Track Inspection – 2009
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MÁV Central Rail and Track Inspection Ltd
MÁV Central Rail and Track Inspection Ltd. PATER TRACK DIAGNOSTIC EXPERT SYSTEM Besides the knowledge of quality the safe and economical maintenance of railway tracks plays an increasingly impor- tant role these days. The „PATER” track diagnostic ex- pert software is intended to fulfil this task. PATER is a computer program that keeps records of rail- way tracks, monitors their condition and performs mainte- nance planning duties. Its purpose is to assist track mainte- nance professionals in managing the data of the technical and measurement systems, presenting the condition of the track, planning track maintenance jobs depending on track conditions, selecting the appropriate technology and per- forming cost estimates. Rail defects revealed by various inspections This is a client-server based program that ensures that data and their qualification stored in the database can be accessed from anywhere and client users can use them through the internet in case of sufficient authorisation. This model makes it possible that all data is stored and updated in one location therefore the data available to users is always up-to-date. In the engineering practice the val- ues of the isolated defects and gen- eral qualifying indices are analyzed and these values are sufficient to judge the traffic safety and quality. Nowadays we use track geometri- cal, vehicle dynamical, ultrasonic, Space and time based graphical analysis Head Checking, rail profile and rail of track geometry data corrugation measuring devices. The PATER program adapts to the re- quirements of any railway company: unlimited new measuring system, parameter, measuring limit etc. can be integrated quickly and easily. -
Customer Track Maintenance Guide Winter Safety
Customer Track Maintenance Guide Winter Safety Safety is of the utmost importance at CN, not only for our employees but Our goal is to move your products as quickly and safely as possible. also for you, our customers. Please contact your service delivery representative or account manager if you have any questions. We’ve developed this Customer Track Maintenance Guide in order to help bring attention to the additional hazards that are present during the winter Additional information on our seasonal safety guidelines can be found at: months, especially for our crews performing switching activities. www.cn.ca/seasonalsafety Winter is a challenging time for a railroad; many of the service disruptions are caused by accumulations of snow and ice. On the track, problems with switches and crossings are mainly caused by snow — so clearing the snow solves the problem. 3 Flangeways wheel flange Be particularly vigilant where flangeways can be become contaminated with snow, ice, or other material, or where any trackage is covered by excessive amounts of snow or ice, or other material. Ensure equipment can be carefully operated through flangeway over such track. flangeway Be especially aware at crossings, as these are prone to these types minimum of 1.5” clear rail of conditions. of ice, snow, mud, etc. At a minimum, flangeways must be cleared to a depth of 1.5”. Acceptable: Not acceptable: 4 Switches Be aware that switches can become very difficult to line due to cold weather and snow/ice build-up in the switch points. Attempting to line a stiff switch can and does lead to back, leg and arm injuries. -
Trends in the Share of Railways in Transportation
www.cepal.org/transporte Issue No. 303 - Number 11 / 2011 BULLETIN FACILITATION OF TRANSPORT AND TRADE IN LATIN AMERICA AND THE CARIBBEAN This issue of the FAL Bulletin analyses the history of railways in modal distribution Trends in the share in Latin America, and puts forward recommendations for improving their functioning and making them a real, of railways competitive and sustainable transport option. The study is part of the activities being in transportation conducted by the Unit in the project on “Strategies for environmental sustainability: climate change and energy”, funded by the Spanish Agency for International Development Cooperation (AECID). The author of this issue of the Bulletin is Introduction Gonzalo Martín Baranda, Consultant for the Infrastructure Services Unit of ECLAC. For additional information please contact Railways flourished in the nineteenth century, becoming a key element [email protected] in the transport of goods and passengers For a number of reasons, Introduction however, their prominence has gradually diminished and they now have only a limited role, mostly in the transportation of certain bulk products. I. The rise of railways This document looks at the how the use of the railways for freight has II. Recent history of railways changed over the years, and puts forward a series of recommendations in Latin America to increase their use in present-day Latin America. III. Consideration of externalities and associated social costs I. The rise of railways for sustainable modal choices IV. The role of railways in modal shifts Railways rose to prominence in the nineteenth century, leading to a radical change in the surface transport of freight and passengers, and V. -
Rail Accident Report
