Mosses and Ferns

Total Page:16

File Type:pdf, Size:1020Kb

Mosses and Ferns Mosses and Ferns • How did they evolve from Protists? Moss and Fern Life Cycles Group 1: Seedless, Nonvascular Plants • Live in moist environments to reproduce • Grow low to ground to retain moisture (nonvascular) • Lack true leaves • Common pioneer species during succession • Gametophyte most common (dominant) • Ex: Mosses, liverworts, hornworts Moss Life Cycle 1)Moss 2) Through water, 3) Diploid sporophyte 4) Sporophyte will gametophytes sperm from the male will grow from zygote create and release grow near the gametophyte will haploid spores ground swim to the female (haploid stage) gametophyte to create a diploid zygote Diploid sporophyte . zygo egg zygo te egg te zygo zygo egg egg te te male male female female female male female male Haploid gametophytes 5) Haploid 6) The process spores land repeats and grow into new . gametophytes . Haploid gametophytesground . sporophyte . zygo egg zygo te egg te zygo zygo egg egg te te male male female female female male female male Haploid gametophytes • Vascular system allows Group 2: Seedless, – Taller growth – Nutrient transportation Vascular Plants • Live in moist environments – swimming sperm • Gametophyte stage – Male gametophyte: makes sperm – Female gametophyte: makes eggs – Sperm swims to fertilize eggs • Sporophyte stage – Spores released into air – Spores land and grow into gametophyte • Ex: Ferns, Club mosses, Horsetails Fern Life Cycle 1) Sporophyte creates and releases haploid spores Adult Sporophyte . ground 2) Haploid spores land in the soil . ground 3) From the haploid spores, gametophyte grows in the soil Let’s zoom in Fern gametophytes are called a prothallus ground 4) Sperm swim through water from the male parts (antheridium) to the female parts (archegonia)…zygote created Let’s zoom back out zygo zygo egg egg te te zygo egg te 5) Diploid sporophyte grows from the zygote sporophyte Fern gametophytes are called a prothallus ground 6) Fiddle head uncurls….fronds open up 7) Cycle repeats -- Haploid spores created and released . fiddleheadfrond . ground 2) Haploid spores land in the soil . ground 3) From the haploid spores, gametophyte (called the prothallus) grows in the soil Let’s zoom in ground 4) Sperm swim through water from the male antheridium to the female archegonia Let’s zoom back out zygo zygo egg egg te te zygo egg te 5) Diploid sporophyte grows from the zygote fiddlehead sporophyte ground 6) Fiddlehead uncurls….fronds open up. 7) Cycle repeats . ground Moss & Fern Quiz 1) Why do moss grow so low to the ground? 2) Which stage is the main stage of moss: sporophyte or gametophyte? 3) How do moss reproduce? 4) What is the major difference between moss and ferns? 5) What are the leaves of ferns called? 6) What is needed for moss and ferns to reproduce? 7) Which stage is the main stage of ferns: sporophyte or gametophyte? 8) What stage is created when sperm and egg fuse: sporophyte or gametophyte? 9) Name the gametophytes of ferns. .
