<<

Biol. Rev. (1998), 73, pp. 157–180 Printed in the United Kingdom # Cambridge Philosophical Society 157 Labile expression in plants

HELENA KORPELAINEN Department of Biosciences, Division of Genetics, P.O. Box 56, FIN-00014 University of Helsinki, Finland

(Received 27 February 1997; revised 12 September 1997; accepted 30 October 1997)

ABSTRACT

The range of environmental sex determination and sex changes throughout plant taxa from and to is reviewed. Lability in sex expression occurs in many plant taxa but only in homosporous pteridophytes is labile sex the rule. Among angiosperms, labile sex appears to be more common among dioecious and monoecious plants than among . However, hermaphrodites can control allocation to male and female functions by varying the relative emphasis on and . A majority of plants with labile sex expression are perennials, which indicates that flexibility in sex is more important for species with long life cycles. Environmental stress, caused by less-than-optimal light, nutrition, weather or water conditions, often favours maleness. The extreme lability in the sex expression of homosporous pteridophytes is suggested to be related primarily to the mating systems.

Key words: labile sex, adaptation, Bryophyta, Pteridophyta, Spermatophyta.

CONTENTS

I. Introduction ...... 157 II. Bryophyta...... 158 III. Pteridophyta...... 159 IV. Spermatophyta ...... 172 V. Conclusions...... 174 VI. References...... 174

