Bazzania Gray (Lepidoziaceae, Marchantiophyta) in Central Java, Indonesia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Rediscovery and Conservation Status of Bazzania Bhutanica In
BryophytesAbroad Bazzania bhutanica in Bhutan The rediscovery and conservation status of Bazzania bhutanica in Bhutan Prior to 2009, only hutan is a small kingdom in the east n Tongsa Dzong, one of the splendid religious fortresses Himalayan Mountains sandwiched of Bhutan. D. Long one colony of Bazzania between India and China (Tibet), v B. bhutanica at one of its two known localities at Buduni near Samtse in south-west Bhutan, where it is bhutanica was known still relatively unexplored for critically endangered due to pressures of deforestation bryophytes, but nevertheless known from Bhutan. However, and development. D. Long Bto have a rich bryophyte flora. Mizutani (1967) during an investigation recorded six species of Bazzania from Bhutan, & Grolle, 1990), which increased the number although three of these [B. tridens (Reinw. et al.) of Bazzania species known from Bhutan to 14. last winter, a second Trevis., B. himalayana (Mitt.) Schiffn. and B. Study of the mosses has progressed more slowly, colony was discovered. sikkimensis (Steph.) Herz. were erroneous records but it is hoped to publish an updated moss originating from the Kalimpong district, West checklist soon. Many new records for Bhutan David G. Long, Bengal (former ‘British Bhutan’)]. His reports and a few species new to science emerged from Baboo Ram Gurung of B. imbricata (Mitt.) S.Hatt., B. griffithiana the liverwort collections; one of the latter was (Steph.) Mizutani and B. appendiculata (Mitt.) Bazzania bhutanica, discovered in 1982 and and Rebecca Pradhan S.Hatt. were based on specimens collected by published as a new species by Kitagawa & Grolle describe the story William Griffith in Bhutan in 1838. -
Lepidozia Bragginsiana, a New Species from New Zealand (Marchantiopsida)
Phytotaxa 173 (2): 117–126 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.173.2.2 Lepidozia bragginsiana, a new species from New Zealand (Marchantiopsida) ENDYMION D. COOPER1 & MATT A.M. RENNER2 1Cell Biology and Molecular Genetics, 2107 Bioscience Research building, University of Maryland, College Park, MD 20742-4451, USA 2Royal Botanic Gardens & Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia (corresponding author: [email protected]) Abstract Molecular and morphological data support the recognition of a new Lepidozia species related to L. pendulina and also endemic to New Zealand, which we dedicate to Dr John Braggins. Lepidozia bragginsiana can be distinguished from closely related and other similar species by its bipinnate branching, the narrow underleaf lobes, typically uniseriate toward their tip on both primary and secondary shoots, the asymmetric underleaves on primary shoots that are usually narrower than the stem and also possess basal spines and spurs, the production of spurs and spines, or even accessory lobes, on the postical margin of primary and secondary shoot leaves; and by the relatively small leaf cells with evenly thickened walls. Lepidozia bragginsiana is an inhabitant of hyper-humid forest habitats where it occupies elevated microsites on the forest floor. A lectotype is proposed for L. obtusiloba. Introduction The Lepidoziaceae Limpricht in Cohn (1877: 310) is perhaps the most comprehensively treated family within Australasian liverworts, having been subject to intensive and ongoing study and revision (e.g. Schuster 1980, 2000; Schuster & Engel 1987, 1996 Engel & Glenny 2008, Engel & Merrill 2004, Engel & Schuster 2001, Cooper et al. -
A Study of Branching Patterns in Bazzania (Jungermanniales, Lepidoziaceae)
