Search for Pentaquarks
Total Page:16
File Type:pdf, Size:1020Kb
Search for Pentaquarks Volker D. Burkert Jefferson Lab Science and Technology Review, Jefferson Lab, June 14, 2004 Office of Thomas Jefferson National Accelerator Facility Science OUTLINE Hadron Spectroscopy and Pentaquarks Evidence for and against Θ+(1540) and other Pentaquarks Theory response to the Θ+(1540) The experimental program at JLab Summary Office of Thomas Jefferson National Accelerator Facility Science Hadron Spectroscopy 101 − Meson: quark-antiquark pair K s u −1/3 p −2/3 u Baryon: three quarks (valence) +2/3 d −1/3 u Pentaquark: 4 quarks + 1 antiquark +2/3 Each quark has a unique • charge (+2/3 or -1/3) d Θ+ • flavor (u,d,s,c,b,t) −1/3 • color (red, green, blue) u s Hadrons must be colorless +2/3 +1/3 d −1/3 + u The Θ represents a new form of quark +2/3 matter containing a minimum of five quarks. Office of Thomas Jefferson National Accelerator Facility Science Types of Pentaquarks •“Non-exotic” pentaquarks – The antiquark has the same flavor as one of the other quarks – Difficult to distinguish from 3-quark baryons Example: uudss, same quantum numbers as uud Strangeness = 0 + 0 + 0 - 1 + 1 = 0 •“Exotic” pentaquarks – The antiquark has a flavor different from the other 4 quarks – They have quantum numbers different from any 3-quark baryon – Unique identification using experimental conservation laws Example: uudds Strangeness = 0 + 0 + 0 + 0 + 1 = +1 Office of Thomas Jefferson National Accelerator Facility Science Hadron Multiplets K Mesons qq π K ∆- ∆++ Baryons qqq N Σ Ξ Ω─ B+S + Baryons built from qqqqq 2 Θ 1 I3 +1/2 1 -1 -1/2 Ξ-- Ξ+ Office of Thomas Jefferson National Accelerator Facility Science The Anti-decuplet in the χSM D. Diakonov, V. Petrov, M. Polyakov, Z.Phys.A359, 305 (1997) updated version S=+1 D. Diakonov, V. Petrov, ∆m = 108 MeV arXiv:hep-ph/0310212 S=0 S=-1 S=-2 Show experimental evidence for results submitted for publication. Office of Thomas Jefferson National Accelerator Facility Science Θ+(1540) as seen with e.m. probes PRL91, 012002 (2003) LEPS/SPring8 PRL91, 252001 (2003) CLAS/JLab γCK+K-(n) γDK-pK+(n) 15 ) 2 10 Events/(0.02 GeV/c 5 0 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 c − 2 MMγK (GeV/c ) Office of Thomas Jefferson National Accelerator Facility Science Θ+(1540) as seen with e.m. probes PRL92, 032001 (2004) PLB572, 127 (2003) hep-ex/0307088 (2003) CLAS/JLab SAPHIR/ELSA - + γpKπ+Κ+(n) γpKsK n Office of Thomas Jefferson National Accelerator Facility Science Θ+(1540) as seen with e.m. probes HERMES/DESY ZEUS/HERAZEUS + 0 350350 0 e dKpX KS p(p) Q2>20 GeV2 300300 250 250 ZEUS 96-00 Fit Gaussian Combinations / 0.005 GeV Background 200200 ARIADNE MC 200 180 150 150 160 2 χ / ndf =35 / 44 140 peak= 1521.5 ± 1.5 MeV 120 ± 100100 width= 6.1 1.6 MeV 100 events=221 ± 48 80 0 KS p 60 0 K p 40 S 5050 20 0 PLB585, 213(2004) 1.45 1.5 1.55 1.6 1.65 1.7 00 1.451.45 1.51.5 1.551.55 1.61.6 1.651.65 1.1.77 M (GeV) hep-ex/040305 (2004) Office of Thomas Jefferson National Accelerator Facility Science Θ+ in non-electromagnetic interactions