I. INTRODUCTION the traditional morphological descriptions (Lloyd, 1980a). The functional gender of a plant estimates Sex expression is considered to have a strong the proportions of its genes which are transmitted environmental component when sex is determined through male or female . Although estimates or changed at some point after fertilization. The of functional gender provide an ideal measure of the term sex expression refers here to male and female gender strategies of plants as sexual parents, they do individuals of dioecious plants, or to male and female not necessarily correspond with the actual success of flowers or gametangia of monoecious plants, or to a plant in leaving descendants through its male and hermaphrodism. Variation in the relative emphasis female gametes (Lloyd, 1980a). on pollen\ and ovules\eggs among mon- Why do various organisms then possess labile oecious or hermaphroditic plants is generally not systems instead of strictly genetic systems that included here. Sexually labile plants have the determine a fixed sex expression? Following the sex potential to have either male, female or both sex ratio model presented by Trivers & Willard (1973), organs, with some environmental feature deter- Charnov & Bull (1977) proposed a now classic mining which genes are switched on. However, such model to account for the adaptiveness of environ- simplified morphological descriptions of gender have mental sex determination in particular life histories. limitations. When analysing the adaptive signifi- They postulated that environmental sex determi- cance of gender variation, numerical estimates of the nation is favoured by natural selection when an relative capabilities of plants as male and female individual’s fitness as a male or female is strongly parents (functional gender) have advantages over influenced by environmental conditions and when 158 H. Korpelainen the individual has little control over which en- expressions within the same clone. Therefore, the sex vironment it will experience. The requirement for expression of sexually labile clonal plants is ramet- the evolution and maintenance of environmental sex specific and not genet-specific. determination is the ability to recognize an en- vironmental factor which differentially correlates with male or female fitness. Thus, labile sex II. BRYOPHYTA expression, through which an individual can increase its genetic contribution to future generations, is an Bryophytes are generally treated as a single division adaptation to certain life histories. including three classes: Anthocerotae (), Despite controversy over the adaptive significance Hepaticae (liverworts) and Musci (). They of labile sex expression in plants (see Freeman, possess an alternation of generations in which the life Harper & Charnov, 1980; Lloyd & Bawa, 1984), sex cycle involves a free-living, haploid changes appear generally advantageous and can be alternating with a reduced, dependent, diploid viewed as adaptations to patchy environments. . Bryophytes are considered structurally However, some variation may result from the simple compared to vascular plants. Although inability of a plant to control its sex precisely in a bryophytes are homosporous, approximately 68% of complex environment. Such rare and irregular liverworts and 57% of mosses are dioecious (Wyatt inconstancies are hardly adaptive (Lloyd & Bawa, & Anderson, 1984; Wyatt, 1985). Hornworts are 1984). regarded as being approximately equally divided In the present paper, I review the range of between monoecious dioecious species (Longton & environmental sex determination and sex changes Schuster, 1983). In general, dioecy is considered to throughout plant taxa from bryophytes and pteri- be a primitive feature in bryophytes. The evolution dophytes to spermatophytes, and I explore the con- of monoecy has apparently occurred independently ditions that influence sex expression. Among labile in many lines (Longton & Schuster, 1983). Despite sex expressions, two categories can be distinguished. homospory, two ranges of sizes have been First, sex is influenced by the environment at some found in dioecious species (Chattopadhyay & point after fertilization. Sex then becomes fixed and Sharma, 1991). There is evidence that smaller is not amenable to further modification. Several give rise to male and larger spores to studies have shown that such environmental effects females. Several species of dioecious bryophytes occur in a diverse range of (reviewed by possess distinguishable sex chromosomes (Anderson, Korpelainen, 1990). In plants, environmental effects 1980; Ramsay & Berrie, 1982; Chattopadhyay & on sex usually belong to the second category, Sharma, 1991). sequential hermaphrodism, in which sex is labile Although chromosomal sex determination is ex- during the reproductive lifespan. The choice of pected to result in a 1:1 production of male and gender can be made repeatedly or for a lifetime. In female spores, several investigations have detected animals, sequential hermaphrodism is a rare pheno- biased sex ratios in dioecious bryophytes (Wyatt & menon apparently because an early development of Anderson, 1984; Longton, 1990). Females outnum- fixed sexual differences enables an individual to ber males in most species that have been studied. better learn its sex role and become more successful Sterile gametophytes bearing neither male nor at mating and parenting. Despite the widespread female gametangia are also common in many occurrence of labile sex determination, the majority populations. Asexual methods of gametophyte re- of plants exhibit a fixed genetic sex expression, production are important in most mosses and in mostly hermaphrodism. The dioecious system with numerous hepatics (Longton & Schuster, 1983). It is separate male and female individuals is quite rare in also of minor importance in anthocerotes. Some plants, but is the rule in animals. species have the ability to produce also Both genetic and environmental sex-determi- asexually (Bopp, 1983). The rarity or nation mechanisms are sometimes found in closely the total absence of sporophyte production is usually related plant species, even within the same species. associated with the dioecious condition (Longton & Also, the degree of lability varies. In the case of Schuster, 1983). clonal growth, which is common among plants, Many monoecious bryophytes express temporal different parts of the clone (genet) may encounter variation in sex distribution (Anderson & Lemmon, different environmental conditions. If environment 1973, 1974; Longton & Miles, 1982; Shaw, 1991). influences sex expression, there may be varying sex In most cases, it is not known how such temporal Labile sex expression in plants 159 patterns in sex expression are controlled. However, b). The bisexual gametophytes of pteridophytes are there is some indication that environmental factors called hermaphrodites. Yet, a more appropriate have at least some effect (Table 1). In the mon- characterization would be monoecious, because the oecious species Tetraphis pellucida, sex expression antheridia and archegonia are produced in different is sensitive to density: male shoots dominate at locations on the same thallus. Unlike the other increased densities (Kimmerer, 1991). In some bryo- heterosporous pteridophytes, which are unisexual, phytes, the nutrient concentration of the medium the gametophytes of genus Platyzoma are partially can also influence sex differentiation (Selkirk, 1979). bisexual. The small spores produce male gameto- In the dioecious Bryum argenteum, maleness was phytes, and the large spores initially become female stimulated by auxin and gibberellin treatments, but but subsequently produce antheridia (Tryon, 1964). femaleness was stimulated by cytokinins (Bhatla & However, this pattern of sex expression is labile. Chopra, 1981). When the effects of some growth- Duckett & Pang (1985) have observed in Platyzoma relating substances on sex expression in the mainly microphyllum that subculturing of gametophyte frag- vegetative liverwort Riccia crystallina were studied, ments originating from either kind of spores resulted gibberellin and ethrel were found to enhance in males, females or hermaphrodites. The sex antheridial formation while auxin and glycocel were expression varies according to the type of the found to promote archegonial development (Chopra fragment rather than the kind of spore from which & Sood, 1973). Yet, some of the environmental the material is derived. In this case, the sex- effects might induce sexual in place of determining process has been transferred from the asexuality rather than influence the type of sex sporophyte to the gametophyte stage of the life cycle. expression. It can be assumed that the sex expression The sex expression of all homosporous pterido- of many monoecious bryophytes is labile and is phytes is labile. The choice between sex expressions influenced by the environment. However, there is a is determined by the age and size of the gametophyte considerable lack of experimental data on sex or by the presence of the gibberellin-like hormone determination in bryophytes. antheridiogen secreted by neighbouring gameto- phytes (Table 1). In schizaeaceous species and in some dryopterids, gibberellins have been found III. PTERIDOPHYTA to possess antheridiogenic properties (Schraudolf, 1962, 1966; Voeller, 1964a, b). In the absence of Pteridophytes, including and fern allies, can be an antheridiogen, the most common sequence of classified as homosporous or heterosporous. They gametangial sex expression is male- possess an alternation of generations in which the life (Klekowski, 1969a). The other possible sequences cycle involves a small, free-living, haploid gameto- are male–female–hermaphrodite, female–hermaph- phyte alternating with a large, independent, diploid rodite and male–hermaphrodite–female. In the sporophyte. Homosporous species, which form the genus Equisetum, gametophytes are initially male or majority of pteridophytes, produce spores of one size female. The females later produce antheridia, but while heterospores species produce spores of one size the males rarely produce archegonia (Duckett, while heterosporous species produce spores of two 1977). This result proves that there are no inherent size classes. Heterospory is restricted to the fern allies physiological differences between the spores in Isoetaceae and Selaginellaceae, to the aquatic ferns relation to gametophyte sex expression. Yet, most in the families Azollaceae, Marsileaceae and Salvini- gametophytes of homosporous pteridophytes finally aceae, and to the terrestrial fern genus Platyzoma develop as hermaphrodites, which produce egg- (Pteridaceae). Other heterosporous groups are forming archegonia, sperm-forming antheridia and known only from the fossil record. Heterosporous a well-defined meristem. Since the initial discovery forms are believed to have evolved from homo- by Do$ pp (1950) of an antheridiogen system con- sporous ancestors on several occasions (Haig & trolling sex expression in the gametophytes of Westoby, 1988). The smaller and larger Pteridium aquilinum, the majority of homosporous megaspores of heterosporous species develop into pteridophytes tested have been found to produce haploid male and female gametophytes, respectively. and to respond to antheridiogen (for reviews, see This contrasts with homosporous species in which Voeller, 1964a;Na$f, Nakanishi & Endo, 1975). In spores of the same size may develop as haploid male, such populations, spores that germinate and develop female or hermaphroditic gametophytes (e.g. Smith, rapidly become hermaphrodites that secrete antheri- 1955; Klekowski & Lloyd, 1968; Klekowski, 1969a, diogen, while those that develop more slowly be- 160 H. Korpelainen . ! ); Singh & Roy b , a ) ) ) a a a means a change male , 1970 b , a K!L f (1956) f (1956) f (1959) pp (1950) $ $ $ $ (1969 (1977); Lloyd & Warne(1979); (1978); Masuyama Cousens (1979);(1994, Korpelainen 1995) Bhatla & Chopra (1981) Bhatla & Chopra (1981) Kimmerer (1991) Klekowski & Lloyd (1968); Klekowski Chopra & Sood (1973) Chopra & Sood (1973) Tryon & Vitale (1977) Voeller (1964 Na Voeller (1964 Na Voeller (1964 Na Do male; ! veg. Selkirk (1979) veg. Selkirk (1979) L!K L"K L!K L"K L" L"K L"K L"K L"K L!K L" L"K L"K L"K L"K L"K It is shown in parentheses whether the environmental effect . hermaphrodism \ The direction in which the emphasis in sex expression is altered is ). E ( ). female An asterisk indicates that the species is reported to have heteromorphic sex chromosomes ! . hermaphrodism or monoecy \ GRS (E): cytokinin Environmental factorGRS (E): gibberellin, ethrel Direction Reference monoecy or in manipulative experiments ! ) hermaphrodism Life history F \ ( female , male ! include exogenous treatments by hormones and other chemicals ) DioecyMonoecy PerennialHermaphrodism GRS (E): Perennial auxin, gibberellin Perennial Age, size (E) High density (F) (Vegetative) Perennial Low nutrition (E) Hermaphrodism PerennialHermaphrodism Antheridiogen absent (E) Perennial Antheridiogen absent (E) Hermaphrodism Perennial Antheridiogen absent (E) Main form of sexuality (Vegetative)(Vegetative) Perennial GRS (E): auxin, glycocel Perennial Low nutrition (E) Hermaphrodism Perennial Antheridiogen absent (F) HermaphrodismHermaphrodism Perennial Perennial Antheridiogen absent (E) Hermaphrodism Antheridiogen absent (E) Perennial Antheridiogen absent (E) Hermaphrodism Perennial Antheridiogen absent (E) GRS ( hermaphrodism or monoecy \ monoecy means a change female ! Environmental factors influencing sex expressing in plants virginica regulating substances male L!K rhenana fluitans gibbum - . ( . . . , punctilobula Bryum argenteum Tetraphis pellucida Homosporous species R Doodia media W Pteridium aquilinum Riccia crystallina R Asplenium pimpinellifolium Blechnum brasiliense B Woodwardia areolata Dennstaedtia Bryaceae Tetraphidaceae Species Ricciaceae Aspleniaceae Blechnaceae Dennstaedtiaceae Musci Pteridophyta Table 1. Growth Taxon Bryophyta Hepaticae female has been observed in natural conditions in the field shown Labile sex expression in plants 161 . (1975) et al f $ ) ) ) ) ) a a a a a . (1969) f (pers. obs.) in Na $ et al f (1956) pp (1959) f (1956) pp (1959, 1962) f (1965) f f (1956) f (1969) f (1959) f (1960) f (1969) $ $ $ $ $ $ $ $ $ $ $ Schneller (1979) Na Haufler & Ranker (1985) Haufler & Ranker (1985) Schneller (1981) Voeller (1964 Schraudolf (1966) Schneller (1981) Barker & Willmot (1985) Kirkpatrick & Soltis (1992) Do Na Do Voeller (1964 Na Schraudolf (1966) Klekowski & Lloyd (1968) Na Haufler & Gastony (1978) Na Voeller (1964 Na U. Na Na Duckett (1977) Hauke (1977) Voeller (1964 Na Na Chiou & Farrar (1997) Chiou & Farrar (1997) Chiou & Farrar (1997) Chiou & Farrar (1997) Chiou & Farrar (1997) Chiou & Farrar (1997) Voeller (1964 Chiou & Farrar (1997) L"K L"K L"K L"K L"K L"K L"K L%K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L%K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K Antheridiogen absent (E) Antheridiogen absent (E) Antheridiogen absent (E) Antheridiogen absent (E) GRS (E): gibberellin removed Antheridiogen absent (E) Antheridiogen absent (E) Antheridiogen absent (E) ? (E) GRS (E): gibberellin removed Antheridiogen absent (E) Hermaphrodism PerennialHermaphrodism Antheridiogen absent (E) Perennial Antheridiogen absent (E) Hermaphrodism PerennialHermaphrodism Antheridiogen absent (E) Perennial Antheridiogen absent (E) Hermaphrodism Perennial Antheridiogen absent (E) HermaphrodismHermaphrodism Perennial Perennial Antheridiogen absent (E) Antheridiogen absent (E) Hermaphrodism PerennialHermaphrodism Antheridiogen absent (E) Hermaphrodism PerennialHermaphrodism Perennial Antheridiogen absent (E) Perennial Antheridiogen absent (E) Antheridiogen absent (E) HermaphrodismHermaphrodism Perennial Perennial Antheridiogen absent (E) Antheridiogen absent (E) Hermaphrodism PerennialHermaphrodism Antheridiogen absent (E) PerennialHermaphrodism Antheridiogen absent (E) Perennial Antheridiogen absent (E) HermaphrodismHermaphrodism Perennial Perennial Antheridiogen absent (E) Antheridiogen absent (E) HermaphrodismHermaphrodism PerennialHermaphrodism Perennial Antheridiogen absent (E) Perennial Antheridiogen absent (E) Hermaphrodism Antheridiogen absent (E) Hermaphrodism Perennial Perennial Antheridiogen absent (E) Hermaphrodism Antheridiogen absent (E) Hermaphrodism Perennial Perennial Antheridiogen absent (E) Antheridiogen absent (E) femina - sp. Dioecy Perennial ? (E) mas simense - - filix hirsutula thelypterioides robertianum tennesseensis tsus phyllitidis pellucidum ...... struthiopteris acrostichoides angustifolium heterophylla scolopendria Cystopteris protrusa Matteuccia Onoclea sensibilis Tectaria incisa Equisetum meyeniana Campyloneurum Athyrium filix A C Dryopteris affinis D Gymnocarpium dryopteris G Polystichum P Woodsia obtusa Nephrolepis cordifolia N C Lepisorus thunbergianus Microgramma Phlebodium aureum Phymatosorus Polypodium feei P Equisetaceae Polypodiaceae Dryopteridaceae Nephrolepidaceae 162 H. Korpelainen ) b ) ) ) ) ) ) ) ) , ) ) a a a a b b b b a b b pp (1959) pp (1959) pp (1959) pp (1959) pp (1959) f (1969) f (1959) $ $ $ $ $ $ $ Voeller (1964 Haufler & Gastony (1978) Haufler & Gastony (1978) Haufler & Gastony (1978) Haufler & Gastony (1978) Haufler & Gastony (1978) Warne & Lloyd (1981) Scott & Hickok (1987) Schedlbauer & Klekowski (1972) Do Voeller (1964 Ranker (1987) Do Do Do Whittier (1968) Do Voeller (1964 Tryon (1964) Duckett & Pang (1985) Voeller (1964 Voeller (1964 Na Voeller (1964 Voeller (1964 Voeller (1964 Na Schraudolf (1962, 1966) Voeller (1964 Haufler & Gastony (1978) Schraudolf (1962, 1966) Voeller (1964 Voeller (1964 Tryon & Vitale (1977) L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K Environmental factor Direction Reference Antheridiogen absent (E) Trauma (E) GRS (E): gibberellin removed GRS (E): gibberellin removed Antheridiogen absent (E) Antheridiogen absent (E) GRS (E): gibberellin removed Life history Hermaphrodism Perennial Antheridiogen absent (E) HermaphrodismHermaphrodism PerennialHermaphrodism Perennial Antheridiogen absent (E) Perennial Antheridiogen absent (E) Antheridiogen absent (E) Hermaphrodism Perennial GRS (E): gibberellin removed Main form of sexuality HermaphrodismHermaphrodism PerennialHermaphrodism Perennial Antheridiogen absent (E) Hermaphrodism Perennial Antheridiogen absent (E) (apogamy) Perennial Antheridiogen absent (E) Hermaphrodism Antheridiogen absent (E) Hermaphrodism Perennial Perennial Perennial Antheridiogen absent (E) Hermaphrodism Antheridiogen Antheridiogen absent absent (E) (E) Hermaphrodism PerennialHermaphrodism Perennial Antheridiogen absent (E) Perennial Antheridiogen absent (E) Hermaphrodism Antheridiogen absent (E) Hermaphrodism Perennial Perennial Antheridiogen absent (E) Antheridiogen absent (E) Hermaphrodism PerennialHermaphrodism Antheridiogen absent (E) PerennialHermaphrodism Age (E) PerennialHermaphrodism Antheridiogen absent (E) Perennial Antheridiogen absent (E) HermaphrodismHermaphrodism PerennialHermaphrodism Perennial GRS (E): gibberellin removed Perennial GRS (E): gibberellin removed Antheridiogen absent (E) Hermaphrodism PerennialHermaphrodism GRS (E): gibberellinHermaphrodism removed Perennial Perennial GRS (E): gibberellin removed Antheridiogen absent (F .) cont sinuata vellea palmata jaliscana hispida knoblochii pedata subpaleacea oblongifolia pastinacaria phyllitidis rotundifolia tomentosa richardii thalictroides viridis ...... pteridoides Hemionitis arifolia N N Pellaea glabella A Adiantum pedatum Bommeria ehrenbergiana B B B B Ceratopteris C C Cryptogramma crispa H Notholaena distans P Platyzoma microphyllum Pteris longifolia Anemia hirsuta A A A A A Lygodium heterodoxum Species Pteridaceae Schizaeaceae Table 1 ( Taxon Labile sex expression in plants 163 . . et al et al . (1980) et al ) ) b b , , . (1980) . (1980) . (1980) a a . (1981) . (1982) . (1970) et al et al et al et al et al et al f (1960) f (1956) ! $ (1980) obs.) in Freeman Freeman Freeman Freeman (1980) (1983) Na Schraudolf (1962) Voeller (1964 Voeller (1964 Na Pharis Lev-Yadun & Liphschitz (1987) Vasek (1966) Vasek (1966); Menninger (1967) cited in Freeman D. C. Freeman & E. D. McArthur (pers. Smith (1981) Chalupka (1984) Keen & Chadwick (1954) cited in Keen & Chadwick (1954) cited in Keen & Chadwick (1954) cited in Jones (1945) Barker Worsdell (1916) cited in Freman Hibbs & Fischer (1979) E. Iglisch cited inSakai Lloyd (1978) & cited Bawa in (1984) Sakai & Oden Amruthavalli (1978) Amruthavalli (1978) L"K L"K L"K L"K L"K L!K L%K L%K L!K L%K L"K L%K L%K L%K L%K L%K L!K L"K L"K L!K L!K L"K L!K L!K GRS (E): gibberellin removed GRS (E): gibberellin removed Drought (F) Freeman GRS (E): growth retardants Hermaphrodism Perennial Antheridiogen absent (E) Hermaphrodism PerennialHermaphrodism GRS (E): gibberellin removed Perennial Antheridiogen absent (E) MonoecyDioecyMonoecy Perennial AgeDioecy (F) Perennial Perennial ? ? (F) (F) Dioecy Perennial LowMonoecy temperature (E) Monoecy Perennial ?Dioecy (F) Perennial Perennial HighDioecy light intensity (F) GRS (E): gibberellin Dioecy Perennial ? (?) Perennial ?Dioecy (?) PerennialMonoecy ?Dioecy (?) Dioecy Perennial PerennialDioecy ? DroughtDioecy (F) (E) Perennial Trauma (E) PerennialMonoecy Perennial ? (F) Perennial Size (F) Size (F) Annual GRS (E): gibberellin Monoecy Perennial GRS (E): gibberellin cuspida media grandidentatum negundo pennsylvanicum rubrum saccharinum japonicum sempervirens osteosperma sylvestris ...... hexagonoptera L Mohria caffrorum Thelypteris C Juniperus australis J Cycas circinalis Ephedra viridis Pinus contorta P Taxus baccata T T Acer campestre A A A A A Coriandrium sativum Cupressus arizonica Thelypteridaceae Cycadaceae Ephedraceae Pinaceae Taxaceae Aceraceae Apiaceae Cupressaceae Angiospermae Spermatophyta Gymnospermae 164 H. Korpelainen , 1931) b . (1964) . (1964) et al et al Clark & Orton (1967) Atkinson (1898) Atkinson (1898) Pickett (1915) Schaffner (1922) Schaffner (1922) Policansky (1981, 1987) Bierzychudek (1982, 1984) Lovett Doust & CaversLovett (1982) Doust & CaversLovett (1982) Doust & CaversBierzychudek (1982) (1984) Bierzychudek (1984) Schaffner (1922) Schaffner (1922) Maekawa (1924) Thomson & Barrett (1981) Barrett (1984) Schlessman (1987, 1991) Sparnaaij Sparnaaij Williams & Thomas (1970) Berghoef & Bruinsma (1980) Matzke (1938) Schaffner (1921, 1925) Schaffner (1923 Borthwick & Scully (1954) Borthwick & Scully (1954) Borthwick & Scully (1954) Heslop-Harrison (1956) Thomas (1956) Atal (1959) L"K L"K L!K L!K L!K L!K L"K L"K L"K L"K L"K L!K L!K L!K L!K L"K L%K L%K L"K L!K L!K L"K L"K L"K L%K L%K L!K L!K L!K L"K L!K L!K Environmental factorTrauma (E) Drought (E) Drought (E) Low nutrition (E) Size (F) Size Direction (F) High light intensity Reference (E,F) High pH (E,F) Size (E,F) Previous seed production (E) Trauma (E) Low nutrition (E) ? (F) Trauma (E) High light intensity (E) Photoperiod (E) High light intensity (E) Short photoperiod (E) Low temperature (E) GRS (E): auxin Short photoperiod (E) GRS (E): gibberellin Life history Main form of sexuality DioecyDioecy Perennial Age (size) (E) Perennial High nutrition (E) DioecyDioecyMonoecy Perennial DroughtDioecy (E) Perennial Size PerennialMonoecy (E) ? (F) Perennial Size PerennialMonoecy (F) DroughtMonoecy (E) Perennial Perennial High nutrition (E) High nutrition (E) * Dioecy Annual ? (E) .) cont dracontium japonica semperflorens . . . Elaeis guineensis Ilex opaca Arisaema triphyllum A A Aralia hispida Panax trifolium Begonia franconis B sativa Species Aquifoliaceae Araceae Araliaceae Begoniaceae Cannabaceae Arecaceae Table 1 ( Taxon Labile sex expression in plants 165 ) ) a a ) ) ) ) ) ) b b a a c c ) a . (1984) . (1984) . (1984) et al et al et al & Durand (1984) Harrison (1972) (1958) (1958) Chailakhyan & Khryanin (1978 Chailakhyan & Khryanin (1978 Galoch (1978) Chailakhyan (1979) Chailakhyan (1979) Mohan Ram & SettSarath (1979) & Mohan RamTournois (1979) (1911, 1912, 1914) Schaffner (1923 Heslop-Harrison (1963) cited in Durand De Jong & BruinsmaDe (1974 Jong & BruinsmaStout (1974 (1923) Murneek (1927) Murneek (1927) De Jong & BruinsmaDe (1974 Jong & BruinsmaDe (1974 Jong & BruinsmaDe (1974 Jong & Bruinsma (1974 Lange (1961) Lange (1961) Bocquet & Stroun (1960) cited in Heslop- Lyndon (1985) Frick & Cavers (1989) Correns (1928) Heslop-Harrison & Heslop-Harrison Heslop-Harrison & Heslop-Harrison Correns (1928) Webb (1979) Freeman Freeman Freeman Freeman & McArthur (1984) L"K L"K L!K L"K L!K L!K L!K L"K L%K L"K L"K L!K L%K L"K L"K L"K L"K L"K L!K L!K L!K L"K L!K L"K L"K L!K L%K L%K L!K L!K L!K L%K L%K GRS (E): auxin, cytokinin GRS (E): cytokinin GRS (E): gibberellin GRS (E): cytokinin GRS (E): gibberellin GRS (E): cobalt GRS (E): gibberellin, silver ? (E) GRS (E): gibberellin High nitrogen (E) Trauma (E) High nutrition (E) Mature leaves present (E) GRS (E): cytokinin, ethephon GRS (E): auxin, gibberellin Trauma (E) ? (E) Short photoperiod (E) Previous seed production (E) Low temperature (E) DioecyMonoecy PerennialMonoecy GRS (E): auxin Annual GRS Annual (E): cytokinin ? (E) DioecyHermaphrodism Perennial Perennial Short photoperiod High (E) temperature (E,F) Hermaphrodism Perennial GRS (E): auxin DioecyDioecyDioecy Perennial ? (E) PerennialDioecy ? (F) Perennial Drought (E) Perennial ? (E) * Dioecy Annual Short photoperiod (E) * Dioecy Perennial Parasites (E) * Dioecy Perennial ? (F) lupulus confertifolia spinosa otites pendula reomeri ...... canescens Humulus japonicus H Cleome iberidella C Carica Cerastium tomentosum latifolia S S S Euonymus europaeus A Capparaceae Caricaceae Caryophyllaceae Celastraceae Chenopodiaceae 166 H. Korpelainen . ) ) b b et al ) . (1981) b . (1995) . (1952) . (1952) et al et al et al et al (1980) Freeman & McArthur (1984) Freeman & McArthur (1984) Freeman & McArthur (1984) Freeman & McArthur (1984) Takeno Freeman Thompson (1955) Thompson (1955) Thompson (1955) Chailakhyan & Khryanin (1978 Chailakhyan & Khryanin (1978 Chailakhyan (1979) Chailakhyan (1979) Jones (1947) Mann (1942) Jones (1947) Jones (1947) Correns (1928) Lloyd & Myall (1976) Lloyd (1980 Ikeno (1937) cited in Freeman Neidle (1939) Neidle (1939) Naylor (1941) Catarino (1964) Hall (1949) Hall (1949) Nitsch Nitsch Minina (1938) Brantley & Warren (1960) Brantley & Warren (1960) L!K L"K L"K L%K L%K L%K L%K L"K L!K L"K L"K L!K L"K L!K L"K L"K L"K L!K L"K L"K L%K L!K L!K L"K L"K L"K L!K L!K L!K L"K L"K L%K cytokinin GRS (E): gibberellin GRS (E): cytokinin Environmental factorLong photoperiod (E) High temperature (E) GRS Direction (E): abscisic acid, Reference auxin GRS (E): gibberellin Short photoperiod (E) High temperature (E) ? (F) Long photoperiod (E) Long photoperiod (E) Long photoperiod (E) Long photoperiod (E) High temperature (E) High nitrogen (E) Long photoperiod (E) Life history Monoecy Annual High nutrition (E) Main form of sexuality DioecyDioecyDioecyDioecyMonoecy PerennialMonoecy Perennial ? (E) Perennial ? (E) Perennial ? Perennial (E) ? Perennial Short (E) photoperiod (E) Drought (F) MonoecyMonoecy AnnualDioecy Annual Short photoperiodDioecy (E) Short photoperiod (E) PerennialMonoecy ? (F) Perennial ? (F) AnnualHermaphrodism Perennial High nitrogenMonoecy (E) GRS (E): cytokinin Annual High nitrogen (E) Dioecy Perennial ? (?) * Dioecy Annual High nitrogen (E) .) cont corrugata cuneata lentiformis tridentata trifida melo ...... C A A A A Salsola komarovii Sarcobatus vermiculatus Spinacia oleracea Ambrosia elatior A Cirsium arvense Cotula dendyi Xanthium pennsylvanicum Kalanchoe integra Cucumis anguria Petasites japonicus Species Composiate Cucurbitaceae Table 1 ( Taxon Labile sex expression in plants 167 . et al . et al ) b , a . (1977) . (1977) . (1980) . (1992, 1993) . (1996) et al et al . (1969) . (1969) . (1969) . (1980) et al . (1952) . (1952) . (1952) . (1952) et al et al et al et al et al et al et al et al et al et al (1980) Gilbert (1988) (1980) Halevy & Rudich (1967) Rudich Tiedjens (1928) Tiedjens (1928) Tiedjens (1928) Minina (1938) Laibach & Kribben (1950 Friedlander Friedlander Owens Malepszy & Niemirowicz-Szczytt (1991) Malepszy & Niemirowicz-Szczytt (1991) Malepszy & Niemirowicz-Szczytt (1991) Nitsch Nitsch Wittwer & Hillyer (1954) Rudich Dzhaparidze (1963) cited in Freeman Condon & Gilbert (1988) Condon & Gilbert (1988) Condon & Gilbert (1988) Bose & Nitsch (1970) Bose & Nitsch (1970) Takahashi Hossain Joshi (1939) Condon & Gilbert (1988) Murawski (pers. obs.) in Condon & Yonemori Minina (1952) cited in Freeman Nitsch Nitsch Wittwer & Hillyer (1954) McMurray & Miller (1968) Rudich L"K L"K L!K L"K L"K L!K L"K L"K L!K L!K L"K L!K L%K L!K L!K L"K L"K L"K L"K L"K L"K L!K L"K L"K L"K L"K L!K L"K L%K L!K L!K L!K L"K L"K L"K gibberellin GRS (E): auxin, maleic gibberellin, growth retardants GRS (E): ethylene Short photoperiod (E) Trauma (E) Nutrition (E) GRS (E): auxin GRS (E): gibberellin GRS (E): ethylene inhibitor GRS (E): auxin, ethylene GRS (E): ethylene inhibitor, Parasites (E) High temperature hydrazide GRS (E): ethylene GRS (E): morphactin GRS (E): growth retardants GRS (E): abscisic acid, ethephon Drought (E) Long photoperiod (E) High temperature (E) GRS (E): auxin GRS (E): ethephon GRS (E): ethylene Monoecy Annual High nitrogen (E) Monoecy Annual GRS (E): methylene blue Dioecy Annual GRS (E): silver nitrate Monoecy Annual Long photoperiod (E) MonoecyMonoecyMonoecyMonoecy Perennial Perennial Size (E,F) Perennial SizeMonoecy (E,F) Annual Size (E,F) Monoecy GRS (E):Monoecy auxin, cytokinin, AnnualMonoecy GRS Perennial (E): cytokinin Perennial HighMonoecy nutrition (E) Perennial Size (E,F) Size (F) Perennial Previous seed production (E) makoyana spinulosa sativus sativa cylindrica warscewiczii ...... C C Momordia dioica Cucurbita pepo Gurania acuminata G G Luffa acutangula L Musa paradisiaca Spiguria triphylla S Diospyros kaki Ebenaceae 168 H. Korpelainen . . et al et al . . et al et al ) ) a b . (1987) et al . (1980) (1980) (1991) (1991) (1980) (1980) McArthur (pers. obs.) citedet in al Freeman (1980) (1972) (1957) Heslop-Harrison (1957) Dzhaparidze (1963) cited in Freeman Thomas (1956) Thomas (1956) Yampolsky (1919) Hamdi Louis (1989) Durand & Durand Durand & Durand Pannell (1997 Pannell (1997 Shifriss (1956) Dzhaparidze (1963) cited in Freeman Worsdell (1916) cited in Freeman Tothill & Knox (1968) K. T. Harper, D. C. Freeman & E. D. Fox & Harrison (1981) Minina (1952) cited in Freeman Meletti (1961) cited in Heslop-Harrison Schaffner (1927, 1930, 1935) Richey & Sprague (1932) Richey & Sprague (1932) Sabinin (1937) cited in Heslop-Harrison Minina (1938) Choudri and Krishan (1946) cited in Moore (1950) L"K L!K L!K L%K L!K L!K L"K L"K L"K L%K L!K L%K L!K L!K L"K L"K L"K L"K L"K L"K L"K L"K L"K L"K L!K Environmental factorHigh temperature (E) GRS (E): auxin GRS Direction (E): auxin Reference GRS (E): cytokinin Low density (E) High potassium (E) Drought (F) Long photoperiod (E) Short photoperiod (E) Low temperature (E) High nutrition (E) High nutrition (E) Short photoperiod (E) GRS (E): maleic hydrazide GRS (E): cytokinin High density (E) Life history Main form of sexuality DioecyMonoecy PerennialDioecy Age (size) (E) Annual Short photoperiod (E) Annual ? (E) DioecyMonoecyDioecy Perennial ? Perennial (?) LongHermaphrodism photoperiod (E) Perennial Annual ? (?) Drought (E) Monoecy Annual Short photoperiod (E) Monoecy Perennial ? (F) .) cont annua . Eucommia ulmoides Mercurialis ambigua M Buchloe dactyloides Heteropogon contortus Leucopoa kingii Triticum aestivum Zea mays Ricinus communis Species Eucommiaceae Euphorbiaceae Gramineae Table 1 ( Taxon Labile sex expression in plants 169 . . et al et al . (1981) . (1976) . (1980) et al et al et al (1980) (1980) Nickerson (1957) Nelson & Rossman (1958) Heslop-Harrison (1961) Moss & Heslop-Harrison (1968) Hansen Krishnamoorthy & Talukdar (1976) Rood & Pharis (1980) Cheng & Wright (1989) Tucker Freeman Benseler (1975) Bertin (1982) Rick & Hanna (1943) Lazarte & Garrison (1980) Dzhaparidze (1963) cited in Freeman Schaffner (1925) Dzhaparidze (1963) cited in Freeman Jaiswal & Kumar (1980) Davey & Gibson (1917) Lloyd (1981) Hartmann & Panetsos (1961) Gregg (1973, 1975) Gregg (1973) Gregg (1973) Dodson (1962) Gregg (1973) Dodson (1962) Gregg (1973) Zimmerman (1991) Zimmerman (1991) Gregg (1978) Gregg (1973, 1975) Gregg (1973) Dodson (1962) L"K L"K L"K L"K L"K L"K L"K L%K L!K L%K L"K L"K L!K L"K L%K L"K L"K L!K L%K L!K L!K L"K L!K L!K L!K L!K L!K L!K L"K L"K L"K L"K L"K L"K GRS (E): gibberellin Short photoperiod (E) Short photoperiod (E) GRS (E): gibberellin GRS (E): gibberellin Low light intensity (E) GRS (E): DPX-3778 Drought (F) GRS (E): cytokinin, gibberellin Trauma (E) ? (F) Low light intensity (E) Low light intensity (E) Size (E) Low light intensity (E) GRS (E): gibberellin MonoecyMonoecy PerennialMonoecy ? (F) Dioecy Perennial Perennial ? (F) HighDioecy light intensity (F) PerennialDioecy ? (E) PerennialDioecy Age (size) (E) PerennialDioecy ? (E) PerennialMonoecy GRS (E): ethrel PerennialDioecy DroughtDioecy (F) Perennial DroughtDioecy (E) PerennialDioecy Perennial LowDioecy light intensity (E) AgeDioecy (size) (E) Perennial LowDioecy light intensity (F) Perennial Perennial LowDioecy light intensity (F) Perennial LowDioecy light intensity (E) Low light intensity (E,F) Perennial Age (size) (E) Perennial Perennial Low light intensity (E) Low light intensity (F) nigra pavia macrocarpum macroglossum platyglossum ventricosum viridiflavum dianae lehmannii ...... Quercus gambelii Aesculus californica A Asparagus officinalis Castilloa elastica Morus alba M Myrica gale Olea europaea Catasetum expansum C C C C C Cycnoches densiflorum C C Fagaceae Hippocastanaceae Liliaceae Moraceae Myricaceae Oleaceae Orchidaceae 170 H. Korpelainen . et al . (1980) et al Freeman (1980) Gregg (1973) Gregg (1978) Gregg (1973, 1975) Dodson (1962) Stout (1919) Schaffner (1925, 1935) Schaffner (1925) Erlansson & Herman (1927) cited in Pauley & Mennel (1957) Stettler (1971) Heribert-Nilsson (1918) Heslop-Harrison (1924) Rainio (1927) Worsdell (1916) cited in Freeman Resende & Viana (1959) Solomon (1985) Solomon (1985) Solomon (1985) Solomon (1985) Solomon (1985) Solomon (1985) Diggle (1991) Hendrix & Trap (1981) Strasburger (1910) Schaffner (1935) Correns (1928) Iizuka & Hashizume (1968) Negi & Olmo (1966) L"K L"K L"K L"K L%K L%K L%K L%K L%K L%K L%K L"K L%K L%K L"K L!K L"K L!K L!K L!K L"K L!K L%K L%K L!K L%K L"K L"K Environmental factorLow light intensity (E) Direction Reference ? (F) Mites (E) ? (F) GRS (E): abscisic acidGRS cytokinin (E): gibberellin Low light intensity (E) High nutrition (E) Size (F) Life history Main form of sexuality DioecyDioecyDioecy PerennialHermaphrodism Perennial Low light Perennial intensity (E) AgeDioecy (size) ? (E) (E) PerennialDioecy Low light intensity (F) Perennial Perennial ?Dioecy (E) ? (E) Dioecy Perennial ? (F) HermaphrodismMonoecy Annual Perennial ? GRS (?) (E): gibberellin Perennial Drought (E) MonoecyHermaphrodism Biennial PerennialDioecy Trauma Previous (E) Monoecy fruit production (E) Dioecy Perennial PerennialDioecy ? ShortDioecy (F) photoperiod (E) Perennial ? (E) Perennial Perennial GRS (E): cytokinin GRS (E): cytokinin * Dioecy Perennial ? (?) .) .* Dioecy Perennial ? (E) cont dioicum vinifera stenodactylon warscewiczii trichocarpa aurita hirtum ...... C C Mormodes buccinator Plantago lanceolata Thalictrum dasycarpum T Populus tremuloides P Salix sp S Hyoscyamus niger Solanum carolinense S Pastinaca sativa Urtica dioica Urticastrum divaricatum Valeriana dioica Vitus thunbergii V Species Plantaginaceae Ranunculaceae Salicaceae Umbelliferae Urticaceae Valerianaceae Vitaceae Table 1 ( Taxon Labile sex expression in plants 171 come males under the influence of antheridiogen. Ceratopteris richardii (Scott & Hickok, 1987), Gymno- Variation in spore size has been observed even carpium dryopteris (Kirkpatrick & Soltis, 1992) and in among homosporous pteridophytes. Schedlbauer Hemionitis palmeta (Ranker, 1987), and in the fern (1976) observed in Ceratopteris thalictroides that vari- genum Cystopteris (Haufler & Ranker, 1985). Besides ation in spore size is correlated with variation in the influencing sex expression, antheridiogens also in- amount of stored nutrients, the time of spore duce dark germination in some ferns (Schneller, germination and subsequent rates of gametophyte 1988; Schneller, Haufler & Ranker, 1990; Chiou & development. The fastest-growing gametophytes Farrar, 1997). become hermaphroditic and influence the slower The extreme lability in sex expression in relation ones to become antheridial. Thus, variation in spore to antheridiogen production among homosporous size and consequent variation in developmental pteridophytes has several obviously adaptive conse- speed may relate to the sex-expression of the quences. First, antheridiogens play a role in con- gametophyte. On the other hand, in a study on the trolling the breeding system by promoting inter- genus Bommeria, Haufler & Gastony (1978) observed gametophytic matings and the maintenance of no bimodal distribution in spore size. genetic variation (Tryon & Vitale, 1977; Schneller, The homosporous fern Ceratopteris richardii has 1979; Haufler & Soltis, 1984). This may be been used as a model system for studying genetic and important for homosporous plants which possess environmental factors involved in sex determination. three types of matings in contrast to the two usual The gametophytic stage of the life cycle is easier to types: intergametophytic crossing (comparable to investigate and manipulate in ferns than in flowering outcrossing in seed plants), intergametophytic selfing plants, where the gametophyte is surrounded by the (comparable to selfing in seed plants) and intra- maternal sporophytic tissues of the flower. Banks, gametophytic selfing. Intragametophytic selfing pro- Webb & Hickok (1993) have shown in C. richardii duces a completely homozygous sporophyte in a that a gametophyte is responsive to antheridiogen single generation. Secondly, gametophytes carrying for only a brief period early in its development when archegonia may increase their fitness through the the spore wall cracks and the gametophyte is between secretion of antheridiogens by increasing the pool of one and four cells in size. Exposure to antheridiogen available males from which a mate may be chosen during this and subsequent stages of gametophyte (Willson, 1981). This aids intergametophytic mat- development is required for male development. If ings as well. Thirdly, antheridiogens may be im- antheridiogen is removed from the surrounding portant also for intra- and interspecific competition medium, the sexually undetermined or undifferen- (Schneller et al., 1990). Tall gametophytes are more tiated cells of the male gametophyte revert to likely to bear and support young sporo- hermaphrodism. Thus, the male expression is labile, phytes. By producing antheridiogens they inhibit the indicating that antheridiogen is necessary for both growth of potential competitors. Fourthly, the initiating and maintaining male expression. In response to antheridiogens may enhance the re- contrast, the hermaphroditic expression is stable productive success of small gametophytes by allow- once established and cannot be reversed by exposure ing for sex expression (maleness), which would not to antheridiogen. An application of abscisic acid occur via self-regulation (Hamilton & Lloyd, 1991). blocks the antheridiogen response in Ceratopteris spp. Approximately 10% of all species (Hickok, 1983; Eberle et al., 1995). Several muta- are agamosporous (Walker, 1984). In such species, tions that affect sex expression have been isolated there is no meiotic reduction in sporogenesis, and and characterized (Hickok, 1985; Banks, 1994; new sporophytes develop from the gametophyte Eberle et al., 1995; Eberle & Banks, 1996). These without fertilization (apogamy or apomixis). Still, mutations define at least some of the major regu- the gametophytes express sexuality and may produce latory genes involved in determining the sex of the suppressed archegonia and antheridia with func- Ceratopteris spp. gametophytes. tional, non-reduced sperm (Haufler & Gastony, There are several types of antheridiogens, with 1978; Gastony & Windham, 1989). They can some degree of taxonomic specificity. A given type of thereby act as male parents in crosses with the antheridiogen is effective in several species, and archegoniate gametophytes of sexually reproducing several types may be effective in particular species taxa. In three fern families, Grammitidaceae, (Voeller, 1964a;Na$fet al., 1975). Additionally, Hymenophyllaceae and Vittariaceae, the sporo- there is variation within populations in gametophyte phyte stage of the life cycle has been eliminated, and response to antheridiogens, as observed in the ferns the gametophytes reproduce vegetatively via gem- 172 H. Korpelainen mae (Farrar, 1985, 1990). Despite functional asexu- sexual). A difference between dioecious and other ality, such gametophytes produce gametangia as seed plants is that in dioecious species sex expression their likely ancestors with a more ordinary life cycle. is often not restricted to flowers but includes and secondary sexual characters in the morphology and phenology of the plant (e.g. Lloyd IV. SPERMATOPHYTA & Webb, 1977; Bullock & Bawa, 1981; Meagher & Antonovics, 1982; Longo, 1994). Despite the rela- Hermaphrodism is the most common and probably tively common occurrence of sexual dimorphism, the the original mode of reproduction in seed plants. sex of a plant can often be determined only at sexual Because species with unisexual flowers have evolved maturity. Even then, the potential presence of repeatedly from hermaphroditic progenitors, the rudiments of the opposite sex can lead to the wrong mechanisms controlling sex expression in seed plants conclusions. are diverse. Yampolsky & Yampolsky (1922) esti- Much evidence of environmental effects on sex has mated that only 4% of angiosperm species are been obtained from studies on commercially im- dioecious and 7% are monoecious. However, Lloyd portant species, such as maize and the cucurbit (1982) estimated that up to 10% of angiosperm species, which possess mainly monoecious sex ex- species may be dioecious. Dioecy is infrequent but pression. As seen in Table 1, a common factor widespread throughout the families of angiosperms. reversing sex expression in seed plants is exogenous In , dioecy is a more frequent con- treatment by hormones or other growth-regulating dition, approximately 25% of all species (Longo, substances. The effect of chemical treatments is 1994). An important question is then the extent to often the conversion of one sex to the other, rather which sex expression is constant. The reversion of sex than conversion to hermaphrodism. This suggests expression through chemical treatment or some that, at least in those cases, the floral primordia are other environmental factor would indicate lability in sexually bipotent and that sex determination genes the interaction between sex-determining genes and regulate alternative programs of sexuality, possibly physiology in such species. It seems that in many through a mechanism that modifies endogenous dioecious species sex is rigidly controlled by genetics, levels of hormones (Dellaporta & Calderon-Urrea, although only a few species possess sex chromosomes 1993, 1994). Plants have five classes of hormones: (Parker, 1990; Chattopadhyay & Sharma, 1991; auxins, gibberellins, abscisic acid, cytokinins and Grant et al., 1994). Sex chromosomes have evolved ethylene (Grant et al., 1994). Each type of hormone so recently that many dioecious species with sex is active in many plant functions. It has been chromosomes have hermaphroditic relatives without observed that the action of particular hormones in sex chromosomes in the same genus. Still, many feminizing or masculinizing flowers is species- dioecious seed plant species are known to change sex dependent. The same hormone can have completely or to express hermaphrodism or monoecy (Freeman opposite effects in different plants. For example, et al., 1980). Obviously, such species are not strictly gibberellic acid feminizes monoecious maize (Zea speaking dioecious. Lability in sex expression can mays) (Nickerson, 1957; Nelson & Rossman, 1958; sometimes lead to erroneous ideas about the mode of Hansen, Bellman & Sacher, 1976), but has the reproduction. For instance, the vines in the genera opposite effect on dioecious asparagus (Asparagus Gurania and Psiguria, which were long thought to be officinalis) (Lazarte & Garrison, 1980) and mon- dioecious, are actually monoecious (Condon & oecious cucumber (Cucumis sativus) (Malepszy & Gilbert, 1988). The confusion results from size- Niemirovicz-Szczytt, 1991). Cytokinins have a femin- related sex changes. izing effect on dioecious or subdioecious mercury The question of how labile or constant sex (Mercurialis annua), spinach (Spinacia oleracea), hemp expression is does not only relate to dioecious species (Cannabis sativa) and grapevine (Vitis vinifera) (Negi but also to monoecious and hermaphroditic plants, & Olmo, 1966; Galoch, 1978; Chailakhyan, 1979; and to plants expressing various intermediate forms Louis, 1989; Durand and Durand, 1991), while in of sexuality, such as gynomonoecy (female and asparagus females cytokinin treatment increases the hermaphrodite flowers on the same plant), andro- frequency of hermaphroditic flowers (Lazarte & monoecy (male and hermaphrodite flowers on the Garrison, 1980). Auxins have a masculinizing effect same plant), gynodioecy (male morph ambisexual in mercury (Hamdi, Teller & Louis, 1987; Louis, and female morph unisexual) and androdioecy 1989; Durand & Durand, 1991), but a feminizing (female morph ambisexual and male morph uni- effect in cucumber (Malepszy & Niemirovicz- Labile sex expression in plants 173