Polish Botanical Journal 58(2): 481–489, 2013 DOI: 10.2478/pbj-2013-0042 A STUDY OF BRANCHING PATTERNS IN BAZZANIA (JUNGERMANNIALES, LEPIDOZIACEAE) DAVI D MEAGHER Abstract. Branching patterns in the leafy liverwort genus Bazzania Gray were investigated in twenty-five Australasian species. Terminal branching was found to be neither consistently sinistrorse nor consistently dextrorse, and neither consistently homodromous nor consistently antidromous. Microphyllous ventral-intercalary branches arising from stems usually have ‘siblings’ arising from main branches. The production of leafy ventral-intercalary branches is not necessarily associated with the termination of stems or main branches. These results are contrary to previous ideas about branching in Bazzania. Key words: Bazzania, branching, Lepidoziaceae, liverwort David Meagher, School of Botany, The University of Melbourne, Victoria, Australia; e-mail: [email protected] INTRO D UCTION Branching patterns in leafy liverworts have been SPECI M ENS EXA M INE D studied intensively since the pioneering studies by Leitgeb (1871) and have been used to separate fami- Bazzania accreta (Lehm. & Lindenb.) Trevis. – HO- 312267 lies, genera and subgenera. There are two univer- Bazzania adnexa (Lehm. & Lindenb.) Trevis. var. adnexa sally recognised fundamental modes of branching – DAM-1526 (MELU) in leafy liverworts: (1) terminal branching, in which Bazzania amblyphylla Meagher – CBG-9519195 branches develop close to the growing tip of the stem Bazzania corbieri (Stephani) Meagher – DAM-551 from a cortical cell, and (2) intercalary branching, in (MELU) which branches arise from the stem medulla, so that Bazzania densa (Sande Lac.) Schiffn. – DAM-1112 the developing branch ruptures the cortex, leaving (MELU) behind a collar of cortical cells around the base of the Bazzania fasciculata (Stephani) Meagher – NSW-605694 branch (Schuster 1984). -
About the Book the Format Acknowledgments
About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization. -
North American H&A Names
A very tentative and preliminary list of North American liverworts and hornworts, doubtless containing errors and omissions, but forming a basis for updating the spreadsheet of recognized genera and numbers of species, November 2010. Liverworts Blasiales Blasiaceae Blasia L. Blasia pusilla L. Fossombroniales Calyculariaceae Calycularia Mitt. Calycularia crispula Mitt. Calycularia laxa Lindb. & Arnell Fossombroniaceae Fossombronia Raddi Fossombronia alaskana Steere & Inoue Fossombronia brasiliensis Steph. Fossombronia cristula Austin Fossombronia foveolata Lindb. Fossombronia hispidissima Steph. Fossombronia lamellata Steph. Fossombronia macounii Austin Fossombronia marshii J. R. Bray & Stotler Fossombronia pusilla (L.) Dumort. Fossombronia longiseta (Austin) Austin Note: Fossombronia longiseta was based on a mixture of material belonging to three different species of Fossombronia; Schuster (1992a p. 395) lectotypified F. longiseta with the specimen of Austin, Hepaticae Boreali-Americani 118 at H. An SEM of one spore from this specimen was previously published by Scott and Pike (1988 fig. 19) and it is clearly F. pusilla. It is not at all clear why Doyle and Stotler (2006) apply the name to F. hispidissima. Fossombronia texana Lindb. Fossombronia wondraczekii (Corda) Dumort. Fossombronia zygospora R.M. Schust. Petalophyllum Nees & Gottsche ex Lehm. Petalophyllum ralfsii (Wilson) Nees & Gottsche ex Lehm. Moerckiaceae Moerckia Gottsche Moerckia blyttii (Moerch) Brockm. Moerckia hibernica (Hook.) Gottsche Pallaviciniaceae Pallavicinia A. Gray, nom. cons. Pallavicinia lyellii (Hook.) Carruth. Pelliaceae Pellia Raddi, nom. cons. Pellia appalachiana R.M. Schust. (pro hybr.) Pellia endiviifolia (Dicks.) Dumort. Pellia endiviifolia (Dicks.) Dumort. ssp. alpicola R.M. Schust. Pellia endiviifolia (Dicks.) Dumort. ssp. endiviifolia Pellia epiphylla (L.) Corda Pellia megaspora R.M. Schust. Pellia neesiana (Gottsche) Limpr. Pellia neesiana (Gottsche) Limpr. -
Kurzia Makinoana (Steph.) Grolle