Rail Accident Report Collision at Pickering station North Yorkshire Moors Railway 5 May 2007 Report 29/2007 August 2007 This investigation was carried out in accordance with: l the Railway Safety Directive 2004/49/EC; l the Railways and Transport Safety Act 2003; and l the Railways (Accident Investigation and Reporting) Regulations 2005. © Crown copyright 2007 You may re-use this document/publication (not including departmental or agency logos) free of charge in any format or medium. You must re-use it accurately and not in a misleading context. The material must be acknowledged as Crown copyright and you must give the title of the source publication. Where we have identified any third party copyright material you will need to obtain permission from the copyright holders concerned. This document/publication is also available at www.raib.gov.uk. Any enquiries about this publication should be sent to: RAIB Email: [email protected] The Wharf Telephone: 01332 253300 Stores Road Fax: 01332 253301 Derby UK Website: www.raib.gov.uk DE21 4BA This report is published by the Rail Accident Investigation Branch, Department for Transport. Investigation into collision at Pickering station North Yorkshire Moors Railway, 5 May 2007 Contents Introduction 4 Summary 5 Location 5 The train and its crew 7 The incident 9 Conclusions 12 Actions reported as already taken by the NYMR 13 Recommendations 14 Appendices 15 Appendix A: Glossary of terms 15 Appendix B: NYMR damage report on GN General Managers Saloon 16 Rail Accident Investigation Branch Report 29/2007 www.raib.gov.uk August 2007 Introduction 1 The sole purpose of a Rail Accident Investigation Branch (RAIB) investigation is to prevent future accidents and incidents and improve railway safety. -
Chapter 2 Track
CALTRAIN DESIGN CRITERIA CHAPTER 2 - TRACK CHAPTER 2 TRACK A. GENERAL This Chapter includes criteria and standards for the planning, design, construction, and maintenance as well as materials of Caltrain trackwork. The term track or trackwork includes special trackwork and its interface with other components of the rail system. The trackwork is generally defined as from the subgrade (or roadbed or trackbed) to the top of rail, and is commonly referred to in this document as track structure. This Chapter is organized in several main sections, namely track structure and their materials including civil engineering, track geometry design, and special trackwork. Performance charts of Caltrain rolling stock are also included at the end of this Chapter. The primary considerations of track design are safety, economy, ease of maintenance, ride comfort, and constructability. Factors that affect the track system such as safety, ride comfort, design speed, noise and vibration, and other factors, such as constructability, maintainability, reliability and track component standardization which have major impacts to capital and maintenance costs, must be recognized and implemented in the early phase of planning and design. It shall be the objective and responsibility of the designer to design a functional track system that meets Caltrain’s current and future needs with a high degree of reliability, minimal maintenance requirements, and construction of which with minimal impact to normal revenue operations. Because of the complexity of the track system and its close integration with signaling system, it is essential that the design and construction of trackwork, signal, and other corridor wide improvements be integrated and analyzed as a system approach so that the interaction of these elements are identified and accommodated. -
Rawie 16ZEB/28A Friction Arresting Buffer Stop at Freight Link Headshunt in Melbourne Only
Engineering Procedure- Form New Equipment & System Approval Proforma Form number: EGP2101F-01 NEW EQUIPMENT & SYSTEM APPROVAL PROFORMA Ref: 14/19018 Note: the prompts given below are only a guide to the information required for approval. Dependent on the type of equipment or system that requires approval delete any section that is not applicable or include additional information if necessary. Mandatory fields are marked with an asterisk (*). 1 Equipment or System to be approved * Rawie 16ZEB/28a Friction Arresting Buffer Stop at Freight Link Headshunt in Melbourne only 2 Originator * Name: Patrick Gray Company: ARTC/RRL 3 Introduction * A new dual gauge freight headshunt was proposed by the Victorian Regional Rail Link Project to replace the previous freight headshunt over the North Melbourne Flyover in order to make way for the new Regional Rail Link Track use of the Flyover to access Southern Cross Station. The new headshunt is comprised of a Section of the new Freight Link Track and the Freight Link Headshunt which branches off the Freight Link Track. To control the risk of rolling stock overrun at the end of the headshunt it was determined through a risk assessment process that a friction buffer stop would be provided with capacity to safely bring a maximum freight train of 4500t to a stand from 15 km/h. The Rawie 16ZEB/28a Friction Arresting Buffer Stop is a non-insulated device capable of arresting centre coupled freight vehicles through a friction shoe braking mechanism that allows impact energy to be dissipated over the nominated length of track. This type of equipment provides enhanced rail safety over traditional fixed buffer stops by providing controlled speed reduction and reduces likelihood of destructive impact and the potential for rolling stock to override the buffer. -