Szczytt, 1991). In some more strictly dioecious modification of sex expression in plants, see Heslop- species, such as white campion (Silene latifolia), Harrison, 1957). As shown in Table 1, the common hormone applications have little or no effect on the factors influencing sex expression in nature are sexuality of flowers (Dellaporta & Calderon-Urrea, photoperiod, light intensity, nutrition and tem- 1993). Monoecious Scots pine (Pinus sylvestris) ex- perature, all of which affect a plant’s nutritional presses seasonal and, to some extent, also genetic status either directly or indirectly. Other factors variation in the susceptibility to exogenous hormonal which do affect the sex expression of seed plants treatments. The spraying of branches with gib- include drought, trauma, parasite effects and pH. berellic acid in May and June significantly increased Less-than-optimal conditions often appear to favour male flowering, while July and August applications maleness. In plants in which sex expression is related resulted in a significant increase of female flowering to plant size (or age), males are usually smaller (or (Chalupka, 1984). younger) than females. Reproductive history may Yin & Quinn (1992) have suggested a model to influence sex as well. In the shrub Atriplex canescens,a explain the role of hormones in sex determination. prior heavy seed set is one of the stress factors under They assume that one hormone has male and female which females are more likely than male plants to receptors to inhibit one sex and induce the other change sex (Freeman, McArthur & Harper, 1984). independently. The range of hormone concentration Comparatively, the sex expression of the persimmon and the sensitivity levels of the receptors interact to tree Diospyros kaki is modified by the previous year’s regulate sex expression. The results of studies on fruit load and the nutritional status of the tree cucumber and maize support this model (Yin & (Yonemori, Kameda & Sugiura, 1992; Yonemori Quinn, 1992). The ratios of different hormones may et al., 1993). Apparently also in these cases, be more important than their absolute levels. hormones, which are known to be responsive to en- Chailakhyan (1979) has shown that in spinach and vironmental conditions, play important roles in sex hemp the ratio of cytokinin to gibberellic acid expression. controls sex expression. With cytokinin in excess, Some of the plants which express considerable plants generally produce female flowers. Molecular lability in sex expression are the epiphytic orchid studies on genes involved in flower development and Catasetum viridiflavum and species of the genus Atriplex. sex determination indicate that they have a role in In C. viridiflavum, gender is largely determined by hormone metabolism (Grant et al., 1994). Diggle light intensity (Zimmerman, 1991). Females occur (1991) has suggested that the lability of whole-plant most frequently in open canopies and males pre- sex is due to the labile sex expression of individual dominate in closed canopies. Smaller but significant flower buds, that is, the sex of a flower could be effects of plant size on sex expression have also been determined late in development, depending on the detected (Zimmerman, 1991). Males tend to be environment. Comparisons of floral development in small and females large while hermaphrodites are hermaphroditic and male buds of the andromonoe- intermediate in size. Hermaphroditic plants ob- cious Solanum hirtum showed that just 6–7 days before viously result from changes in sex expression within anthesis abnormalities occurred in the de- and between years. Lability in the sex expression of velopment of male buds (Diggle, 1991). As a result, C. viridiflavum was confirmed experimentally: shaded fertilization could not take place in male buds. inflorescences were more frequently males than were Morphological evidence indicates that sex differenti- the unshaded inflorescences of plants of comparable ation of genetically determined male and female size (Zimmerman, 1991). individuals of dioecious asparagus consists of the In the genus Atriplex, up to 20% of individuals can selective abortion of the or androecium alter their sex expression from one season to the next of initially hermaphrodite floral primordia (Bracale (McArthur & Freeman, 1982; Freeman & et al., 1991). Abortion occurs in pollen-mother cells McArthur, 1984; Freeman et al., 1984). These sex and anthers in females, and in megaspore-mother changes occurred in response to three stress factors, cells in males. The differential sexual development is an unusually cold winter, a drought and a prior accompanied by changes in the relative abundance heavy seed set. Under stress, females are significantly of auxins and cytokinins. more likely to change sex than are male individuals. Exogenous treatments by hormones and other In the genus Atriplex, changes from a unisexual to a growth-regulating substances are environmental fac- monoecious state appear to be more frequent than tors to which plants are not exposed in natural changes in the opposite direction. Although labile conditions (for an early review on experimental sex expression is common in Atriplex, a considerable 174 H. Korpelainen fraction of the population does not seem capable of species is less than 10% as well (Yampolsky & sex changes. Studies on the frequency of sex change Yampolsky, 1922). Therefore, lability in sex ex- in natural plant populations include the genera pression appears to be more common among Juniperus and Acer. Vasek (1966) reported 7n3% dioecious and monoecious species than among and 24n5% sex change in J. australis and J. osteo- hermaphrodites. However, hermaphrodites can con- sperma, respectively, and Hibbs & Fischer (1979) trol allocation to male and female function by found 10% sex change among plants of Acer varying the relative emphasis on pollen and ovules in pennsylvanicum. hermaphroditic flowers. Cannabis sativa, Silene latifolia and Spinacia oleracea (3) A great majority of angiosperms with labile are much-studied dioecious plant species with het- sex (78%) are perennials, which indicates that eromorphic sex chromosomes. Yet, they possess some flexibility in sex expression is more important for lability in sex expression (Table 1). The application species with long life cycles. of hormones as well as variable light conditions can (4) Observations of sex changes among gymno- induce sex reversal in C. sativa, while hormonal are few and include both dioecious and treatments, nutrition and light influence sex ex- monoecious species. pression in S. oleracea.InSilene latifolia, exogenous (5) A requirement for adaptive lability in sex is to hormones have no effect but infection by the recognize an environmental factor which differen- basidiomycete Ustilago violacea can induce the ap- tially correlates with male or female fitness. The pearance of anthers in female flowers, thus trans- factor typically indicates stress as a result of less- forming them into hermaphroditic flowers. For the than-optimal light, nutrition, weather or water genus Ustilago, this transformation is ad- conditions. Such environmental stress affects a vantageous since the teliospores of the fungus are plant’s nutritional status either directly or indirectly able to develop only in anthers (Lyndon, 1985). In and often favours maleness. greenhouse studies on S. latifolia, Frick & Cavers (6) Size may influence the ability of a plant to be (1989) have observed occasional hermaphroditic of a certain sex. When size affects sex expression, flowers among a majority of male flowers while they males are usually smaller than females. Environ- found no non-constant female plants. In field studies. mental cues influencing sex expression also include Frick & Cavers (1989) also observed sequential population density and mediation through other hermaphrodites, single plants that produced both individuals (antheridiogens secreted by neighbour- male and female flowers on separate branches, and ing fern gametophytes). both male and female plants cloned from single (7) I suggest that the extreme lability in the sex individuals. The lability in sex expression was not expression of homosporous pteridophytes relates consistent with regard to environment. When Frick primarily to their mating systems. A lack of flexibility & Cavers (1989) compared seeds from female plants in sex expression would potentially result in genetic to seeds from hermaphroditic but genetically male homozygosity (in the case of self-fertilization) or in a plants, those from male plants were less likely to poor ability to colonize (in the case of strict dioecy). germinate, and the resulting seedlings were less likely to survive to reproduction. V. REFERENCES