Recommended publications
  • Gymnosperms the MESOZOIC: ERA of GYMNOSPERM DOMINANCE
    Chapter 24 Gymnosperms THE MESOZOIC: ERA OF GYMNOSPERM DOMINANCE THE VASCULAR SYSTEM OF GYMNOSPERMS CYCADS GINKGO CONIFERS Pinaceae Include the Pines, Firs, and Spruces Cupressaceae Include the Junipers, Cypresses, and Redwoods Taxaceae Include the Yews, but Plum Yews Belong to Cephalotaxaceae Podocarpaceae and Araucariaceae Are Largely Southern Hemisphere Conifers THE LIFE CYCLE OF PINUS, A REPRESENTATIVE GYMNOSPERM Pollen and Ovules Are Produced in Different Kinds of Structures Pollination Replaces the Need for Free Water Fertilization Leads to Seed Formation GNETOPHYTES GYMNOSPERMS: SEEDS, POLLEN, AND WOOD THE ECOLOGICAL AND ECONOMIC IMPORTANCE OF GYMNOSPERMS The Origin of Seeds, Pollen, and Wood Seeds and Pollen Are Key Reproductive SUMMARY Innovations for Life on Land Seed Plants Have Distinctive Vegetative PLANTS, PEOPLE, AND THE Features ENVIRONMENT: The California Coast Relationships among Gymnosperms Redwood Forest 1 KEY CONCEPTS 1. The evolution of seeds, pollen, and wood freed plants from the need for water during reproduction, allowed for more effective dispersal of sperm, increased parental investment in the next generation and allowed for greater size and strength. 2. Seed plants originated in the Devonian period from a group called the progymnosperms, which possessed wood and heterospory, but reproduced by releasing spores. Currently, five lineages of seed plants survive--the flowering plants plus four groups of gymnosperms: cycads, Ginkgo, conifers, and gnetophytes. Conifers are the best known and most economically important group, including pines, firs, spruces, hemlocks, redwoods, cedars, cypress, yews, and several Southern Hemisphere genera. 3. The pine life cycle is heterosporous. Pollen strobili are small and seasonal. Each sporophyll has two microsporangia, in which microspores are formed and divide into immature male gametophytes while still retained in the microsporangia.
    [Show full text]
  • Anthocerotophyta
    Glime, J. M. 2017. Anthocerotophyta. Chapt. 2-8. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-8-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 5 June 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-8 ANTHOCEROTOPHYTA TABLE OF CONTENTS Anthocerotophyta ......................................................................................................................................... 2-8-2 Summary .................................................................................................................................................... 2-8-10 Acknowledgments ...................................................................................................................................... 2-8-10 Literature Cited .......................................................................................................................................... 2-8-10 2-8-2 Chapter 2-8: Anthocerotophyta CHAPTER 2-8 ANTHOCEROTOPHYTA Figure 1. Notothylas orbicularis thallus with involucres. Photo by Michael Lüth, with permission. Anthocerotophyta These plants, once placed among the bryophytes in the families. The second class is Leiosporocerotopsida, a Anthocerotae, now generally placed in the phylum class with one order, one family, and one genus. The genus Anthocerotophyta (hornworts, Figure 1), seem more Leiosporoceros differs from members of the class distantly related, and genetic evidence may even present
    [Show full text]
  • The Origin of Alternation of Generations in Land Plants
    Theoriginof alternation of generations inlandplants: afocuson matrotrophy andhexose transport Linda K.E.Graham and LeeW .Wilcox Department of Botany,University of Wisconsin, 430Lincoln Drive, Madison,WI 53706, USA (lkgraham@facsta¡.wisc .edu ) Alifehistory involving alternation of two developmentally associated, multicellular generations (sporophyteand gametophyte) is anautapomorphy of embryophytes (bryophytes + vascularplants) . Microfossil dataindicate that Mid ^Late Ordovicianland plants possessed such alifecycle, and that the originof alternationof generationspreceded this date.Molecular phylogenetic data unambiguously relate charophyceangreen algae to the ancestryof monophyletic embryophytes, and identify bryophytes as early-divergentland plants. Comparison of reproduction in charophyceans and bryophytes suggests that the followingstages occurredduring evolutionary origin of embryophytic alternation of generations: (i) originof oogamy;(ii) retention ofeggsand zygotes on the parentalthallus; (iii) originof matrotrophy (regulatedtransfer ofnutritional and morphogenetic solutes fromparental cells tothe nextgeneration); (iv)origin of a multicellularsporophyte generation ;and(v) origin of non-£ agellate, walled spores. Oogamy,egg/zygoteretention andmatrotrophy characterize at least some moderncharophyceans, and arepostulated to represent pre-adaptativefeatures inherited byembryophytes from ancestral charophyceans.Matrotrophy is hypothesizedto have preceded originof the multicellularsporophytes of plants,and to represent acritical innovation.Molecular
