Cloning of Human Very-Long-Chain Acyl-Coenzyme a Dehydrogenase

Total Page:16

File Type:pdf, Size:1020Kb

Cloning of Human Very-Long-Chain Acyl-Coenzyme a Dehydrogenase Am. J. Hum. Genet. 57:273-283, 1995 Cloning of Human Very-Long-Chain Acyl-Coenzyme A Dehydrogenase and Molecular Characterization of Its Deficiency in Two Patients Toshifumi Aoyama,' Masayoshi Souri,' Ichiro Ueno,2 Takehiko Kamijo,2 Seiji Yamaguchi,4 William J. Rhead,5 Kay Tanaka,6 and Takashi Hashimoto' Departments of 'Biochemistry and 2Pediatrics, Shinshu University School of Medicine, and 3Central Clinical Laboratories, Shinshu University Hospital, Matsumoto; 4Department of Pediatrics, Shimane Medical University, Izumo; 'Department of Pediatrics, University of Iowa, Iowa City; and 'Department of Genetics, Yale University School of Medicine, New Haven Summary zyme A (CoA) dehydrogenase and acyl-CoA oxidase Two overlapping cDNA clones (1,991 bp and 736 bp, (AOX), respectively. Four distinct acyl-CoA dehydroge- respectively) encoding the precursor of human mito- nases, i.e., short-chain acyl-CoA dehydrogenase (SCAD), chondrial very-long-chain acyl-coenzyme A dehydroge- medium-chain acyl-CoA dehydrogenase (MCAD), long- nase (VLCAD) were cloned and sequenced. The cDNA chain acyl-CoA dehydrogenase (LCAD), and very-long- inserts of these clones together encompass a region of chain acyl-CoA dehydrogenase (VLCAD), have been 2,177 bases, encoding the entire protein of 655 amino identified in the mitochondrial P-oxidation system acids, including a 40-amino acid leader peptide and (Rhead 1991; Coates and Tanaka 1992a, 1992b; Engel a 615-amino acid mature polypeptide. PCR-amplified 1992; Hale and Bennett 1992; Izai et al. 1992). cDNAs VLCAD cDNAs were sequenced in cultured fibroblasts encoding human SCAD and MCAD have been cloned, from two VLCAD-deficient patients. In both patients, and mutation analyses of the two deficiencies, particu- a 105-bp deletion encompassing bases 1078-1182 in larly of the latter, have been extensively performed VLCAD cDNA was identified. The deletion seems to (Coates et al. 1988; Naito et al. 1990; Yokota et al. occur due to exon skipping during processing ofVLCAD 1991; Tanaka et al. 1992; Andresen et al. 1994). On pre-mRNA. This is the first demonstration of a mutation the other hand, mutations of the LCAD and VLCAD causing VLCAD deficiency. Quantitative cDNA expres- genes underlying their deficiencies have not yet been sion of normal human VLCAD was performed in the identified for two reasons. First, VLCAD was identified patients' fibroblasts, using vaccinia viral system, which only 2 years ago (Izai et al. 1992), and the primary demonstrated that the deficiency of the normal VLCAD sequence of human VLCAD was hitherto unknown. Sec- protein causes impaired long-chain fatty acid P-oxida- ond, there has been clinical and biochemical uncertainty tion activity in the patients' fibroblasts. In patient fibro- concerning the identity of the LCAD and VLCAD defi- blasts, raising VLCAD activity to -20% of normal con- ciencies, because of the overlap of the substrate specific- trol fibroblast activity raised palmitic acid P-oxidation ity of the two enzymes (Hale et al. 1985, 1990a, 1990b; flux to the level found in control fibroblasts, which may Indo et al. 1991a). offer important information for the rational design of In the last two years, several patients with inherited future somatic gene therapy for VLCAD deficiency. VLCAD deficiency have been identified by this and other laboratories (Aoyama et al. 1993; Bertrand et al. 1993). Also, in three patients previously diagnosed as having LCAD deficiency on the basis of activity assays, the Introduction LCAD sequence was found to be perfectly normal, while In mammals, fatty acids are oxidized by two major sys- immunoblot analysis indicated that these patients were tems, namely the mitochondrial and peroxisomal P-oxi- in fact deficient in VLCAD rather than in LCAD (Yama- dation systems. The first step in the mitochondrial and guchi et al. 1993). Recently, we reported detailed bio- peroxisomal P-oxidation cycle is catalyzed by acyl-coen- chemical and immunochemical studies of seven patients having VLCAD deficiency (Aoyama et al., in press). Clinically notable features of these patients were also Received March 14, 1995; accepted for publication May 3, 1995. summarized: all patients were found to have hepatocel- Address for correspondence and reprints: Dr. Toshifumi Aoyama, lular dysfunction, severe lipid storage in organs, and Department of Biochemistry, Shinshu University School of Medicine, cardiac at least four with Matsumoto, Nagano 390, Japan. disease; patients presented hy- © 1995 by The American Society of Human Genetics. All rights reserved. pertrophic cardiomyopathy. Additionally, the cDNA- 0002-9297/95/5702-0009$02.00 encoding rat VLCAD has been cloned, and the im- 273 274 Am. J. Hum. Genet. 