A, N. (1978). Sex expression in coriander Cori- V. CONCLUSIONS andrum sativum L.) as affected by growth regulators. Current Science 47, 929–930. (1) Sex changes occur in many plant taxa but only A, L. E. (1980). Cytology and reproductive biology of in homosporous pteridophytes is labile sex the rule. mosses. In The Mosses of North America (ed. R. J. Taylor and Bryophytes appear to possess some lability in sex A. E. Leviton). pp. 37–76. American Association for the Advancement of Science, Pacific Division, San Francisco, CA, expression, but the information available is very USA. limited. A,L.E.&L, B. E. (1973). Weissia sharpii, a new (2) Of the 105 angiosperm species, representing species from North America, with cytological and ecological 62 genera and 35 families, listed here as expressing correlations. Bryologist 76, 131–143. lability in sex, 58% are dioecious and 35% are A,L.E.&L, B. E. (1974). Gene flow distances in the moss Weissia controversa Hedw. Journal of the Hattori monoecious. On the other hand, fewer than 10% of Botanical Laboratory 38, 76–90. all angiosperms are estimated to be dioecious (Lloyd, A, C. K. (1959). Sex reversal in hemp by application of 1982). The estimated proportion of monoecious gibberellin. Current Science 28, 408–409. Labile sex expression in plants 175