    [Show full text]
  • Seedless Plants Key Concept Seedless Plants Do Not Produce Seeds 2 but Are Well Adapted for Reproduction and Survival
    Seedless Plants Key Concept Seedless plants do not produce seeds 2 but are well adapted for reproduction and survival. What You Will Learn When you think of plants, you probably think of plants, • Nonvascular plants do not have such as trees and flowers, that make seeds. But two groups of specialized vascular tissues. plants don’t make seeds. The two groups of seedless plants are • Seedless vascular plants have specialized vascular tissues. nonvascular plants and seedless vascular plants. • Seedless plants reproduce sexually and asexually, but they need water Nonvascular Plants to reproduce. Mosses, liverworts, and hornworts do not have vascular • Seedless plants have two stages tissue to transport water and nutrients. Each cell of the plant in their life cycle. must get water from the environment or from a nearby cell. So, Why It Matters nonvascular plants usually live in places that are damp. Also, Seedless plants play many roles in nonvascular plants are small. They grow on soil, the bark of the environment, including helping to form soil and preventing erosion. trees, and rocks. Mosses, liverworts, and hornworts don’t have true stems, roots, or leaves. They do, however, have structures Vocabulary that carry out the activities of stems, roots, and leaves. • rhizoid • rhizome Mosses Large groups of mosses cover soil or rocks with a mat of Graphic Organizer In your Science tiny green plants. Mosses have leafy stalks and rhizoids. A Journal, create a Venn Diagram that rhizoid is a rootlike structure that holds nonvascular plants in compares vascular plants and nonvas- place. Rhizoids help the plants get water and nutrients.
    [Show full text]
  • Crosstalk Between Sporophyte and Gametophyte Generations Is Promoted By
    Genetics: Early Online, published on April 13, 2016 as 10.1534/genetics.115.180141 Crosstalk between Sporophyte and Gametophyte Generations Is Promoted by CHD3 Chromatin Remodelers in A. thaliana Benjamin Carter*, James T. Henderson*, Elisabeth Svedin§, Martijn Fiers†, Kyle McCarthy*, Amanda Smith*, Changhua Guo†, Brett Bishop*, Heng Zhang*, Tjitske Riksen†, Allison Shockley*, Brian P. Dilkes§, Kim Boutilier†, Joe Ogas* * Department of Biochemistry, Purdue University, West Lafayette, Indiana § Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana † Bioscience, Wageningen University and Research Centre, Wageningen, Netherlands 1 Copyright 2016. CHD3 Remodelers in Reproductive Development Keywords: PICKLE, PKR2, ovule, pollen tube, seed size Corresponding author: Joe Ogas 175 S. University St. West Lafayette, IN 47907 765-496-3969 [email protected] 2 ABSTRACT Angiosperm reproduction requires the integrated development of multiple tissues with different genotypes. To achieve successful fertilization, the haploid female gametophytes and diploid ovary must coordinate their development, after which the male gametes must navigate through the maternal sporophytic tissues to reach the female gametes. After fertilization, seed development requires coordinated development of the maternal diploid integuments, the triploid endosperm, and the diploid zygote. Transcription and signaling factors contribute to communication between these tissues, and roles for epigenetic regulation have been described for some of these processes. Here we identify a broad role for CHD3 chromatin remodelers in Arabidopsis thaliana reproductive development. Plants lacking the CHD3 remodeler PICKLE exhibit various reproductive defects including abnormal development of the integuments, female gametophyte, and pollen tube as well as delayed progression of ovule and embryo development. Genetic analyses demonstrate that these phenotypes result from loss of PICKLE in the maternal sporophyte.