57:273-283, 1995 portant role of VLCAD as a rate-limiting enzyme in an EcoRI digest of the phage DNA was subcloned into long-chain fatty acid 5-oxidation system has been dem- pTZ1 8U plasmid vector (TOYOBO). Plasmid DNA was onstrated (Aoyama et al. 1994c). isolated in large scale, using DNA preparation kits We report here the isolation and sequencing ofcDNAs (Qiagen). encoding the entire precursor of human VLCAD, the first identification of mutations in the VLCAD gene in DNA Sequencing two patients with VLCAD deficiency, and the restora- Serial sequence deletions of the clone were carried tion of long-chain fatty acid P-oxidation activity in the out via exonuclease III digestion, using Kilo-sequence patients' fibroblasts by means of cDNA-expression of deletion kits (Takara), on the basis of the method de- normal human VLCAD. scribed by Henikoff (1984). DNA sequencing was per- formed directly on the cDNA insert in the plasmid by the dideoxy-sequencing method (Sanger et al. 1977) us- Material and Methods ing Dye primer cycle sequencing kits (Applied Biosys- Material tems). An antibody that reacts with human VLCAD was RNA Preparation and Northern Blot Analysis prepared using purified human VLCAD protein (Ao- Total RNA was extracted from fibroblasts, using the yama et al., in press). cDNAs encoding rat VLCAD guanidinium isothiocyanate procedure (Chomczynski (Aoyama et al. 1994c) and human AOX (Aoyama et al. and Sacchi 1987). Twenty micrograms each of total 1994b) were prepared as described, respectively. Human RNA were denatured in formaldehyde/formamide and liver cDNA libraries prepared in the Xgt 11 expression were electrophoresed in 1% agarose gel containing vector were obtained from Dr. Frank J. Gonzalez of the formaldehyde, and RNA was transferred to a nylon National Institutes of Health (Aoyama et al. 1989c). membrane (Hybond-N+; Amersham) by capillary blot- Reagents used for both DNA sequencing and amino acid ting (Sambrook et al. 1989). Prehybridization and hy- sequencing of proteolytic peptides were purchased from bridization were carried out according to Amersham Applied Biosystems. Vaccinia virus strain WR, pSC 11, protocol. and human TK- 143 cells were obtained from Dr. Ber- nard Moss of the National Institutes of Health. CV-1 Amplification of cDNA by PCR and hepatoma H4IIEC3 cells were from the American Two micrograms of total RNA were reverse-tran- Type Culture Collection. Electron transfer flavoprotein scribed with Murine leukemia virus reverse transcriptase (ETF) was prepared from rat liver mitochondria (Furuta and random hexanucleotide primers according to manu- et al. 1981). [1-14C]Palmitic acid was obtained from facturer's instructions. One twentieth of the cDNA American Radiolabeled Chemicals. Sodium 2-[5-(4- product was annealed to 1 pmol each of the sense and chlorophenyl)pentyl]-oxirane-2-carboxylate (POCA) was antisense primers, and 40 cycles of PCR reaction were a generous gift from Byk Gulden Pharmazeutika. performed using a DNA Thermal Cycler (Idaho Tech- nology). Each cycle consisted of 5-s denaturation at Source of the Cells and Culture Method 94°C, 2-s annealing at 52°C, and 1-min extension at The case histories of the two VLCAD-deficient cells, 750C. The final extension was for 10 min. The PCR patient 2 and 3, together with five others (Aoyama et products were purified by electrophoresis using 1% al., in press), have been reported elsewhere (Aoyama et agarose gel. The purified fragments were directly used al. 1993; Yamaguchi et al. 1993). Skin fibroblasts were for DNA sequencing. cultured in the medium containing Dulbecco's modified Amino Acid Sequence Analsis Eagle's medium, 10% (v/v) FCS, 0.1 mM nonessential Native human VLCAD protein (Aoyama et al., in amino acids, 1 x antibiotic-antimycotic solution press) and its proteolytic polypeptides prepared by endo- (GIBCO/BRL Oriental) and 4.5 mg D-glucose/ml. proteinase Glu-C or