Railway Transportation Rehabilitation Project(1)(2)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mongolian Transport Policy on Operational Connectivity for Integrated Intermodal Transport and Logistics in the Region
MONGOLIAN TRANSPORT POLICY ON OPERATIONAL CONNECTIVITY FOR INTEGRATED INTERMODAL TRANSPORT AND LOGISTICS IN THE REGION Forum on Sustainable transport connectivity between Europe and Asia in the framework of the 62 session of UNECE and Working party on Intermodal transport and Logistics 30 OCTOBER 2019, GENEVA, SWITZERLAND Ministry of Road and Transport Development of MongoliaMongolia Page 1 CONTENT General information Legal framework and Intergovernmental Agreements Operational practice along international corridors Facilitation measures for international railway transport Vision and challenges MinistryMinistry of of Road Road and and Transport Transport Development Development of of Mongolia Mongolia – Regional MeetingUNESCAP Page 2 Mongolia is one of largest landlocked countries in the world, with a territory extending over 1.5 million square kilometers. It is bordered by Peoples Republic of China on three sides, to the East, South and West and by Russian Federation to the North. The country is rich in a variety of mineral resources and has substantial livestock herds, ranking first in per capita ownership in the world. Mongolia is a sparsely populated country, with a population of around 3.2 million, with population density of 2 persons per square kilometers. However, more than 60 percent of the population live in urban area. The construction of new roads and the maintenance of existing ones are being given high priority of the Mongolian Government. As part of the Government of Mongolia’s 2016-2020 action plan road and transport sector’s objective is to expand and develop transport and logistics network that supports economic improvement, meet social needs and requirements and provides safe and comfortable service. -
Study on Border Crossing Practices in International Railway Transport
STUDY ON BORDER CROSSING PRACTICES IN INTERNATIONAL RAILWAY TRANSPORT Bangkok, 2018 This study was prepared by Transport Division ESCAP. The draft of the study was prepared by Mr. Goran Andreev, Consultant, under the supervision of Mr. Sandeep Raj Jain, Economic Affairs Officer, Transport Facilitation and Logistics Section (TFLS), Transport Division. Overall guidance was provided by Mr. Li Yuwei, Director, Transport Division. The study extensively benefited from the visits made by the ESCAP study team to several border crossings (in chronological order): Sukhbaatar (Mongolia), Dong Dang (Viet Nam), Padang Besar (Malaysia), Sarkhas (Islamic Republic of Iran), Rezekne (Latvia). The assistance provided by the railways, customs and other authorities at these border crossings, their officers and staff for the study is duly appreciated. Acknowledgments are also extended to the representatives of Intergovernmental Organisation for International Carriage by Rail (OTIF) and Organisation for Co- operation between Railways (OSJD), for their constructive comments on the draft Study and the contribution in providing valuable inputs on the publication. The views expressed in this guide are those of the authors and do not necessarily reflect the views of the United Nations Secretariat. The opinions, figures and estimates set forth in this guide are the responsibility of the authors, and should not necessarily be considered as reflecting the views or carrying the endorsement of the United Nations. The designations employed and the presentation of the material in this study do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Chapter 4 Transport Sector
Chapter 4 Transport Sector January 2021 This chapter should be cited as Study team (2021), ‘Transport Sector’, in Mongolian Energy Institute and ERIA (eds.), Mongolia’s Energy Efficiency Indicators 2019. ERIA Research Project Report FY2020 no. 17, Jakarta: ERIA, pp.30-44. Chapter 4 Transport Sector 1. Energy Efficiency Indicators in the Transport Sector Like other sectors, energy efficiency indicators (EEIs) in transport are in principle results of dividing energy consumption by the sector’s activity. Based on type of activity, the transport sector is broken down into freight and passenger transport (Figure 4-1 and Figure 4-2). For each activity type, we estimate the indicators in a bottom-up manner. Based on the survey results, we estimate the EEIs starting from the vehicle type. For example, in passenger road transport, we start estimating the indicators for road vehicles with sedans, buses, and taxis whilst for freight road, we start with trucks. Figure 4-1 Pyramid of Passenger Transport Indicators Source: IEA (2014b). 30 Figure 4-2 Pyramid of Freight Transport Indicators Source: IEA (2014b). For passenger transport, EEIs are calculated in gigajoules/passenger-km (GJ/pass-km). For freight transport, the indicators are given in gigajoules/ton-km (GJ/ton-km). For both passenger and freight transport, calculation results of EEIs are in terms of GJ/vehicle-km. Multiplying the estimated EEIs with transport demand in terms of vehicle-km, passenger-km (for passengers), and ton-km (for freight), we can move up to the higher level of the pyramid to calculate the total energy consumption of the transport sector, i.e. -
Track Inspection – 2009