    [Show full text]
  • Plant Propagation Lab Exercise Module 2
    Plant Propagation Lab Exercise Module 2 PROPAGATION OF SPORE BEARING PLANTS FERNS An introduction to plant propagation laboratory exercises by: Gabriel Campbell-Martinez and Dr. Mack Thetford Plant Propagation Lab Exercise Module 2 PROPAGATION OF SPORE BEARING PLANTS FERNS An introduction to plant propagation laboratory exercises by: Gabriel Campbell-Martinez and Dr. Mack Thetford LAB OBJECTIVES • Introduce students to the life cycle of ferns. • Demonstrate the appropriate use of terms to describe the morphological characteristics for describing the stages of fern development. • Demonstrate techniques for collection, cleaning, and sowing of fern spores. • Provide alternative systems for fern spore germination in home or commercial settings. Fern spore germination Fern relationship to other vascular plants Ferns • Many are rhizomatous and have circinate vernation • Reproduce sexually by spores • Eusporangiate ferns • ~250 species of horsetails, whisk ferns moonworts • Leptosporangiate • ~10,250 species Sporophyte Generation Spores are produced on the mature leaves (fronds) of the sporophyte generation of ferns. The spores are arranged in sporangia which are often inside a structure called a sorus. The sori often have a protective covering of living leaf tissue over them that is called an indusium. As the spores begin to mature the indusium may also go through physical changes such as a change in color or desiccating and becoming smaller as it dries to allow an opening for dispersal. The spores (1n) may be wind dispersed or they may require rain (water) to aid in dispersal. Gametophyte Generation The gametophyte generation is initiated with the germination of the spore (1n). The germinated spore begins to grow and form a heart-shaped structure called a prothallus.
    [Show full text]
  • The Ferns and Their Relatives (Lycophytes)
    N M D R maidenhair fern Adiantum pedatum sensitive fern Onoclea sensibilis N D N N D D Christmas fern Polystichum acrostichoides bracken fern Pteridium aquilinum N D P P rattlesnake fern (top) Botrychium virginianum ebony spleenwort Asplenium platyneuron walking fern Asplenium rhizophyllum bronze grapefern (bottom) B. dissectum v. obliquum N N D D N N N R D D broad beech fern Phegopteris hexagonoptera royal fern Osmunda regalis N D N D common woodsia Woodsia obtusa scouring rush Equisetum hyemale adder’s tongue fern Ophioglossum vulgatum P P P P N D M R spinulose wood fern (left & inset) Dryopteris carthusiana marginal shield fern (right & inset) Dryopteris marginalis narrow-leaved glade fern Diplazium pycnocarpon M R N N D D purple cliff brake Pellaea atropurpurea shining fir moss Huperzia lucidula cinnamon fern Osmunda cinnamomea M R N M D R Appalachian filmy fern Trichomanes boschianum rock polypody Polypodium virginianum T N J D eastern marsh fern Thelypteris palustris silvery glade fern Deparia acrostichoides southern running pine Diphasiastrum digitatum T N J D T T black-footed quillwort Isoëtes melanopoda J Mexican mosquito fern Azolla mexicana J M R N N P P D D northern lady fern Athyrium felix-femina slender lip fern Cheilanthes feei net-veined chain fern Woodwardia areolata meadow spike moss Selaginella apoda water clover Marsilea quadrifolia Polypodiaceae Polypodium virginanum Dryopteris carthusiana he ferns and their relatives (lycophytes) living today give us a is tree shows a current concept of the Dryopteridaceae Dryopteris marginalis is poster made possible by: { Polystichum acrostichoides T evolutionary relationships among Onocleaceae Onoclea sensibilis glimpse of what the earth’s vegetation looked like hundreds of Blechnaceae Woodwardia areolata Illinois fern ( green ) and lycophyte Thelypteridaceae Phegopteris hexagonoptera millions of years ago when they were the dominant plants.
