimental intervention (e.g., knew very well that this chill was something dead and corpse-like, not yet Wilson & Schooler, 1991) tends to degrade the quality of decision surrounded by the foul breath of decomposition but already numbed beyond recover, a grimly cold lack of emotions. making. Representing a similar perspective, there are myriad (Stefan Zweig, 1922 / 2004, p. 19) stories, presented in books such as The Gift of Fear: Survival Signals That Protect Us From Violence (De Becker, 1997), of Do emotions help or hurt decision making? This question has people who report having survived against the odds as a result of been the focus of much implicit and explicit debate.
    [Show full text]