A, G. F. (1898). Experiments on the morphology of C, M.K.&K, V. N. (1978b). Effect of Arisaema triphyllum. Botanical Gazette 25, 114. growth regulators and role of roots in sex expression in B, J. A. (1994). Sex-determining genes in the homosporous spinach. Planta 142, 207–210. fern Ceratopteris. Development 120, 1949–1958. C, W. (1984). Short note: Time of GA4\7 application B, J., W,M.&H, L. (1993). Programming of may affect the sex of Scots pine flowers initiated. Silvae Genetica sexual phenotype in the homosporous fern Ceratopteris richardii. 33, 4–5. International Journal of Plant Sciences 154, 522–534. C,E.L.&B, J. (1977). When is sex environmentally B,J.&W, A. (1985). Preliminary studies on the determined? Nature 266, 228–230. breeding systems of Dryopteris filix-mas (L.) Schott and D. C,D.&S, A. K. (1991). Sex deter- dilatata (Hoffm.) A. Gray. Proceedings of the Royal Society of mination in dioecious species of plants. Feddes Repertorium 102, Edinburgh 86B, 455–456. 29–55. B, P. A., F,D.C.&H, K. T. (1982). C,P.C.&W, D. C. (1989). Effects of 3-(p- Variation in the breeding system of Acer grandidentatum. Forest chlorophenyl)-6-methoxy-s-triazine-2,4 (1H, 3H) dione tri- Science 28, 563–572. ethanolamine (DPX-3778) treatment on the floral devel- B, S. C. (1984). Variation in floral sexuality of declinous opment of maize. Canadian Journal of Botany 67, 327–331. Aralia (Araliaceae). Annals of the Missouri Botanical Garden 71, C, W.-L. & F, D. R. (1997). Antheridiogen pro- 278–288. duction and response in Polypodiaceae species. American B, R. W. (1975). Floral biology of California buckeye. Journal of Botany 84, 633–640. Madrong o 23, 41–53. C,R.N.&S., S. (1973). In vitro studies in B,J.&B, J. (1980). Nutritional rather than Marchantiales. I. Effects of some carbohydrates, agar, pH, hormonal regulation of sexual expression in Begonia franconis. light and growth regulators on the growth and sexuality in Phytomorphology 30, 231–236. Riccia crystallina. Phytomorphology 23, 230–244. B, R. I. (1982). The ecology of sex expression in red C,R.B.&O, E. R., J. (1967). Sex ratio in Ilex opaca buckeye. Ecology 63, 445–456. Ait. Horticultural Science 2, 115. B,S.C.&C, R. N. (1981). Hormonal regulation C,M.A.&G, L. E. (1988). Sex expression of of gametangial formation in the moss Bryum argenteum Hedw. Gurania and Psiguria (Cucurbitaceae): Neotropical vines that Journal of Experimental Botany 32, 1243–1256. change sex. American Journal of Botany 75, 875–884. B, P. (1982). The demography of jack-in-the- C, C. (1928). Bestimmung, Vererbung und Verteilung pulpit, a forest perennial that changes sex. Ecology Monographs des Geschlechtes bei den ho$ heren Pflanzen. In Handbuch der 52, 335–351. Vererbungswissenschaft, Vol. 2 (ed. E. Baur and M. Hartmann), B, P. (1984). Determinants of gender in jack-in- pp. 1–138. Borntraeger, Berlin, Germany. the-pulpit: the influence of plant size and reproductive C, M. I. (1979). Gametophyte ontogeny, sex expression, history. Oecologia 65, 14–18. and genetic load as measures of population divergence in B, M. (1983). Developmental physiology of bryophytes. In Blechnum spicant. American Journal of Botany 66, 116–132. New Manual of Bryology (ed. R. M. Schuster), pp. 276–324. D,A.J.&G, C. M (1917). Note on the distribution The Hattori Botanical Laboratory, Nichinan, Miyazaki, of in Myrica gale. New Phytologist 16, 147–151. Japan. D J,A.W.&B, J. (1974a). Pistil development in B,H.A.&S, N. J. (1954). Photoperiodic Cleome flowers I. Effects of mineral nutrition and of the responses on hemp. Botanical Gazette 116, 14–29. presence of leaves and fruits on female abortion in Cleome B,T.K.&N, J. P. (1970). Chemical alteration of sex spinosa Jacq. Zeitschrift fuW r Pflanzenphysiologie 72, 220–226. expression in Fuffa acutangula. Physiologia Plantarum 23, 1206– D J,A.W.&B, J. (1974b). Pistil development in 1211. Cleome flowers III. Effects of growth-regulating substances on B, M., C, E., G, M. G., L, C., flower buds of Cleome iberidella Welw. ex Oliv. grown in vitro. M-L, G., R, G., S, A., S, C., Zeitschrift fuW r Pflanzenphysiologie 73, 142–151. F, A., R, F., M, E., R,F.M.& D J,A.W.&B, J. (1974c). Pistil development in T, F. (1991). Sex determination and differentiation in Cleome flowers IV. Effects of growth-regulating substances on Asparagus officinalis L. Plant Science 80, 67–77. female abortion in Cleome spinosa Jacq. Zeitschrift fuW r Pflanzen- B,B.B.&W, G. F. (1960). Sex expression and physiologie 73, 152–159. growth in muskmelon. Plant Physiology 35, 741–745. D,S.L.&C-U, A. (1993). Sex B,S.H.&B, K. S. (1981). Sexual dimorphism and determination in flowering plants. Plant 5, 1241–1251. the annual flowering pattern in Jacaratia dolichaula (D. Smith) D,S.L.&C-U, A. (1994). The sex Woodson (Caricaceae) in a Costa Rican rain forest. Ecology determination process in maize. Science 266, 1501–1505. 62, 1494–1504. D, P. K. (1991). Labile sex expression in andromonoecious C, F. M. (1964). Some effects of kinetin on sex Solanum hirtum: floral development and sex determination. expression in Bryophyllum crenatum Bak. Portugaliae Acta Bio- American Journal of Botany 78, 377–393. logica, SeTr. A 8, 267–284. D, C. H. (1962). and variation in the subtribe C, M.K. (1979). Genetic and hormonal regulation Catasetinae (Orchidaceae). Annals of the Missouri Botanical of growth, flowering, and sex expression in plants. American Garden 49, 35–56. Journal of Botany 66, 717–736. D$ , W. (1950). Eine die Antheridienbildung bei Farnen C, M.K.&K, V. N. (1978a). The fo$ rdernde Substanz in den Prothallien von Pteridium aquilinum influence of growth regulators absorbed by the root on sex (L.) Kuhn. Berichte der Deutschen Botanischen Gesellschaft 63, expression in hemp plants. Planta 138, 181–184. 139–147. 176 H. Korpelainen