DRAFT, Version 1.1 Draft Management Recommendations for slender clawleaf Kurzia makinoana (Steph.) Grolle Version 1.1 November 4, 1996 TABLE OF CONTENTS EXECUTIVE SUMMARY .................................................... 2 I. Natural History ........................................................... 3 A. Taxonomic/Nomenclatural History ...................................... 3 B. Species Description .................................................. 3 1. Morphology .................................................. 3 2. Reproductive Biology ........................................... 4 3. Ecology .................................................... 4 C. Range, Known Sites ................................................. 4 D. Habitat Characteristics and Species Abundance ............................. 5 II. Current Species Situation ................................................... 5 A. Why Species is Listed under Survey and Manage Standards and Guidelines ........ 5 B. Major Habitat and Viability Considerations ................................ 6 C. Threats to the Species ................................................ 6 D. Distribution Relative to Land Allocations ................................. 6 III. Management Goals and Objectives ........................................... 7 A. Management Goals for the Taxon ....................................... 7 B. Specific Objectives .................................................. 7 IV. Habitat Management ..................................................... 7 A. Lessons from History -
The Ferns and Their Relatives (Lycophytes)
N M D R maidenhair fern Adiantum pedatum sensitive fern Onoclea sensibilis N D N N D D Christmas fern Polystichum acrostichoides bracken fern Pteridium aquilinum N D P P rattlesnake fern (top) Botrychium virginianum ebony spleenwort Asplenium platyneuron walking fern Asplenium rhizophyllum bronze grapefern (bottom) B. dissectum v. obliquum N N D D N N N R D D broad beech fern Phegopteris hexagonoptera royal fern Osmunda regalis N D N D common woodsia Woodsia obtusa scouring rush Equisetum hyemale adder’s tongue fern Ophioglossum vulgatum P P P P N D M R spinulose wood fern (left & inset) Dryopteris carthusiana marginal shield fern (right & inset) Dryopteris marginalis narrow-leaved glade fern Diplazium pycnocarpon M R N N D D purple cliff brake Pellaea atropurpurea shining fir moss Huperzia lucidula cinnamon fern Osmunda cinnamomea M R N M D R Appalachian filmy fern Trichomanes boschianum rock polypody Polypodium virginianum T N J D eastern marsh fern Thelypteris palustris silvery glade fern Deparia acrostichoides southern running pine Diphasiastrum digitatum T N J D T T black-footed quillwort Isoëtes melanopoda J Mexican mosquito fern Azolla mexicana J M R N N P P D D northern lady fern Athyrium felix-femina slender lip fern Cheilanthes feei net-veined chain fern Woodwardia areolata meadow spike moss Selaginella apoda water clover Marsilea quadrifolia Polypodiaceae Polypodium virginanum Dryopteris carthusiana he ferns and their relatives (lycophytes) living today give us a is tree shows a current concept of the Dryopteridaceae Dryopteris marginalis is poster made possible by: { Polystichum acrostichoides T evolutionary relationships among Onocleaceae Onoclea sensibilis glimpse of what the earth’s vegetation looked like hundreds of Blechnaceae Woodwardia areolata Illinois fern ( green ) and lycophyte Thelypteridaceae Phegopteris hexagonoptera millions of years ago when they were the dominant plants. -
Mosses and Ferns
Mosses and Ferns • How did they evolve from Protists? Moss and Fern Life Cycles Group 1: Seedless, Nonvascular Plants • Live in moist environments to reproduce • Grow low to ground to retain moisture (nonvascular) • Lack true leaves • Common pioneer species during succession • Gametophyte most common (dominant) • Ex: Mosses, liverworts, hornworts Moss Life Cycle 1)Moss 2) Through water, 3) Diploid sporophyte 4) Sporophyte will gametophytes sperm from the male will grow from zygote create and release grow near the gametophyte will haploid spores ground swim to the female (haploid stage) gametophyte to create a diploid zygote Diploid sporophyte . zygo egg zygo te egg te zygo zygo egg egg te te male male female female female male female male Haploid gametophytes 5) Haploid 6) The process spores land repeats and grow