Santa Cruz County Regional Transportation Commission Track Maintenance Planning / Cost Evaluation for the Santa Cruz Branch Watsonville Junction, CA to Davenport, CA Prepared for Egan Consulting Group December 2009 HDR Engineering 500 108th Avenue NE, Suite 1200 Bellevue, WA 98004 CONFIDENTIAL Table of Contents Executive Summary 4 Section 1.0 Introduction 10 Section 1.1 Description of Types of Maintenance 10 Section 1.2 Maintenance Criteria and Classes of Track 11 Section 2.0 Components of Railroad Track 12 Section 2.1 Rail and Rail Fittings 13 Section 2.1.1 Types of Rail 13 Section 2.1.2 Rail Condition 14 Section 2.1.3 Rail Joint Condition 17 Section 2.1.4 Recommendations for Rail and 17 Joint Maintenance Section 2.2 Ties 20 Section 2.2.1 Tie Condition 21 Section 2.2.2 Recommendations for Tie Maintenance 23 Section 2.3 Ballast, Subballst, Subgrade, and Drainage 24 Section 2.3.1 Description of Railroad Ballast, Subballst, 24 Subgrade, and Drainage Section 2.3.2 Ballast, Subgrade, and Drainage Conditions 26 and Recommendations Section 2.4 Effects of Rail Car Weight 29 Section 3.0 Track Geometry 31 Section 3.1 Description of Track Geometry 31 Section 3.2 Track Geometry at the “Micro-Level” 31 Section 3.3 Track Geometry at the “Macro-Level” 32 Santa Cruz County Regional Transportation Commission Page 2 of 76 Santa Cruz Branch Maintenance Study CONFIDENTIAL Section 3.4 Equipment and Operating Recommendations 33 Following from Track Geometry Section 4.0 Specific Conditions Along the 34 Santa Cruz Branch Section 5.0 Summary of Grade Crossing -
Integrated International Transport and Logistics System for North-East Asia
SEMINAR ON OVERCOMING BORDER CROSSING OBSTACLES 5-6 March 2009, Paris INTEGRATED INTERNATIONAL TRANSPORT AND LOGISTICS SYSTEM FOR NORTH-EAST ASIA The Korea Transport Institute Contribution provided by Mr. Sungwon LEE Integrated International Transport and Logistics System for North-East Asia The Korea Transport Institute ⓒ August 2005 The Korea Transport Institute 2311 Daewha-dong, Ilsanseo-gu, Goyang-si, Gyeonggi-do 411-701, Republic of KOREA Price: 30,000 KRW ISBN 89-5503-187-4 93320 Foreword A cohesive, integrated transport network is an essential element for a region to maintain economic competitiveness and sustained economic growth. Although North-East Asia is the one of the most economically vibrant regions in the world, the intra-regional transport and logistics network is not well integrated. Difficulties exist—even in main trunk routes—in providing seamless intermodal transport for connecting major industrial areas in the region. As the region is more geared for international as well as intra-regional exchange, a well functioning integrated transport network needs to be constructed to secure efficient flows of freight. However, such the development of such a network faces physical, institutional, operational, and financial barriers. In order to assist the countries in the subregion in addressing this issue, the United Nations Economic Commission for Asia and the Pacific (UNESCAP), jointly with the UNDP Tumen Secretariat and in collaboration with the Korea Transport Institute (KOTI), initiated a two-year project entitled ―Integrated International Transport and Logistics System for North-East Asia‖. The main purpose of this project is to assist the member countries in North-East Asia in promoting an integrated approach to international transport and logistics planning and policy formulation. -
Customer Track Maintenance Guide Winter Safety
Customer Track Maintenance Guide Winter Safety Safety is of the utmost importance at CN, not only for our employees but Our goal is to move your products as quickly and safely as possible. also for you, our customers. Please contact your service delivery representative or account manager if you have any questions. We’ve developed this Customer Track Maintenance Guide in order to help bring attention to the additional hazards that are present during the winter Additional information on our seasonal safety guidelines can be found at: months, especially for our crews performing switching activities. www.cn.ca/seasonalsafety Winter is a challenging time for a railroad; many of the service disruptions are caused by accumulations of snow and ice. On the track, problems with switches and crossings are mainly caused by snow — so clearing the snow solves the problem. 3 Flangeways wheel flange Be particularly vigilant where flangeways can be become contaminated with snow, ice, or other material, or where any trackage is covered by excessive amounts of snow or ice, or other material. Ensure equipment can be carefully operated through flangeway over such track. flangeway Be especially aware at crossings, as these are prone to these types minimum of 1.5” clear rail of conditions. of ice, snow, mud, etc. At a minimum, flangeways must be cleared to a depth of 1.5”. Acceptable: Not acceptable: 4 Switches Be aware that switches can become very difficult to line due to cold weather and snow/ice build-up in the switch points. Attempting to line a stiff switch can and does lead to back, leg and arm injuries. -
Trends in the Share of Railways in Transportation