endoproteinase Lys-C (Boehringer Mannheim) treatment were electrophoresed on 10% cDNA Cloning Method polyacrylamide gel containing sodium dodecyl sulfate Four-hundred thousand independent plaques from and were transferred to a polyvinylidene difluoride the human liver cDNA library were screened using the membrane (Bio-Rad). Amino-terminal sequence was de- rat VLCAD cDNA (RVL-57) (Aoyama et al. 1994c) as termined using a model 477A gas-phase sequencer (Ap- a probe (Maniatis et al. 1982). After positive clones plied Biosystems) and an in-line model 120A phenylthio- were obtained, another human liver cDNA library was hydantoin analyzer. screened using the longest cDNA insert in previously identified positive clones as a probe. Phage DNA of posi- Vaccinia Viral Expression of VLCAD cDNA tive clones was then prepared using the plate-lysate The vaccinia virus system was used to express VLCAD method (Maniatis et al. 1982). The
Recommended publications
  • Activation of Pparα by Fatty Acid Accumulation Enhances Fatty Acid Degradation and Sulfatide Synthesis
    Tohoku J. Exp. Med., 2016, 240, 113-122PPARα Activation in Cells due to VLCAD Deficiency 113 Activation of PPARα by Fatty Acid Accumulation Enhances Fatty Acid Degradation and Sulfatide Synthesis * * Yang Yang,1, Yuyao Feng,1, Xiaowei Zhang,2 Takero Nakajima,1 Naoki Tanaka,1 Eiko Sugiyama,3 Yuji Kamijo4 and Toshifumi Aoyama1 1Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan 2Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China 3Department of Nutritional Science, Nagano Prefectural College, Nagano, Nagano, Japan 4Department of Nephrology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the first reaction in the mitochondrial fatty acid β-oxidation pathway. VLCAD deficiency is associated with the accumulation of fat in multiple organs and tissues, which results in specific clinical features including cardiomyopathy, cardiomegaly, muscle weakness, and hepatic dysfunction in infants. We speculated that the abnormal fatty acid metabolism in VLCAD-deficient individuals might cause cell necrosis by fatty acid toxicity. The accumulation of fatty acids may activate peroxisome proliferator-activated receptor (PPAR), a master regulator of fatty acid metabolism and a potent nuclear receptor for free fatty acids. We examined six skin fibroblast lines, derived from VLCAD-deficient patients and identified fatty acid accumulation and PPARα activation in these cell lines. We then found that the expression levels of three enzymes involved in fatty acid degradation, including long-chain acyl-CoA synthetase (LACS), were increased in a PPARα-dependent manner. This increased expression of LACS might enhance the fatty acyl-CoA supply to fatty acid degradation and sulfatide synthesis pathways.
    [Show full text]
  • Suppression of Fatty Acid Oxidation by Thioesterase Superfamily Member
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.21.440732; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Suppression of Fatty Acid Oxidation by Thioesterase Superfamily Member 2 in Skeletal Muscle Promotes Hepatic Steatosis and Insulin Resistance Norihiro Imai1, Hayley T. Nicholls1, Michele Alves-Bezerra1, Yingxia Li1, Anna A. Ivanova2, Eric A. Ortlund2, and David E. Cohen1 1Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA 2Department of Biochemistry, Emory University, Atlanta, GA 30322 USA Current addresses: Norihiro Imai - Department of Gastroenterology and Hepatology, Nagoya University School of Medicine, Aichi 4668560 Japan Michele Alves-Bezerra - Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030 USA bioRxiv preprint doi: https://doi.org/10.1101/2021.04.21.440732; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Figure number: 8 Supplemental figure number: 10 Supplemental table number: 2 References: 48 Keywords: Hepatic steatosis, obesity, acyl-CoA thioesterase, fatty acid oxidation, insulin resistance Conflict of interest: The authors have declared that no conflict of interest exists. Author contributions: N.I.: designed research studies, conducted experiments, acquired data, analyzed data and wrote manuscript. H.T.N.: conducted experiments and analyzed data, M.A.B.: designed research studies and conducted experiments, Y.L.: acquired data, A.A.I.: conducted experiments and analyzed data, E.A.O.: analyzed data, D.E.C.: designed research studies, analyzed data and wrote manuscript.