Nsf21518.Pdf
EPSCoR Research Infrastructure Improvement Program: Track-2 Focused EPSCoR Collaborations (RII Track-2 FEC) PROGRAM SOLICITATION NSF 21-518 REPLACES DOCUMENT(S): NSF 20-504 National Science Foundation Office of Integrative Activities Letter of Intent Due Date(s) (required) (due by 5 p.m. submitter's local time): December 18, 2020 Full Proposal Deadline(s) (due by 5 p.m. submitter's local time): January 25, 2021 IMPORTANT INFORMATION AND REVISION NOTES Only jurisdictions that meet the EPSCoR eligibility criteria may submit proposals to the Research Infrastructure Improvement Program Track-2 (RII Track-2) competition. There is a limit of a single proposal from each submitting organization. Each proposal must have at least one collaborator from an academic institution or organization in a different RII-eligible EPSCoR jurisdiction as a co- Principal Investigator (co-PI). There must be one co-PI listed on the cover page from each participating jurisdiction. Proposals that depart from these guidelines will be returned without review. For the FY 2021 RII Track-2 FEC competition, all proposals must promote collaborations among researchers in EPSCoR jurisdictions and emphasize the recruitment/development of diverse early career faculty and STEM education and workforce development on the single topic: "Advancing research towards Industries of the Future to ensure economic growth for EPSCoR jurisdictions.“ Inclusion of Primarily Undergraduate Institutions and/or Minority Serving Institutions as partners is strongly encouraged. The extent and quality of the inter-jurisdictional collaborations must be clearly articulated. A letter of Intent (LOI) is required for the FY 2021 RII Track-2 FEC competition. LOIs must be submitted by the Authorized Organizational Representative of the submitting organization via FastLane on or before the LOI due date. -
Taskload Report Outline
Track Inspection Time Study* U.S. Department of Transportation Federal Railroad * Required by Section 403 of the Rail Safety Improvement Act of 2008 (Public Law 110- Administration 432, Div. A.) Office of Railroad Policy and Development Washington, DC 20590 DOT/FRA/ORD-11/15 Final Report July 2011 NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. Any opinions, findings and conclusions, or recommendations expressed in this material do not necessarily reflect the views or policies of the United States Government, nor does mention of trade names, commercial products, or organizations imply endorsement by the United States Government. The United States Government assumes no liability for the content or use of the material contained in this document. NOTICE The United States Government does not endorse products or manufacturers. Trade or manufacturers‘ names appear herein solely because they are considered essential to the objective of this report. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. -
Curve Crossings As a Supplier, Century Group Inc
Curve Crossings As a supplier, Century Group Inc. is proactive in the railroad industry by ensuring that all sales and technical field representatives have been through the Class I Railroad’s e-rail safe program, the Roadway Worker On-Track Safety program overseen by the Federal Railroad Administration (FRA) and the Transportation Worker Identification Credential Program (TWIC) implemented by Transportation Security Agency (TSA) and the U. S. Coast Guard. Safety and security at jobsites is the highest priority at Century Group Inc. Curve Concrete Grade Crossing Experience There are many instances in which highway / railway grade crossings are installed in curved track. Whether it is a perfect curve, compound curve or reverse curve, Century Group Inc. has the expertise to design and manufacture custom concrete railroad grade crossing panels to fit your specific curved track configuration. Having been in the railroad construction business for over four decades, Century Group possesses the technical skills and knowledge to manufacture custom grade crossing panels for the most challenging curved railroad track situations. Concrete Railroad Crossing In Spiral Curve Manufacturing custom concrete crossing panels for curved track insures a good fit, minimizing gaps where the panels abut each other, maintains a safe consistent flangeway filler width and insures that the panels abut at or near the center of the crossties. The greater the length and degree of curve in a railroad grade crossing, the more critical it is to manufacture a custom grade crossing panel to insure proper installation and to maintain the structural integrity and service life of the concrete crossing panels. Concrete Railroad Crossing In Compound Curve Crossing In Reverse Curve It is very important that the railroad contractor building the new track for the curved grade crossing uses the correct tie spacing. -
Track Report 2009 V1:G 08063 PANDROLTEXT