    [Show full text]
  • The Structure and Development of the Prothallus of Equisetum Debile, Roxb
    The Structure and Development of the Prothallus of Equisetum debile, Roxb. BY SHIV RAM KASHYAP, B.A. (Cantab.), M.Sc. (Punjab), Professor of Botany, Government College, Lahore. With forty-five Figures in the Text INTRODUCTION. LL the species of Equisetum whose prothalli had been investigated Ai- before 1905 are confined to Europe (Goebel, p. 195). The writer is not aware if any extra-European species have been investigated since then. As the prothalli of Equisetum debile whose range is given by Baker ('Fern Allies ', p. 5) as ' Tropical Asia from the Himalayas and Ceylon eastward through the Malay Isles to Fiji', were found growing in large numbers along the banks of the river Ravi in Lahore, and as they differed in general characters from the prothalli hitherto described, it was thought that a study of the development might bring out some interesting points. The result of this study carried on in the winter of 1913—13 is given in the following pages. Aitchison and Stewart describe Equisetum debile as the only species of Equisetum occurring in the Punjab, and certainly this is the only species met with in or near Lahore. It may be mentioned that Baker remarks that this species is doubtfully distinct from Equisetum ramosissimum, Desf., which is cosmopolitan in the warm temperate and tropical zones, but nothing is known as regards the prothallus of this latter species. MATERIAL. The plant grows in and near Lahore in great abundance along the banks of the river in sandy soil or in the shady and swampy soil of the wood along the river.
    [Show full text]
  • Plant Reproduction
    AccessScience from McGraw-Hill Education Page 1 of 10 www.accessscience.com Plant reproduction Contributed by: Scott D. Russell Publication year: 2014 The formation of a new plant that is either an exact copy or recombination of the genetic makeup of its parents. There are three types of plant reproduction considered here: (1) vegetative reproduction, in which a vegetative organ forms a clone of the parent; (2) asexual reproduction, in which reproductive components undergo a nonsexual form of production of offspring without genetic rearrangement, also known as apomixis; and (3) sexual reproduction, in which meiosis (reduction division) leads to formation of male and female gametes that combine through syngamy (union of gametes) to produce offspring. See also: PLANT; PLANT PHYSIOLOGY. Vegetative reproduction Unlike animals, plants may be readily stimulated to produce identical copies of themselves through cloning. In animals, only a few cells, which are regarded as stem cells, are capable of generating cell lineages, organs, or new organisms. In contrast, plants generate or produce stem cells from many plant cells of the root, stem, or leaf that are not part of an obvious generative lineage—a characteristic that has been known as totipotency, or the general ability of a single cell to regenerate a whole new plant. This ability to establish new plants from one or more cells is the foundation of plant biotechnology. In biotechnology, a single cell may be used to regenerate new organisms that may or may not genetically differ from the original organism. If it is identical to the parent, it is a clone; however, if this plant has been altered through molecular biology, it is known as a genetically modified organism (GMO).
    [Show full text]
  • General Characters of Pteridophytes.Pdf
    Pteridophytes: General Characters 1. Meaning of Pteridophytes: Pteridophyta (Gr, Pteron = feather, phyton = plant), the name was originally given to those groups of plants which have well developed pinnate or frond like leaves. Pteridophytes are cryptogams (Gr. kruptos = hidden, and Gamos = wedded) which have well developed vascular tissue. Therefore, these plants are also known as vascular cryptogams or snakes of plant kingdom. They are represented by about 400 living and fossil genera and some 10,500 species. Palaeobotanical studies reveal that these plants were dominant on the earth during the Devonian period and they were originated about 400 million years ago in the Silurian period of the Palaeozoic era. Earliest known Pteridophyte is Cooksonia. 2. General Characters of Pteridophytes: (i) Majority of the living Pteridophytes are terrestrial and prefer to grow in cool, moist and shady places e.g., ferns. Some members are aquatic (e.g., Marsilea, Azolla), xerophytic (e.g., Selaginella rupestris, Equisetum) or epiphytic (e.g., Lycopodium squarrosum) (Fig. 1). (ii) Majority of the Pteridophytes are herbaceous but a few are perennial and tree like (e.g., Angiopteris). Smallest Pteridophyte is Azolla (an aquatic fern) and largest is Cyathea (tree fern). (iii) Plant body is sporophytic and can be differentiated into root, stem and leaves. (iv) Roots are adventitious in nature with monopodial or dichotomous branching. Internally usually they are diarch. (v) Stem is usually branched. Branching is monopodial or dichotomous. Branches do not arise in the axil of the leaves. In many Pteridophytes stem is represented by rhizome. (vi) Leaves may be small, thin, scaly (microphyllous e.g., Equisetum), simple and sessile (e.g., Selaginella) or large and pinnately compound (megaphyllous e.g., Dryopteris, Adiantum).