D$ , W. (1959). U= ber eine fo$ rdernde und eine hemmende termination in flowering plants. Developmental Genetics 15, Substanz bei der Antheridienbildung in den Prothallien von 214–230. Pteridium aquilinum. Berichte der Deutschen Botanischen Gesellschaft G, K. B. (1973). Studies on the control of sex expression in 72, 11–24. the genera Cycnoches and Catasetum, subtribe Catasetinae, D$ , W. (1962). Weitere Untersuchungen u$ ber die Physiologie Orchidaceae. Ph.D. Dissertation, University of Miami, Coral der Antheridienbildung bei Pteridium aquilinum. Planta 58, Gables, Florida, USA. 483–508. G, K. B. (1975). The effect of light intensity on sex D, J. G. (1977). Towards an understanding of sex expression in species of Cycnoches and Catasetum (Orchidaceae). determination in Equisetum: an analysis of regeneration in Selbyana 1, 101–113. gametophytes of the subgenus Equisetum. Botanical Journal of the G, K. B. (1978). The interaction of light intensity, plant Linnean Society 74, 215–242. size, and nutrition in sex expression in Cycnoches (Orchi- D,J.G.&P, W. C. (1985). Sexual behaviour of the daceae). Selbyana 2, 212–223. terrestrial fern Platyzoma microphyllum R. Br.: a morphogenetic H,D.&W, M. (1988). A model for the origin of look at the origins of heterospory. Proceedings of the Royal Society heterospory. Journal of Theoretical Biology 134, 257–272. of Edinburgh 86B, 455–456. H,A.H.&R, Y. (1967). Modification of sex D,B.&D, R. (1991). Sex determination and expression in muskmelon by treatment with the growth reproductive organ differentiation in Mercurialis. Plant Science retardant B-995. Physiologia Plantarum 20, 1052–1058. 80, 49–65. H, W. C. (1949). Effects of photoperiod and nitrogen supply D,R.&D, B. (1984). Sexual differentiation in on growth and reproduction in the gherkin. Plant Physiology higher plants. Physiologia Plantarum 60, 267–274. 34, 753–769. E,J.R.&B, J. A. (1996). Genetic interactions H, S., T,G.&L, J.-P. (1987). Master regulatory among sex-determining genes in the fern Ceratopteris richardii. genes, auxin levels and sexual organogenesis in dioecious Genetics 142, 973–985. plant Mercurialis annua. Plant Physiology 85, 393–399. E, J., N, J., W,C.K.H,M.&B, H,R.G.&L, R. M. (1991). Antheridiogen in the J. A. (1995). Ceratopteris: a model system for studying sex- wild: the development of fern gametophyte communities. determining mechanisms in plants. International Journal of Plant Functional Ecology 5, 804–809. Sciences 156, 359–366. H, D. J., B,S.K.&S, R. M. (1976). Gibberellic acid-controlled sex expression in corn tassels. Crop F, D. R. (1985). Independent fern gametophytes in the Science 16, 371–374. wild. Proceedings of the Royal Society of Edinburgh 86B, 361–369. H,H.T.&P, C. (1961). Effect of soil moisture F, D. R. (1990). Species and evolution in asexually deficiency during floral development on fruitfulness in the reproducing independent fern gametophytes. Systematic Botany olive. Proceedings of the American Society of Horticultural Science 78, 15, 98–111. 209–217. F,J.F.&H, A. T. (1981). Habitat assortment of H,C.H.&G, G. J. (1978). Antheridiogen and sexes and water balance in a dioecious grass. Oecologia 49, the breeding system in the fern genus Bommeria. Canadian 233–235. Journal of Botany 56, 1594–1601. F, D. C., H,K.T.&C, E. L. (1980). Sex H,C.H.&R, T. A. (1985). Differential anther- change in plants: old and new observations and new idiogen response and evolutionary mechanisms in Cystopteris. hypotheses. Oecologia 47, 222–232. American Journal of Botany 72, 659–665. F,D.C.&MA, E. D. (1984). The relative H,C.H.&S, D. E. (1984). Obligate outcrossing in influences of mortality, nonflowering, and sex change on the a homosporous fern: field confirmation of a laboratory sex ratios of six Atriplex species. Botanical Gazette 145, 385–394. prediction. American Journal of Botany 71, 878–881. F, D. C., MA,E.D.&H, K. T. (1984). H, R. L. (1977). Experimental studies on growth and The adaptive significance of sexual lability in plants using sexual determination in Equisetum gametophytes. American Atriplex canescens as a principal example. Annals of the Missouri Fern Journal 67, 18–31. Botanical Garden, 71, 265–277. H,S.D.&T, E. J. (1981). Plant-herbivore inter- F, D. C., MA, E. D., H,K.T.&B, actions: Insect induced changes in host plant sex expression A. C. (1981). Influence of environment on the floral sex ratio and fecundity. Oecologia 49, 119–122. of monoecious plants. Evolution 35, 194–197. H-N, N. (1918). Experimentelle studien u$ ber F,B.&C, P. B. (1989). Aberrations in sex expression Variabilita$ t, Spaltung, Artbildung und Evolution in der in Silene latifolia. American Naturalist 134, 562–573. Gattung Salix. Lunds Universitets A| rsskrift, Avd. 2, Bd. 14, Nr. 28. F, M., A,D.&G, E. (1977). Sexual H-H, J. (1956). Auxin and sexuality in Cannabis differentiation in cucumber: the effects of abscisic acid and sativa. Physiologia Plantarum 9, 588–597. other growth regulators on various sex genotypes. Plant and H-H, J. (1957). The experimental modification of Cell Physiology 18, 261–269. sex expression in flowering plants. Biological Reviews 32, G, E. (1978). The hormonal control of sex differentiation 38–115. in dioecious plants of hemp (Cannabis sativa). Acta Societatis H-H, J. (1961). The experimental control of Botanicorum Poloniae 47, 153–162. sexuality and inflorescence structure in Zea mays L. Proceedings G,G.J.&W, M. D. (1989). Species concepts in of the Linnean Society of London 172, 108–123. pteridophytes: the treatment and definition of agamosporous H-H, J. (1972). Sexuality of angiosperms. In Plant species. American Fern Journal 79, 65–77. Physiology. Vol. VIC, Physiology of Development: From Seeds to G, S., H, A., V, B., S, J., P, W.-H., Sexuality (ed. F. C. Steward), pp. 133–289. Academic Press, M,J.&S, H. (1994). Genetics of sex de- New York. Labile sex expression in plants 177