The Journal of Pandrol Rail Fastenings 2009 DIRECT FIXATION ASSEMBLIES Pandrol and the Railways in China................................................................................................page 03 by Zhenping ZHAO, Dean WHITMORE, Zhenhua WU, RailTech-Pandrol China;, Junxun WANG, Chief Engineer, China Railway Construction Co. No. 22, P. R. of China Korean Metro Shinbundang Project ..............................................................................................page 08 Port River Expressway Rail Bridge, Adelaide, Australia...............................................................page 11 PANDROL FASTCLIP Pandrol, Vortok and Rosenqvist Increasing Productivity During Tracklaying...................................................................................page 14 PANDROL FASTCLIP on the Gaziantep Light Rail System, Turkey ...............................................page 18 The Arad Tram Modernisation, Romania .....................................................................................page 20 PROJECTS Managing the Rail Thermal Stress Levels on MRS Tracks - Brazil ...............................................page 23 by Célia Rodrigues, Railroad Specialist, MRS Logistics, Juiz de Fora, MG-Brazil Cristiano Mendonça, Railroad Specialist, MRS Logistics, Juiz de Fora, MG-Brazil Cristiano Jorge, Railroad Specialist, MRS Logistics, Juiz de Fora, MG-Brazil Alexandre Bicalho, Track Maintenance Manager, MRS Logistics, Juiz de Fora, MG-Brazil Walter Vidon Jr., Railroad Consultant, Ch Vidon, Juiz de Fora, MG-Brazil -
Washington, DC to Richmond Third Track Feasibility Study HOUSE
REPORT OF THE VIRGINIA DEPARTMENT OF RAIL AND PUBLIC TRANSPORTATION Washington, DC to Richmond Third Track Feasibility Study TO THE GOVERNOR AND THE GENERAL ASSEMBLY OF VIRGINIA HOUSE DOCUMENT NO. 78 COMMONWEALTH OF VIRGINIA RICHMOND 2006 Third Track Feasibility Study December 2006 WASHINGTON, D.C. TO RICHMOND THIRD TRACK FEASIBILITY STUDY PREFACE This study was requested by the 2006 General Assembly session in HB 5012. In addition to an analysis of the feasibility of constructing a third track, this study responds to the General Assembly’s direction to expand the scope to: (i) Identify needed right-of-way parallel to existing tracks, including right-of-way owned by CSX or by other parties; (ii) Identify major environmental issues; (iii) Develop an implementation plan based on the most optimal options, including the schedules for each phase of the project as well as financing for the project; (iv) Review legal and regulatory issues; and (v) Estimate the cost of powering passenger trains by electricity for a Third Track from Washington, D.C. to Richmond. The Department of Rail and Public Transportation (DRPT) is charged with ensuring that the Commonwealth of Virginia achieves the highest public benefit for the dollars invested in our rail programs. There is no doubt that this is a high priority freight and passenger rail corridor that will require significant investment in order to maintain and improve mobility for people and goods. DRPT is taking a strategic approach in studying this high priority corridor. Our new approach is based on establishing public benefits, identifying public/private partnership opportunities, and providing realistic cost estimates based on a comprehensive plan that identifies all of the improvements and issues that need to be addressed in the provision of reliable, sustainable, expandable, and efficient freight and passenger rail operations. -
Rail Transit Track Inspection and Maintenance
APTA STANDARDS DEVEL OPMENT PROGRAM APTA RT-FS-S-002-02, Rev. 1 STANDARD First Published: Sept. 22, 2002 American Public Transportation Association First Revision: April 7, 2017 1300 I Street, NW, Suite 1200 East, Washington, DC 20006 Rail Transit Fixed Structures Inspection and Maintenance Working Group Rail Transit Track Inspection and Maintenance Abstract: This standard provides minimum requirements for inspecting and maintaining rail transit system tracks. Keywords: fixed structures, inspection, maintenance, qualifications, rail transit system, structures, track, training Summary: This document establishes a standard for the periodic inspection and maintenance of fixed structure rail transit tracks. This includes periodic visual, electrical and mechanical inspections of components that affect safe and reliable operation. This standard also identifies the necessary qualifications for rail transit system employees or contractors who perform periodic inspection and maintenance tasks. Scope and purpose: This standard applies to transit systems and operating entities that own or operate rail transit systems. The purpose of this standard is to verify that tracks are operating safely and as designed through periodic inspection and maintenance, thereby increasing reliability and reducing the risk of hazards and failures. This document represents a common viewpoint of those parties concerned with its provisions, namely operating/ planning agencies, manufacturers, consultants, engineers and general interest groups. The application of any standards, recommended practices or guidelines contained herein is voluntary. In some cases, federal and/or state regulations govern portions of a transit system’s operations. In those cases, the government regulations take precedence over this standard. The North American Transit Service Association (NATSA) and its parent organization APTA recognize that for certain applications, the standards or practices, as implemented by individual agencies, may be either more or less restrictive than those given in this document.