    [Show full text]
  • Role of Metabolism in Bone Development and Homeostasis
    International Journal of Molecular Sciences Review Role of Metabolism in Bone Development and Homeostasis Akiko Suzuki 1,2 , Mina Minamide 1,2, Chihiro Iwaya 1,2, Kenichi Ogata 1,2 and Junichi Iwata 1,2,3,* 1 Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; [email protected] (A.S.); [email protected] (M.M.); [email protected] (C.I.); [email protected] (K.O.) 2 Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA 3 MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA * Correspondence: [email protected] Received: 16 October 2020; Accepted: 25 November 2020; Published: 26 November 2020 Abstract: Carbohydrates, fats, and proteins are the underlying energy sources for animals and are catabolized through specific biochemical cascades involving numerous enzymes. The catabolites and metabolites in these metabolic pathways are crucial for many cellular functions; therefore, an imbalance and/or dysregulation of these pathways causes cellular dysfunction, resulting in various metabolic diseases. Bone, a highly mineralized organ that serves as a skeleton of the body, undergoes continuous active turnover, which is required for the maintenance of healthy bony components through the deposition and resorption of bone matrix and minerals. This highly coordinated event is regulated throughout life by bone cells such as osteoblasts, osteoclasts, and osteocytes, and requires synchronized activities from different metabolic pathways. Here, we aim to provide a comprehensive review of the cellular metabolism involved in bone development and homeostasis, as revealed by mouse genetic studies.
    [Show full text]
  • Tissue Specific Roles of Fatty Acid Oxidation
    TISSUE SPECIFIC ROLES OF FATTY ACID OXIDATION by Jieun Lee A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland September, 2016 © 2016 Jieun Lee All Rights Reserved ABSTRACT The oxidation of long chain fatty acids facilitates mitochondrial respiration in diverse cell types. In this thesis, the role of fatty acid oxidation primarily in the adipose tissue and liver are discussed. To address this question, we generated mice with an adipose- or liver-specific knockout of carnitine palmitoyltransferase 2 (Cpt2), an obligate step in long chain mitochondrial fatty acid oxidation. In adipocyte-specific KO mice (Cpt2A-/-), the brown adipose tissue (BAT) of Cpt2A-/- mice was unable to utilize fatty acids and therefore caused hypothermia after an acute cold challenge. Surprisingly, Cpt2A-/- BAT was also unable to up-regulate thermogenic genes such as Ucp1 and Pgc1a in response to agonist-induced stimulation in vivo or ex vivo. The adipose specific loss of CPT2 did not result in changes in body weight on low or high fat diets, although paradoxically, low fat diets promoted and high fat diets suppressed adiposity. Additionally, a high fat diet increased oxidative stress and inflammation in gonadal white adipose tissue (WAT) of control mice but this effect was greatly suppressed in Cpt2A-/- mice. However, this suppression did not improve high fat diet induced glucose intolerance. In hepatocyte-specific KO (Cpt2L-/-) mice, fasting induced hepatic steatosis and serum dyslipidemia with an absence of circulating ketones while blood glucose remained normal. Systemic energy homeostasis was largely maintained in fasting Cpt2L-/- mice by adaptations in hepatic and systemic oxidative gene expression mediated in part by Pparα target genes including procatabolic hepatokines Fgf21, Gdf15 and Igfbp1.
    [Show full text]
  • Construction and Validation of a Prognostic Gene-Based Model For
    Article Construction and Validation of a Prognostic Gene-Based Model for Overall Survival Prediction in Hepatocellular Carcinoma Using an Integrated Statistical and Bioinformatic Approach Eskezeia Y. Dessie 1, Siang-Jyun Tu2, Hui-Shan Chiang2, Jeffrey J.P. Tsai1, Ya-Sian Chang2,*, Jan-Gowth Chang2,* and Ka-Lok Ng 1, 3, 4,* 1 Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan; No. 500, Li- oufeng Rd., Wufeng, Taichung 41354, Taiwan; [email protected] (E.Y.D.); [email protected] (J.-P.T.); [email protected] (K.-L.N.) 2 Department of Laboratory Medicine, and Center for Precision Medicine, China Medical University and Hospital, Taichung, Taiwan; No. 2, Yude Rd., North Dist., Taichung City 404332, Taiwan; [email protected] (S.-J.T.); [email protected] (H.-S.C.); [email protected] (Y.-S.C.); [email protected] (J.-G.C.) 3 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; No. 2, Yude Rd., North Dist., Taichung City 404332, Taiwan; [email protected] (K.-L.N.) 4 Center for Artificial Intelligence and Precision Medicine Research, Asia University, Taichung, Taiwan; No. 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan; [email protected] (K.-L.N.) * Correspondence: [email protected] (Y.-S.C.); [email protected] (K.-L.N.); [email protected] (J.-G.C.) Int. J. Mol. Sci. 2021, 22, 1632. https://doi.org/10.3390/ijms22041632 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, 1632 2 of 7 Int. J. Mol. Sci.