H-H,J.&H-H, Y. (1958). Photo- terstics in artificially formed clonal gametophytes of Dryopteris period, auxin and sex balance in a long-day plant. Nature 181, filix-mas (Dryopteridaceae). Plant Systematics and Evolution 196, 100–102. 195–206. H-H, J. W. (1924). Sex in the Salicaceae and its K,H.N.&T, A. D. (1976). Chemical modification by eriophyd mites and other influences. British control of sex expression in Zea mays L. Zeitschrift fuW r Journal of Experimental Biology 1, 445–472. Pflanzenphysiologie 79, 91–94. H,D.E.&F, B. C. (1979). Sexual and vegetative L,F.&K, F. J. (1950a). Der Einfluss von reproduction of striped (Acer pensylvanicum L.). Bulletin Wuchsstoff auf die Bildung ma$ nnlicher und weiblicher Blu$ ten of the Torrey Botanical Club 106, 222–227. bei einer mono$ zischen Pflanze (Cucumis sativa L.). Berichte der H, L. (1983). Abscisic acid blocks antheridiogen-induced Deutschen Botanischen Gesellschaft 62, 53–58. antheridium formation in gametophytes of the fern Ceratopteris. L,F.&K, F. J. (1950b). Der Einfluss von Canadian Journal of Botany 61, 888–892. Wuchsstoff auf das Geschlecht der Blu$ ten bei einer mono$ - H, L. (1985). Abscisic acid resistant mutants in the fern zischen Pflanze. BeitraW ge der Biologische Pflanzenkunde 28, 64–67. Ceratopteris: characterization and genetic analysis. Canadian L, A. H. (1961). Factors affecting sex changes in the Journal of Botany 63, 1582–1585. flowers of Carica papaya L. Proceedings of the American Society of H, M. A., I,M.&A, M. (1996). Sexual crossing Horticultural Science 77, 252–264. between two genetically female plants and sex genetics of L,J.E.&G, A. (1980). Sex modifications in kakrol (Momordia dioica Roxb.). Euphytica 90, 121–125. Asparagus officinalis L. Journal of the American Society for I,M.&H, T. (1968). Induction of female Horticultural Science 105, 691–694. organs in staminate grape by 6-substituted adenine deriva- L-Y,S.&L, N. (1987). The ontogeny of tives. Japanese Journal of Genetics 43, 393–394. gender of Cupressus sempervirens L. Botanical Gazette 148, J,V.S.&K, A. (1980). Sex reversal and fruit 407–412. formation on the male plants of Morus nigra L. by 2- L, D. G. (1980a). Sexual strategies in plants. III. A chloroethylphosphonic acid. Journal of Experimental Botany 31, quantitative method for describing the gender of plants. New 497–500. Zealand Journal of Botany 18, 103–108. J, E. W. (1945). Biological flora of the British Isles; Acer L, D. G. (1980b). The distributions of gender in four campestre L. Journal of Ecology 32, 239–252. angiosperm species illustrating two evolutionary pathways to J, K. L. (1947). Studies on Ambrosia. IV. Effects of short dioecy. Evolution 34, 123–134. photoperiod and temperature on sex expression. American L, D. G. (1981). The distribution of sex in Myrica gale. Plant Journal of Botany 34, 371–377. Systematics and Evolution 138, 29–45. J, A. C. (1939). A note on the determination of sex of L, D. G. (1982). Selection of combined versus separate plantain flowers. Journal of Genetics 38, 353–356. sexes in seed plants. American Naturalist 120, 571–585. K, R. W. (1991). Reproductive ecology of Tetraphis L,D.G.&B, K. S. (1984). Modification of the gender pellucida I. Population density and reproductive mode. of seed plants in varying conditions. Evolutionary Biology 17, Bryologist 94, 255–260. 255–338. K,R.E.B.&S, P. S. (1992). Antheridiogen L,D.G.&M, A. J. (1976). Sexual dimorphism in production and response in Gymnocarpium dryopteris ssp. Cirsium arvense (L.) Scop. Annals of Botany 40, 115–123. disjunctum. Plant Species Biology 7, 1–9. L,D.G.&W, C. J. (1977). Secondary sex characters K, E. J., J. (1969a). Reproductive biology of the in plants. Botanical Reviews 43, 177–216. Pteridophyta. II. Theoretical considerations. Botanial Journal L,R.M.&W, T. R. (1978). The absence of genetic of the Linnean Society 62, 347–359. load in a morphologically variable sexual species, Ceratopteris K, E. J., J. (1969b). Reproductive biology of the thalictroides (Parkeriaceae). Systematic Botany 3, 20–36. Pteridophyta. III. A study of the Blechnaceae. Botanical L, C. P. (1994). Genes controlling sex expression. In Genetic Journal of the Linnean Society 62, 361–377. Control of Self-incompatibility and Reproductive Development in K, E. J., J. (1970a). Evidence against self-incompati- Flowering Plants (ed. E. G. Williams, A. E. Clarke and R. B. bility and for genetic lethals in the fern Stenochlaena tenuifolia Knox), pp. 245–265. Kluwer Academic Publishers, Dor- (Desv.) Moore. Biological Journal of the Linnean Society 63, drecht, The Netherlands. 171–176 L, R. E. (1990). in bryophytes in K, E. J., J. (1970b). Populational and genetic studies relation to physical factors of the environment. In Bryophyte of a homosporous fern – Osmunda regalis. American Journal of Development: Physiology and Biochemistry (ed. R. N. Chopra and Botany 57, 1122–1138. S. C. Bhatla), pp. 139–166. CRC Press, Boca Raton, Florida, K, E. J., J.&L, R. M. (1968). Reproductive USA. biology of the Pteridophyta I. General considerations and a L,R.E.&M, C. J. (1982). Studies on the study of Onoclea sensibilis L. Journal of the Linnean Society reproductive biology of mosses. Journal of the Hattori Botanical (Botany) 60, 315–324. Laboratory 52, 219–239. K, H. (1990). Sex ratios and conditions required for L,R.E.&S, R. M. (1983). Reproductive environmental sex determination in animals. Biological Reviews biology. In New Manual of Bryology (ed. R. M. Schuster), pp. 65, 147–184. 386–462. The Hattori Botanical Laboratory, Nichinan, Miyazaki, K, H. (1994). Growth, sex determination and Japan. reproduction under varying nutritional conditions. Botanical L, J.-P. (1989). Genes for the regulation of sex differentiation Journal of the Linnean Society 114, 357–366. and male fertility in Mercurialis annua L. Journal of Heredity 80, K, H. (1995). Growth and reproductive charac- 104–111. 178 H. Korpelainen

L D,J.&C, P. B. (1982). Sex and gender N, F. L. (1941). Effect of length of induction period on dynamics in jack-in-the-pulpit, Arisaema triphyllum (Araceae). floral development of Xanthium pennsylvanicum. Botanical Gazette Ecology 63, 797–808. 103, 146–154. L, R. F. (1985). Silene. In Handbook of Flowering, Vol. IV N,S.S.&O, H. P. (1966). Sex conversion in a male Vitis (ed. H. A. Halevy), pp. 313–319. CRC Press, Boca Raton, vinifera L. by a kinin. Science 152, 1624–1625. Florida, USA. N, E. K. (1939). Nitrogen nutrition in relation to M, T. (1924). On the phenomena of sex transition in photoperiodism in Xanthium pennsylvanicum. Botanical Gazette Arisaema japonica Bl. Journal of the College of Agriculture, Hokkaido 100, 607–618. Imperial University 13, 217–305. N,P.M.&R, E. C. (1958). Chemical induction of M,S.&N-S, K. (1991). Sex de- male-sterility in inbred maize by use of gibberellins. Science termination in cucumber (Cucumis sativus) as a model system 127, 1500–1501. for molecular biology. Plant Science 80, 39–47. N, N. H. (1957). Sustained treatment with gibberellic M, L. K. (1942). Effects of photoperiod on sex expression in acid of five different kinds of maize. Annals of the Missouri Ambrosia trifida. Botanical Gazette 103, 780–787. Botanical Garden 46, 19–39. M, S. (1979). Reproductive biology of the fern N,J.P.K, E. B., J., L,J.L.&W,F.W. Phegopteris decursive-pinnata. I. The dissimilar mating systems of (1952). The development of sex expression in cucurbit flowers. diploids and tetraploids. Botanical Magazine Tokyo 92, 275–289. American Journal of Botany 39, 32–43. M, E. B. (1938). Inflorescence patterns and sexual O, K. W., T,G.E.&P, C. E. (1980). expression in Begonia semperflorens. American Journal of Botany 25, Induction of staminate flowers on gynoecious cucumber by 465–478. aminoethoxyvinylglycine. Horticultural Science 15, 256–257. MA,E.D.&F, D. C. (1982). Sex expression in P, J. (1997a). Mixed genetic and environmental sex Atriplex canescens: genetics and environment. Botanical Gazette determination in an androdioecious population of Mercurialis 143, 476–482. annua. Heredity 78, 50–56. MM,A.L.&M, C. H. (1968). Cucumber sex P, J. (1997b). Variation in sex ratios and sex allocation expression modified by 2-chloroethanephosphonic acid. Science in androdioecious Mercurialis annua. Journal of Ecology 85, 162, 1397–1398. 57–68. M,T.R.&A, J. (1982). The population P, J. S. (1990). Sex-chromosomes and sexual differenti- ation in flowering plants. Chromosomes Today 10, 187–198. biology of Chamaelirium luteum, a dioecious member of the lily P,S.S.&M, G. F. (1957). Sex ratio and family: life history studies. Ecology 63, 1690–1700. hermaphroditism in a natural population of quaking aspen. M, E. G. (1938). On the phenotypical modification of Minnesota Forestry Notes 55, 1–2. sexual characters in higher plants under the influence of the P, R. P., R, M. D. E., G,J.L.&M,W. conditions of nutrition and other external factors. Comptes (1970). A quantitative requirement for long day in the Rendus (Doklady) de l’AcadeTmie des Sciences de l’URSS 21, induction of staminate strobili by gibberellin in the conifer 298–301. Cupressus arizonica. Canadian Journal of Botany 48, 653–658. M R,H.Y.&S, R. (1979). Sex reversal in the P, F. L. (1915). A contribution to our knowledge of female plants of Cannabis sativa by cobalt ion. Proceedings of the Arisaema triphyllum. Memoirs of the Torrey Botanical Club 16, Indian Academy of Sciences 88, 303–308. 1–55. M, R. H. (1950). Several effects of maleic hydrazide on P, D. (1981). Sex choice and the size advantage plants. Science 112, 52–53. model in jack-in-the-pulpit (Arisaema triphyllum). Proceedings of M,G.I.&H-H, J. (1968). Photoperiod and the National Academy of Sciences, USA 78, 1306–1308. pollen sterility in maize. Annals of Botany 32, 833–846. P, D. (1987). Sex choice and reproductive costs in M, A. E. (1927). Physiology of reproduction in hor- jack-in-the-pulpit. BioScience 37, 476–481. ticultural plants. Mississippi Agricultural Experiment Station, R, A. J. (1927). U= ber die Intersexualita$ t bei der Gattung Bulletin Number 106. Salix. Annales Societatis Zoologicae-Botanicae Fennicae Vanamo 5, N$ , U. (1956). The demonstration of a factor concerned with 165–275. the initiation of antheridia in polypodiaceous ferns. Growth 20, R,H.P.&B, G. K. (1982). Sex determination in 91–105. bryophytes. Journal of the Hattori Botanical Laboratory 52, N$ , U. (1959). Control of antheridium formation in the fern 255–274. species Anemia phyllitides. Nature 184, 798–800. R, T. A. (1987). Experimental systematics and population N$ , U. (1960). On the control of antheridium formation in the biology of the fern genera Hemionitis and Gymnopteris with fern species Lygodium japonicum. Proceedings of the Society for reference to Bommeria. Ph.D. dissertation, University of Experimental Biology and Medicine 105, 82–86. Kansas, Lawrence, Kansas, USA. N$ , U. (1965). On antheridial metabolism in the fern species R,F.&V, M. J. (1959). Gibberellin and sex Onoclea sensibilis L. Plant Physiology 40, 888–890. expression. Portugaliae Acta Biologica, SeTr. A 6, 77–98. N$ , U. (1969). On the control of antheridium formation in R,F.D.&S, G. F. (1932). Some factors affecting ferns. In Current Topics in Plant Science (ed. J. E. Gunckel), pp. the reversal of sex expression in the tassels of maize. American 97–116. Academic Press, New York, USA. Naturalist 66, 433–443. N$ , U., N,K.&E, M. (1975). On the physiology R,C.M.&H, G. C. (1943). Determination of sex in and chemistry of fern antheridiogens. The Botanical Review 41, Asparagus officinalis L. American Journal of Botany 30, 711–714. 315–359. R,S.B.&P, R. P. (1980). Changes of endogenous N$ , U., S,J.&C, M. (1969). New anther- gibberellin-like substances with sex reversal of the apical idiogen from the fern Onoclea sensibilis. Science 163, 1357–1360. inflorescence of corn. Plant Physiology 66, 793–796. Labile sex expression in plants 179