    [Show full text]
  • Plant Reproduction Main Idea Reproduction in Plants Can Be Asexual Or Sexual
    Plant Plants have adaptations that enable them to reproduce in specific habitats. Reproduction Section 1 Introduction to Plant Reproduction Main Idea Reproduction in plants can be asexual or sexual. Plant life cycles include an alternation of generations. Section 2 Seedless Reproduction Main Idea The joining of a seedless plant’s egg and sperm requires moist condi- tions and produces a spore. Section 3 Seed Reproduction Main Idea Reproduction in seed plants involves pollen grains—the sources of sperm, and ovules—the sources of the eggs. The joining of eggs and sperms can produce seeds. A Forest from Ashes Saplings and other plants are growing among the remains of trees destroyed by fire. Where did these new plants come from? Some may have grown from seeds, and others may have grown from roots or stems that survived underground. These plants are the result of plant reproduction. Science Journal List three plants that reproduce by forming seeds. 270 Massimo Mastrorillo/CORBIS Start-Up Activities Plant Reproduction Make the following Foldable to compare and contrast the sexual and Do all fruits contain seeds? asexual characteristics of a plant. You might know that most plants grow from seeds. Seeds are usually found in the fruits of STEP 1 Fold one sheet of paper lengthwise. plants. When you eat watermelon, it can contain many small seeds. Do some plants produce fruits without seeds? Do this lab to find out. STEP 2 Fold into thirds. 1. Obtain two grapes from your teacher. Each grape should be from a different plant. 2. Split each grape in half and examine the STEP 3 Unfold and draw overlapping ovals.
    [Show full text]
  • GENERAL BOTANY Lecture 32 - Bryophytes
    Jim Bidlack - BIO 1304 GENERAL BOTANY Lecture 32 - Bryophytes COMMENT: WELCOME TO THE WORLD OF PLANTS!! (WE'RE NOW IN KINGDOM PLANTAE) I. General characteristics of the Bryophyte Phyla A. Similarities to algae 1. Produce free-swimmin' sperm that travel through water to reach the eggs 2. No vascular system 3. No lignified tissue 4. Lack roots and true leaves B. What makes Bryophytes members of the Kingdom Plantae? 1. Eucaryotic 2. Lack chitinous walls (cellulose instead) & photosynthesis 3. Embryos have a jacket of sterile cells encasing reproductive cells C. Special characteristics of Bryophytes 1. Eggs formed in archegonia; sperm produced in antheridia 2. Chief photosynthetic body is the gametophyte (haploid) - note that Bryophytes demonstrate the sporic life cycle (sporophyte & gametophyte) 3. Structure is usually thallus 4. Uses: ecological importance, aesthetic value, absorbing ability, food, and medicine 5. May be the evolutionary link between algae and higher plants II. Characteristics of Bryophyte Phyla A. Phylum Hepaticophyta (liverworts - "HHHHEEEEPPPPPTTTTT!!!! [liver]") - small, green, ribbon-shaped plants 1. Two generations: gametophyte (predominant) and sporophyte 2. Ribbon-shaped thallus can often form a rosette 3. Female part (archegonia) has a head that looks like a palm tree (archegoniophore); male part (antheridia) has a head that looks like an umbrella (antheridiophore) 4. Collective term for archegonia and antheridia is gametangia B. Phylum Antherocerotophyta (hornworts - "antlers [horns]"): looks like liverwort except that the sporophyte has a much longer structure 1. Two generations: gametophyte is a ribbon-shaped thallus and sporophyte towers over the gametophyte 2. Hornworts are unique because they only have one large chloroplast per cell and those chloroplasts have pyrenoids (mosses and liverworts have many chloroplasts and lack pyrenoids) C.
    [Show full text]