into new . gametophytes . Haploid gametophytesground . sporophyte . zygo egg zygo te egg te zygo zygo egg egg te te male male female female female male female male Haploid gametophytes • Vascular system allows Group 2: Seedless, – Taller growth – Nutrient transportation Vascular Plants • Live in moist environments – swimming sperm • Gametophyte stage – Male gametophyte: makes sperm – Female gametophyte: makes eggs – Sperm swims to fertilize eggs • Sporophyte stage – Spores released into air – Spores land and grow into gametophyte • Ex: Ferns, Club mosses, Horsetails Fern Life Cycle 1) Sporophyte creates and releases haploid spores Adult Sporophyte . ground 2) Haploid spores land in the soil . ground 3) From the haploid spores, gametophyte grows in the soil Let’s zoom in Fern gametophytes are called a prothallus ground 4) Sperm swim through water from the male parts (antheridium) to the female parts (archegonia)…zygote created Let’s zoom back out zygo zygo egg egg te te zygo egg te 5) Diploid sporophyte grows from the zygote sporophyte Fern gametophytes are called a prothallus ground 6) Fiddle head uncurls….fronds open up 7) Cycle repeats -- Haploid spores created and released . -
Plant Reproduction
AccessScience from McGraw-Hill Education Page 1 of 10 www.accessscience.com Plant reproduction Contributed by: Scott D. Russell Publication year: 2014 The formation of a new plant that is either an exact copy or recombination of the genetic makeup of its parents. There are three types of plant reproduction considered here: (1) vegetative reproduction, in which a vegetative organ forms a clone of the parent; (2) asexual reproduction, in which reproductive components undergo a nonsexual form of production of offspring without genetic rearrangement, also known as apomixis; and (3) sexual reproduction, in which meiosis (reduction division) leads to formation of male and female gametes that combine through syngamy (union of gametes) to produce offspring. See also: PLANT; PLANT PHYSIOLOGY. Vegetative reproduction Unlike animals, plants may be readily stimulated to produce identical copies of themselves through cloning. In animals, only a few cells, which are regarded as stem cells, are capable of generating cell lineages, organs, or new organisms. In contrast, plants generate or produce stem cells from many plant cells of the root, stem, or leaf that are not part of an obvious generative lineage—a characteristic that has been known as totipotency, or the general ability of a single cell to regenerate a whole new plant. This ability to establish new plants from one or more cells is the foundation of plant biotechnology. In biotechnology, a single cell may be used to regenerate new organisms that may or may not genetically differ from the original organism. If it is identical to the parent, it is a clone; however, if this plant has been altered through molecular biology, it is known as a genetically modified organism (GMO). -
Notes on Early Land Plants Today. 54. a Transfer in Lepidoziaceae (Marchantiophyta)
Phytotaxa 167 (2): 218–219 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Correspondence ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.167.2.13 Notes on Early Land Plants Today. 54. A transfer in Lepidoziaceae (Marchantiophyta) ENDYMION D. COOPER1, LARS SÖDERSTRÖM2, ANDERS HAGBORG3 & MATT VON KONRAT3 1 CMNS-Cell Biology and Molecular Genetics, 2107 Bioscience Research Building, University of Maryland, College Park, MD 20742- 4451, USA; [email protected]. 2Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; [email protected] 3Department of Science and Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605–2496, USA; hagborg@ pobox.com, [email protected] When Cooper et al. (2013) reorganized species among genera in Lepidoziaceae Limpricht (1876: 310), one taxon, Lepidozia leratii Stephani (1922: 333), was mistakenly combined under Neolepidozia Fulford & Taylor (1959: 81). The transfer was not based on any morphological or molecular evidence placing it in Neolepidozia. On the contrary, molecular phylogenetic studies (Cooper et al., 2011, 2012; Heslewood & Brown, 2007) all place Lepidozia leratii in close proximity of Tricholepidozia pulcherrima (Stephani 1909: 600) E.D.Cooper in Cooper et al. (2013: 60) the type of Tricholepidozia (Schuster 1963: 256) E.D.Cooper in Cooper et al. (2013: 58). This error is corrected here. Tricholepidozia leratii (Steph.) E.D.Cooper, comb nov. Basionym:—Lepidozia leratii Steph., Sp. Hepat. (Stephani) 6: 333 (Stephani 1922). Type:—New Caledonia, summit of Mt Mou, July 1909, Lerat (PC-0102363, lectotype by Hürlimann 1985 [http://coldb.mnhn.fr/catalognumber/mnhn/pc/pc0102363]). -
Lepidoziaceae: Jungermanniopsida) from Queensland, Australia
Volume 21: 45–55 ELOPEA Publication date: 25 May 2018 T dx.doi.org/10.7751/telopea11775 Journal of Plant Systematics plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL • ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Two new species of Acromastigum (Lepidoziaceae: Jungermanniopsida) from Queensland, Australia Matt A.M. Renner and Trevor C. Wilson National Herbarium of New South Wales, Royal Botanic Gardens & Domain Trust, Mrs Macquaries Road, Sydney NSW 2000, Australia Author for correspondence: [email protected] Abstract As a result of fieldwork on Cape York Peninsula, and ongoing revision of type specimens in lieu of the recent revision of Australian Acromastigum, two new species are described. Acromastigum carcinum represents a newly discovered species, currently known only from one location within the Jardine River National Park. The lowland and tropical monsoonal habitat of this species is highly unusual within the genus, and hints at the existence of a distinct, if species poor, bryofloristic element within tropical monsoon lowland habitats. Acromastigum implexum has been long recognised in Australia under the name A. echinatiforme, however comparison with the original material of that species confirms Australian plants represent a distinct species. Acromastigum implexum inhabits tropical montane rainforest habitats. Both species are currently known only from Australia, but both, particularly A. carcinum, may occur in similar habitats overseas. Introduction Australian species of the genus Acromastigum were revised by Brown and Renner (2014), wherein 12 species, including three new species, were recognised. This work was published in June 2014, eight months after the untimely death of Dr Elizabeth Brown. -
Notes on Early Land Plants Today. 37. Towards a Stable, Informative Classification of the Lepidoziaceae (Marchantiophyta)
Phytotaxa 97 (2): 44–51 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2013 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.97.2.4 Notes on Early Land Plants Today. 37. Towards a stable, informative classification of the Lepidoziaceae (Marchantiophyta) ENDYMION D. COOPER CMNS-Cell Biology and Molecular Genetics, 2107 Bioscience Research Building, University of Maryland, College Park, MD 20742- 4451, USA; [email protected]. Abstract Recent molecular phylogenies of the Lepidoziaceae indicate that the current classification is incongruent with the phylogeny. Although substantial uncertainties remain, an interim classification is needed. The classification proposed includes a broader definition of the Lembidioideae, reinstatement of Neolepidozia and Tricholepidozia and the recognition of the new genus Ceramanus. While the Zoopsidoideae are unlikely to represent a monophyletic group, it is not yet possible to provide a phylogenetically accurate revision of this subfamily. Introduction The Lepidoziaceae are a species-rich cosmopolitan family of leafy liverworts. Although estimates of total species number for liverworts are notoriously variable (von Konrat et al. 2010), the number of accepted species is c. 860 (ELPT database), perhaps as much as 9–10% of the total liverwort species diversity. Taxonomic diversity is highest in cool, wet areas of post-gondwanan land fragments, but the family is cosmopolitan in distribution. In addition to being species-rich