R, J., H,A.H.&K, N. (1969). Increase in bei Anemia phyllitidis L. und einigen Polypodiaceen. Plant and femaleness of three cucurbits by treatment with ethrel, an Cell Physiology 7, 277–289. ethylene releasing compound. Planta 86, 69–76. S,R.J.&H, L. G. (1987). Genetic analysis of S,A.K.&O, N. L. (1983). Spatial pattern of sex antheridiogen sensitivity in Ceratopteris richardii. American expression in silver maple (Acer saccharinum): Morisita’s index Journal of Botany 74, 1872–1877. and spatial autocorrelation. American Naturalist 122, 489–508. S, P. M. (1979). Effect of nutritional conditions on sexual S,G.&M R, H. Y. (1979). Comparative effect reproduction in Riccia. Bryologist 82, 37–46. of silver ion and gibberellic acid on the induction of male S, A. J. (1991). The genetic structure of sporophytic and flowers on female Cannabis plants. Experientia 35, 333–334. gametophytic populations of the moss, Funaria hygrometrica S, J. H. (1921). Influence of environment on sexual Hedw. Evolution 45, 1260–1274. expression in hemp. Botanical Gazette 71, 197–219. S, O. (1956). Sex instability in Ricinus. Genetics 41, S, J. H. (1922). Control of the sexual state in Arisaema 265–280. triphyllum and Arisaema dracontium. American Journal of Botany 9, S,V.P.&R, S. K. (1977). Mating systems and 72–78. distribution in some tropical ferns. Annals of Botany 41, S, J. H. (1923a). Sex reversal in the Japanese hop. 1055–1060. Bulletin of the Torrey Botanical Club 50, 73–79. S, C. C. (1981). The facultative adjustment of sex ratio in S, J. H. (1923b). The influence of relative length of lodgepole pine. American Naturalist 118, 297–305. daylight on the reversal of sex in hemp. Ecology 4, 323–334. S, G. M. (1955). Cryptogamic Botany, Vol. II, 2nd ed., S, J. H. (1925). Experiments with various plants to McGraw-Hill, New York, USA. produce change of sex in the individual. Bulletin of the Torrey S, B. P. (1985). Environmentally influenced changes in Botanical Club 52, 35–47. sex expression in an andromonoecious plant. Ecology 66, S, J. H. (1927). Control of sex reversal in the tassel of 1321–1332. Indian corn. Botanical Gazette 84, 440–449. S, L. D., R,A.R.&C, L. C. (1964). Annual S, J. H. (1930). Sex reversal and the experimental yield variation in the oil palm. Journal of the Nigerian Institute production of neutral tassels in Zea mays. Botanical Gazette 90, for Oil Palm Research 4, 111–125. 279–298. S, R. F. (1971). Variation in sex expression of black S, J. H. (1931). The fluctuation curve of sex reversal in cottonwood and related hybrids. Silvae Genetica 20, 42–46. S, A. B. (1919). Intersexes in Plantago lanceolata. Botanical staminate hemp plants induced by photoperiodicity. American Gazette 68, 109–133. Journal of Botany 18, 424–430. S, A. B. (1923). Alternation of sexes and intermittent S, J. H. (1935). Observations and experiments on sex production of fruit in the spider flower (Cleome spinosa). in plants. Bulletin of the Torrey Botanical Club 62, 387–401. American Journal of Botany 10, 57–66. S, M. D. (1976). Fern gametophyte development: S, E. (1910). Sexuelle und apogame Fortpflanzung controls of dimorphism in Ceratopteris thalictroides. American bei Urticaceen. JahrbuW cher fuW r wissenschaftliche Botanik 47, Journal of Botany 63, 1080–1087. 245–288. S,M.D.&K, E. J., J. (1972). Anther- T, H., S,H.&S, T. (1980). Sex expression idiogen activity in the fern Ceratopteris thalictroides (L.) Brogn. ' affected by N -benzylaminopurine in staminate inflorescence Botanical Journal of the Linnean Society 65, 399–413. of Luffa cylindrica. Plant and Cell Physiology 21, 525–536. S, M. A. (1987). Gender modification in North T, K., W,K.&S, T. (1995). Sex American ginsengs. BioScience 37, 469–475. determination of flowers of Salsola komarovii Iljin by photo- S, M. A. (1991). Size, gender and sex change in dwarf period. Journal of Plant Physiology 146, 672–676. ginseng, Panax trifolium (Araliaceae). Oecologia 87, 588–595. T, R. G. (1956). Effects of temperature and length of day S, J. J. (1979). Biosystematic investigations on the on the sex expression of monoecious and dioecious angio- lady fern (Athyrium filix-femina). Plant Systematics and Evolution sperms. Nature 178, 552–553. 132, 255–277. T, A. E. (1955). Methods of producing first-generation S, J. J. (1981). Bemerkungen zur Biologie der Wurm- hybrid seed in spinach. Agricultural Experimental Station, Memoir, farngruppe. FarnblaW tter 7, 9–17. Vol. 336, Cornell University, USA. S, J. J. (1988). Spore bank, dark germination and T,J.D.&B, S. C. H. (1981). Temporal vari- gender determination in Athyrium and Dryopteris. Results and ation of gender in Aralia hispida Vent. (Araliaceae). Evolution implications for population biology of Pteridophyta. Botanica 35, 1094–1107. Helvetica 98, 77–86. T, V. A. (1928). Sex ratios in cucumber flowers as S, J. J., H,C.H.&R, T. A. (1990). affected by different conditions of soil and light. Journal of Antheridiogen and natural gametophyte populations. Ameri- Agricultural Research 36, 721–746. can Fern Journal 80, 143–152. T,J.C.&K, R. B. (1968). Reproduction in S, H. (1962). Die Wirkung von Phytohormonen auf Heteropogon contortus. I. Photoperiodic effects on flowering and Keimung und Entwicklung von Farnprothallien. I. Auslo$ sung sex expression. Australian Journal of Agricultural Research 19, der Antheridienbildung und Dunkelkeimung bei Schiz- 869–878. aeaceen durch Gibberellinsa$ ure. Biologisches Zentralblatt 81, T, J. (1911). Anomalies florales du Houblon japonais et 731–740. du chanvre de! terminee! s par des semis ha# tifs. Comptes Rendus de S, H. (1966). Die Wirkung von Phytohormonen auf l’AcadeTmie des Sciences, SeTr. 2, 153, 1017–1020. Keimung und Entwicklung von Farnprothallien. IV. Die T, J. (1912). Influence de la lumie' re sur la floraison du Wirkung von unterschiedlichen Gibberelline und von Allo- Houblon japonais et du chanvre. Comptes Rendus de l’AcadeTmie Gibberellinsa$ ure auf die Auslo$ sung der Antheridienbildung des Sciences, SeTr. 2, 155, 297–300. 180 H. Korpelainen

T, J. (1914). E; tudes sur la sexualite! du houblon. Annales W, D. P. (1968). Rate of gametophyte maturation in des Sciences Naturelles, Botanique, 19, 49–191. sexual and apogamous forms of Pellaea glabella. American Fern T,R.L.&W, D. E. (1973). Natural selection of Journal 58, 12–19. parental ability to vary the sex ratio of offspring. Science 179, W,C.N.&T, R. L. (1970). Observations on sex 90–92. differentiation in the oil palm, Elaeis guineensis L. Annals of T, A. F. (1964). Platyzoma – a Queensland fern with Botany 34, 957–963. incipient heterospory. American Journal of Botany 51, 939–942. W, M. F. (1981). Sex expression in fern gametophytes: T,R.M.&V, G. (1977). Evidence for antheridiogen Some evolutionary possibilities. Journal of Theoretical Biology production and its mediation of a mating system in natural 93, 403–409. populations of fern gametophytes. Botanical Journal of the W,S.H.&H, I. G. (1954). Chemical induction Linnean Society 74, 243–249. of male sterility in cucurbits. Science 120, 893–894. T, J. M., N,R.P.&W, L. H. (1980). W, R. (1985). Terminology for bryophyte sexuality: Hermaphroditic flowering in gambel oak. American Journal of toward a unified system. Taxon 34, 420–425. Botany 67, 1265–1267 W,R.&A, L. E. (1984). Breeding systems of bryophytes. In The Experimental Biology of Bryophytes (eds A. F. V, F. (1966). The distribution and taxonomy of three Dyer & J. G. Duckett), pp. 39–64. Academic Press, London. western junipers. Brittonia 18, 350–372. Y, C. (1919). Inheritance of sex in Mercurialis annua. V, B. R. (1964a). Antheridiogens in ferns. Colloque American Journal of Botany 6, 410–442. International du C.N.R.S. 123, 665–684. Y,C.&Y, H. (1922). Distribution of sex V, B. R. (1964b). Gibberellins: their effect on an- forms in the phanerogamic flora. Bibliotheca Genetica 3, 1–62. theridium formation in fern gametophytes. Science 143, Y,T.&Q, J. A. (1992). A mechanistic model of a single 373–375. hormone regulating both sexes in flowering plants. Bulletin of W, T. G. (1984). Chromosomes and evolution in pterido- the Torrey Botanical Club 119, 431–441. phytes. In Chromosomes in evolution of eukaryotic groups, Vol. 2 (ed. Y, K., K,K.&S, A. (1992). Charac- A. K. Sharma and A. Sharma), pp. 103–141. CRC Press, teristics of sex expression in monoecious persimmons. Journal Boca Raton, Florida, USA. of the Japanese Society for Horticultural Science 61, 303–310. W,T.R.&L, R. M. (1981). Inbreeding and Y, K., S, A., T,K.&K, K. (1993). homozygosity in the fern, Ceratopteris pteridoides (Hooker) Floral ontogeny and sex determination in monoecious-type Hieronymus (Parkeriaceae). Botanical Journal of the Linnean persimmons. Journal of the American Society for Horticultural Society 83, 1–13. Science 118, 293–297. W, C. J. (1979). Breeding system and seed set in Euonymus Z, J. K. (1991). Ecological correlates of labile sex europaeus (Celastraceae). Plant Systematics and Evolution 132, expression in the orchid Catasetum viridiflavum. Ecology 72, 299–303. 597–608.