www.cepal.org/transporte Issue No. 303 - Number 11 / 2011 BULLETIN FACILITATION OF TRANSPORT AND TRADE IN LATIN AMERICA AND THE CARIBBEAN This issue of the FAL Bulletin analyses the history of railways in modal distribution Trends in the share in Latin America, and puts forward recommendations for improving their functioning and making them a real, of railways competitive and sustainable transport option. The study is part of the activities being in transportation conducted by the Unit in the project on “Strategies for environmental sustainability: climate change and energy”, funded by the Spanish Agency for International Development Cooperation (AECID). The author of this issue of the Bulletin is Introduction Gonzalo Martín Baranda, Consultant for the Infrastructure Services Unit of ECLAC. For additional information please contact Railways flourished in the nineteenth century, becoming a key element [email protected] in the transport of goods and passengers For a number of reasons, Introduction however, their prominence has gradually diminished and they now have only a limited role, mostly in the transportation of certain bulk products. I. The rise of railways This document looks at the how the use of the railways for freight has II. Recent history of railways changed over the years, and puts forward a series of recommendations in Latin America to increase their use in present-day Latin America. III. Consideration of externalities and associated social costs I. The rise of railways for sustainable modal choices IV. The role of railways in modal shifts Railways rose to prominence in the nineteenth century, leading to a radical change in the surface transport of freight and passengers, and V. -
Rail Accident Report
Rail Accident Report Collision at Pickering station North Yorkshire Moors Railway 5 May 2007 Report 29/2007 August 2007 This investigation was carried out in accordance with: l the Railway Safety Directive 2004/49/EC; l the Railways and Transport Safety Act 2003; and l the Railways (Accident Investigation and Reporting) Regulations 2005. © Crown copyright 2007 You may re-use this document/publication (not including departmental or agency logos) free of charge in any format or medium. You must re-use it accurately and not in a misleading context. The material must be acknowledged as Crown copyright and you must give the title of the source publication. Where we have identified any third party copyright material you will need to obtain permission from the copyright holders concerned. This document/publication is also available at www.raib.gov.uk. Any enquiries about this publication should be sent to: RAIB Email: [email protected] The Wharf Telephone: 01332 253300 Stores Road Fax: 01332 253301 Derby UK Website: www.raib.gov.uk DE21 4BA This report is published by the Rail Accident Investigation Branch, Department for Transport. Investigation into collision at Pickering station North Yorkshire Moors Railway, 5 May 2007 Contents Introduction 4 Summary 5 Location 5 The train and its crew 7 The incident 9 Conclusions 12 Actions reported as already taken by the NYMR 13 Recommendations 14 Appendices 15 Appendix A: Glossary of terms 15 Appendix B: NYMR damage report on GN General Managers Saloon 16 Rail Accident Investigation Branch Report 29/2007 www.raib.gov.uk August 2007 Introduction 1 The sole purpose of a Rail Accident Investigation Branch (RAIB) investigation is to prevent future accidents and incidents and improve railway safety. -
Chapter 2 Track
CALTRAIN DESIGN CRITERIA CHAPTER 2 - TRACK CHAPTER 2 TRACK A. GENERAL This Chapter includes criteria and standards for the planning, design, construction, and maintenance as well as materials of Caltrain trackwork. The term track or trackwork includes special trackwork and its interface with other components of the rail system. The trackwork is generally defined as from the subgrade (or roadbed or trackbed) to the top of rail, and is commonly referred to in this document as track structure. This Chapter is organized in several main sections, namely track structure and their materials including civil engineering, track geometry design, and special trackwork. Performance charts of Caltrain rolling stock are also included at the end of this Chapter. The primary considerations of track design are safety, economy, ease of maintenance, ride comfort, and constructability. Factors that affect the track system such as safety, ride comfort, design speed, noise and vibration, and other factors, such as constructability, maintainability, reliability and track component standardization which have major impacts to capital and maintenance costs, must be recognized and implemented in the early phase of planning and design. It shall be the objective and responsibility of the designer to design a functional track system that meets Caltrain’s current and future needs with a high degree of reliability, minimal maintenance requirements, and construction of which with minimal impact to normal revenue operations. Because of the complexity of the track system and its close integration with signaling system, it is essential that the design and construction of trackwork, signal, and other corridor wide improvements be integrated and analyzed as a system approach so that the interaction of these elements are identified and accommodated. -
Rawie 16ZEB/28A Friction Arresting Buffer Stop at Freight Link Headshunt in Melbourne Only