Phys.A.Nucl.67, 682 (2004) ITEP hep-ex/0403011 (2004)COSY/TOF pp Æ Σ+Θ+. ν(ν)ApKs X + M(pKs) MM(ppΣ ) Office of Thomas Jefferson National Accelerator Facility Science Θ+(1540) in hadron-nucleus processes Phys.A.Nucl.66, 500 (2003) hep-ex/0401024 (2004) hep-ex/0304040 DIANA SVD/IHEP pA pK X + s K Xe pKsX Office of Thomas Jefferson National Accelerator Facility Science Θ+(1540) in K+d Scattering Data from T. Bowen et al. , PRD 2, 2599 (1970) 1540 1555 26 From: W. Gibbs nucl-th/0405024 (2004) 21 + 16 Office of Thomas Jefferson National Accelerator Facility Science Summary of Experimental Masses K+dfor ½+ W. Gibbs (nucl-th/0405024) K+dfor ½- ∆M ~ 12 MeV Shift could be due to different background shapes and interference ng-8 effects. EP ANA COSY ZEUS SAPHIR ITEP Spri IH HERMES DI CLAS-d CLAS-p Office of Thomas Jefferson National Accelerator Facility Science What do we know about the width of Θ+? Widths seen in experimental analyses are dominated by resolution effects. More precise information is obtained in analyses with theoretical constraints. HERMES, PLB585, 213 (2004) ΓΘ = 17+/-9+/-3 MeV S. Nussinov et al., hep-ph/0307357 ΓΘ < 6 MeV (non-observation) R. Arndt et al., PRC68, 42201 (2003) ΓΘ < 1 MeV (non-observation) R. Cahn and G. Trilling, PRD69, 11401(2004) ΓΘ = 0.9 +/- 0.3MeV (from DIANA results) + o A. Sibirtsev, et al., hep-ph/0405099 (2004) ΓΘ < 1 MeV (K dKpp) First positive identification of Θ+ in K+d, including double scattering. + W. Gibbs,nucl-th/0405024 (2004) ΓΘ = 0.9 +/-0.2 MeV (K dX) JP = ½+ JP = ½- Office of Thomas Jefferson National Accelerator Facility Science Θ+ - Production mechanism on hydrogen Possible production mechanism + γ + γ + K + π X π Select t-channel process _ + K * by tagging forward π and − π − − + K ∗ K reducing K from t channel N n processes p + p n θ a) + b) K ∗ + + o K cosθ + > 0.8 ο K γ π γ X X − ∗ − K < 0.6 K + cosθ + π Κ n p * ∗ + p n N / ∆ π (in c.m. frame) c) d) Office of Thomas Jefferson National Accelerator Facility Science CLAS - Θ+ production mechanism? Eγ = 3 - 5.4 GeV γp π+K+K- n Θ+ production through N* resonance decays? M(nK+) 7.8σ significance Μ= 1555 (7)(10) γ Γ ~ 35 MeV π+ π− K- + N* K proton Θ+ n Cut on Θ+ mass, and plot cut M(nK+K-) Office of Thomas Jefferson National Accelerator Facility Science CLAS - Θ+(1540) and N* ? outside Θ+ region Cut on M(nK+) γ + In Θ+ region π π− K- + N* K proton Θ+ n What do π-p scattering data say? π-p cross section data in PDG have a gap in the mass range 2.3–2.43 GeV. Office of Thomas Jefferson National Accelerator Facility Science NA49 – Θ+ through N* excitations ? pp collisions at ECM = 17.2 GeV a) b) M(pK0K-), if 1.525 <M(pK0)<1.545 GeV Office of Thomas Jefferson National Accelerator Facility Science Negative Θ+ Searches • HERA-B (hep-ex/0403020): – reaction: pA at 920 GeV – measured: K-p and K0p invariant mass – signal for Λ(1520), no signal for Θ+ • BES (hep-ex/0402012): – reaction: e+e- Æ J/ψ Æ Θ+Θ− – limit on B.R. of ~10-5 (low sensitivity, negative result was expected) • C. Pinkenburg (PHENIX) (nucl-ex/0404001): – reaction: Au + Au -> nK-X (large combinatorial background) – See signal first, then not, unclear what changed. Office of Thomas Jefferson National Accelerator Facility Science Search for Ξ5 Pentaquark states - 11 observations - Several non-observations Other exotic Pentaquarks ? Office of Thomas Jefferson National Accelerator Facility Science −− o Seach for Ξ5 , Ξ NA49 pp Ecm = 17.2 GeV HERA-B p+A 940GeV/c M=1.862± 0.002 GeV Γ<0.018 GeV Ξ−π− + Ξ−π+ Combined spectra C. Alt, et al., Phys.Rev.Lett.92, 042003 (2004) hep-ex/0403020 Office of Thomas Jefferson National Accelerator Facility Science o H1 - A charmed pentaquark Θc(3100)? hep-ex/040305 (2004) Q2 = 1 – 100 GeV2 Q2 < 1 GeV2 M = (3099 +/- 3 +/- 5) MeV Minimal quark content: uuddc Yet to be confirmed! Office of Thomas Jefferson National Accelerator Facility Science Evidence for Penta-Quark States Spring8 DIANA JLab-d ELSA 15 ) 2 10 Events/(0.02 GeV/c 5 0 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 c − 2 MMγK (GeV/c ) ITEP SVD/IHEP JLab-p HERMES CERN/NA49 ZEUS COSY-TOF H1 pp Æ Σ+Θ+. Office of Thomas Jefferson National Accelerator Facility Science Theory Response to the Pentaquark • Chiral soliton P=+ o + • Kaon-Skyrmion P=+ • Anti-charmed Θ c and anti-beauty Θ b + + • (qq)2-q P=+ or P=- • Θ and Θ produced in quark-gluon plasma • Kaon-nucleon resonance • Instantons and diquark clustering • Super radiance resonance • Triquark-diquark cluster model • QCD sum rules • Pentaquarks and radially excited baryons • Lattice QCD P=-, or find no signal • Peanut-shaped quark-diquark model • Higher exotic baryon multiplets • Pentaquarks in the color-flavor-locking • Pentaquarks in string dynamics superconducting phase • ……. • P11(1440) as pentaquark • P11(1710) as pentaquark • Θ+ as isotensor pentaquark • Topological soliton More than 220 papers • Θ+(1540) as a heptaquark since July 1, 2003. • Exotic baryons in the large Nc limit Office of Thomas Jefferson National Accelerator Facility Science PentaQuark 2003 Workshop The first Topical Workshop PentaQuark 2003 held at JLab, November 7-9, 2003 - Organized on a very short time scale of 3 months - 117 registered participants (expected 35) - Generated ideas for new experiments to study Θ+ properties, such as spin, parity - Initiated new proposals for the search of excited states Θ∗+, Θ∗++, and exotic Ξ pentaquark baryons Article in CERN Courier, April 2004 Office of Thomas Jefferson National Accelerator Facility Science Pentaquarks – three model descriptions Chiral soliton model: (Diakonov, Quark description (Jaffe, Wilczek) Petrov, Polyakov) ‘Pentaquark’ comes out L=0 naturally from these models. (ud) They represent rotational s excitations of the soliton L=1 [rigid core (q3) surrounded by meson fields (qq)] (ud) Soliton: (naïve version) L=1, one unit of orbital angular momentum needed to obtain JP = ½+ as in the χSM Meson fields P + J = ½ Q-LQCD: JP = ½- Office of Thomas Jefferson National Accelerator Facility Science Search for excited states of the Θ+(1540) Spin-flavor partners, T = 1, JP = 3/2+, to the Θ+ are predicted at masses slightly higher than the Θ+.