    [Show full text]
  • Identification of Very-Long-Chain Acyl-Coa Dehydrogenase Deficiency in Three Patients ~Reviousl~Diagnosed with Long-Chain Acyl-Coa Dehydrogenase Deficiency
    003 I-3998/93/340 1-0 I1 1$03.00/0 PEDIATRIC RESEARCH Vol. 34, No. 1, 1993 Copyright O 1993 International Pediatric Research Foundation. Inc. Prinred in U.S.A. Identification of Very-Long-Chain Acyl-CoA Dehydrogenase Deficiency in Three Patients ~reviousl~Diagnosed with Long-chain Acyl-CoA Dehydrogenase Deficiency SEIJI YAMAGUCHI,' YASUHIRO INDO: PAUL M. COATES, TAKASHI HASHIMOTO, AND KAY TANAKA Department of Genetics. Yale University School ofMedicine, New IIaven, Connecticlrt 06510 [S. Y., Y.I., K.T.]; Division of Gastroenterology and Ntrtrition, Cl~ildren'sHospital of Philadelphia, Philadelphia. Pennsylvania 19104 [P.IZf.C.]; and Department of Biocl~emistry,Sl~inshu University School of Medicine, hfatslrmoto, Nagano 390. Japan [T.H.] ABSTRACT. Long-chain acyl-CoA dehydrogenase Hale ul. in 1985 (I), at least 13 patients have been reported (LCAD) deficiency is a disorder of fatty acid 8-oxidation. (2.3). The main clinical symptoms of this disease include muscle Its diagnosis has been made based on the reduced activity weakness. hepatomegaly. cardiomegaly, and episodes of hypo- of palmitoyl-CoA dehydrogenation, i.e., in fibroblasts. We ketotic hypoglycemia. Some of the patients died with an acute previously showed that in immunoblot analysis, an LCAD episode without noticeable prodromal symptoms, mimicking band of normal size and intensity was detected in fibro- sudden infant death syndrome (3). LCAD deficiency is one of a blasts from all LCAD-deficient patients tested. In the group of diseases caused by defects in fatty acid oxidation (4) present study, we amplified via polymerase chain reaction that includes, among others, MCAD deficiency (5) and long- and sequenced LCAD cDNA from three of these LCAD- chain 3-hydroxyacyl-CoA dehydrogenase deficiency (6).
    [Show full text]
  • A Role for the Peroxisomal 3-Ketoacyl-Coa Thiolase B Enzyme in the Control of Pparα-Mediated Upregulation of SREBP-2 Target Genes in the Liver
    A role for the peroxisomal 3-ketoacyl-CoA thiolase B enzyme in the control of PPARα-mediated upregulation of SREBP-2 target genes in the liver. Marco Fidaleo, Ségolène Arnauld, Marie-Claude Clémencet, Grégory Chevillard, Marie-Charlotte Royer, Melina de Bruycker, Ronald Wanders, Anne Athias, Joseph Gresti, Pierre Clouet, et al. To cite this version: Marco Fidaleo, Ségolène Arnauld, Marie-Claude Clémencet, Grégory Chevillard, Marie-Charlotte Royer, et al.. A role for the peroxisomal 3-ketoacyl-CoA thiolase B enzyme in the control of PPARα- mediated upregulation of SREBP-2 target genes in the liver.: ThB and cholesterol biosynthesis in the liver. Biochimie, Elsevier, 2011, 93 (5), pp.876-91. 10.1016/j.biochi.2011.02.001. inserm-00573373 HAL Id: inserm-00573373 https://www.hal.inserm.fr/inserm-00573373 Submitted on 3 Mar 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Fidaleo et al ., ThB and genes of cholesterol biosynthesis in liver 1 A role for the peroxisomal 3-ketoacyl-CoA thiolase B enzyme in the control of 2 PPAR ααα-mediated upregulation of SREBP-2 target genes in the liver 3 Marco Fidaleo 1,2,8# , Ségolène Arnauld 1,2# , Marie-Claude Clémencet 1,2 , Grégory Chevillard 1,2,9 , 4 Marie-Charlotte Royer 1,2 , Melina De Bruycker 3, Ronald J.A.