Engineering Procedure- Form New Equipment & System Approval Proforma Form number: EGP2101F-01 NEW EQUIPMENT & SYSTEM APPROVAL PROFORMA Ref: 14/19018 Note: the prompts given below are only a guide to the information required for approval. Dependent on the type of equipment or system that requires approval delete any section that is not applicable or include additional information if necessary. Mandatory fields are marked with an asterisk (*). 1 Equipment or System to be approved * Rawie 16ZEB/28a Friction Arresting Buffer Stop at Freight Link Headshunt in Melbourne only 2 Originator * Name: Patrick Gray Company: ARTC/RRL 3 Introduction * A new dual gauge freight headshunt was proposed by the Victorian Regional Rail Link Project to replace the previous freight headshunt over the North Melbourne Flyover in order to make way for the new Regional Rail Link Track use of the Flyover to access Southern Cross Station. The new headshunt is comprised of a Section of the new Freight Link Track and the Freight Link Headshunt which branches off the Freight Link Track. To control the risk of rolling stock overrun at the end of the headshunt it was determined through a risk assessment process that a friction buffer stop would be provided with capacity to safely bring a maximum freight train of 4500t to a stand from 15 km/h. The Rawie 16ZEB/28a Friction Arresting Buffer Stop is a non-insulated device capable of arresting centre coupled freight vehicles through a friction shoe braking mechanism that allows impact energy to be dissipated over the nominated length of track. This type of equipment provides enhanced rail safety over traditional fixed buffer stops by providing controlled speed reduction and reduces likelihood of destructive impact and the potential for rolling stock to override the buffer. -
Nsf21518.Pdf
EPSCoR Research Infrastructure Improvement Program: Track-2 Focused EPSCoR Collaborations (RII Track-2 FEC) PROGRAM SOLICITATION NSF 21-518 REPLACES DOCUMENT(S): NSF 20-504 National Science Foundation Office of Integrative Activities Letter of Intent Due Date(s) (required) (due by 5 p.m. submitter's local time): December 18, 2020 Full Proposal Deadline(s) (due by 5 p.m. submitter's local time): January 25, 2021 IMPORTANT INFORMATION AND REVISION NOTES Only jurisdictions that meet the EPSCoR eligibility criteria may submit proposals to the Research Infrastructure Improvement Program Track-2 (RII Track-2) competition. There is a limit of a single proposal from each submitting organization. Each proposal must have at least one collaborator from an academic institution or organization in a different RII-eligible EPSCoR jurisdiction as a co- Principal Investigator (co-PI). There must be one co-PI listed on the cover page from each participating jurisdiction. Proposals that depart from these guidelines will be returned without review. For the FY 2021 RII Track-2 FEC competition, all proposals must promote collaborations among researchers in EPSCoR jurisdictions and emphasize the recruitment/development of diverse early career faculty and STEM education and workforce development on the single topic: "Advancing research towards Industries of the Future to ensure economic growth for EPSCoR jurisdictions.“ Inclusion of Primarily Undergraduate Institutions and/or Minority Serving Institutions as partners is strongly encouraged. The extent and quality of the inter-jurisdictional collaborations must be clearly articulated. A letter of Intent (LOI) is required for the FY 2021 RII Track-2 FEC competition. LOIs must be submitted by the Authorized Organizational Representative of the submitting organization via FastLane on or before the LOI due date. -
Curve Crossings As a Supplier, Century Group Inc
Curve Crossings As a supplier, Century Group Inc. is proactive in the railroad industry by ensuring that all sales and technical field representatives have been through the Class I Railroad’s e-rail safe program, the Roadway Worker On-Track Safety program overseen by the Federal Railroad Administration (FRA) and the Transportation Worker Identification Credential Program (TWIC) implemented by Transportation Security Agency (TSA) and the U. S. Coast Guard. Safety and security at jobsites is the highest priority at Century Group Inc. Curve Concrete Grade Crossing Experience There are many instances in which highway / railway grade crossings are installed in curved track. Whether it is a perfect curve, compound curve or reverse curve, Century Group Inc. has the expertise to design and manufacture custom concrete railroad grade crossing panels to fit your specific curved track configuration. Having been in the railroad construction business for over four decades, Century Group possesses the technical skills and knowledge to manufacture custom grade crossing panels for the most challenging curved railroad track situations. Concrete Railroad Crossing In Spiral Curve Manufacturing custom concrete crossing panels for curved track insures a good fit, minimizing gaps where the panels abut each other, maintains a safe consistent flangeway filler width and insures that the panels abut at or near the center of the crossties. The greater the length and degree of curve in a railroad grade crossing, the more critical it is to manufacture a custom grade crossing panel to insure proper installation and to maintain the structural integrity and service life of the concrete crossing panels. Concrete Railroad Crossing In Compound Curve Crossing In Reverse Curve It is very important that the railroad contractor building the new track for the curved grade crossing uses the correct tie spacing.