    [Show full text]
  • ACADL Antibody Cat
    ACADL Antibody Cat. No.: 25-166 ACADL Antibody Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse Antibody produced in rabbits immunized with a synthetic peptide corresponding a region IMMUNOGEN: of human ACADL. TESTED APPLICATIONS: ELISA, WB ACADL antibody can be used for detection of ACADL by ELISA at 1:312500. ACADL APPLICATIONS: antibody can be used for detection of ACADL by western blot at 1 μg/mL, and HRP conjugated secondary antibody should be diluted 1:50,000 - 100,000. POSITIVE CONTROL: 1) Cat. No. 1309 - Human Placenta Lysate PREDICTED MOLECULAR 44 kDa WEIGHT: Properties PURIFICATION: Antibody is purified by peptide affinity chromatography method. CLONALITY: Polyclonal CONJUGATE: Unconjugated PHYSICAL STATE: Liquid September 26, 2021 1 https://www.prosci-inc.com/acadl-antibody-25-166.html Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% BUFFER: sucrose. CONCENTRATION: batch dependent For short periods of storage (days) store at 4˚C. For longer periods of storage, store STORAGE CONDITIONS: ACADL antibody at -20˚C. As with any antibody avoid repeat freeze-thaw cycles. Additional Info OFFICIAL SYMBOL: ACADL ALTERNATE NAMES: ACADL, ACAD4, LCAD ACCESSION NO.: NP_001599 PROTEIN GI NO.: 4501857 GENE ID: 33 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References ACADL belongs to the acyl-CoA dehydrogenase family, which is a family of mitochondrial flavoenzymes involved in fatty acid and branched chain amino-acid metabolism. This protein is one of the four enzymes that catalyze the initial step of mitochondrial beta- oxidation of straight-chain fatty acid.
    [Show full text]
  • Download ( 947KB )
    Arvind Rajan, Andrea S. Pereyra, Jessica M. Ellis Department of Physiology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University Determining the Effects of Impaired Muscle Fatty Acid Oxidation on Liver Metabolism Introduction 2. Hepatic Synthesis of Alternative Substrates 5. Effects of Carnitine Supplementation Skeletal muscle plays an extremely critical role in maintaining A. Free Carnitine B. LC-acylcarnitines in Skeletal Muscle C. L-carnitine hepatic synthesis n glucose homeostasis, and is responsible for the majority of 3 +/+ ) Sk LF o ✱ D +/+ i ✱ -/- Sk LF F ✱ s Figure 2. Because whole-body Sk LF n 2.5 ✱ ✱ i +/+ -/- s glucose uptake for energy production. Carnitine +/+ 100000 L Sk HF Sk LF Sk LF e e + t r -/- -/- / +/+ glucose homeostasis is highly ) Sk HF ✱ ✱ + e Sk HF Sk LF p 2.0 o F palmitoyltransferase II (CPT2) is an irreplaceable enzyme for k n ✱ +/+ r 80000 x -/- i 2 L Sk HF S Sk HF t E p regulated by liver metabolism, 14 i + -/- / o 1.5 e n Sk HF t + oxidation of long-chain fatty acids in muscle, converting ✱ g r 60000 v k i u a genes in three main hepatic ✱ d t / S e t a C 1.0 l acylcarnitine into acyl-CoA within the mitochondrial matrix to ✱ z n i o e e 40000 l pathways (GNG: gluconeogenesis, t 1 u e R a r 0.5 o allow for β-oxidation. N m ( F A KG: ketogenesis and β-Oxidation c r 20000 N Defects in CPT2 o n R 0.0 N of fatty acids) were assessed.
    [Show full text]
  • Dynamic Modelling of an ACADS Genotype in Fatty Acid Oxidation – Application of Cellular Models for the Analysis of Common Genetic Variants
    RESEARCH ARTICLE Dynamic modelling of an ACADS genotype in fatty acid oxidation ± Application of cellular models for the analysis of common genetic variants Kerstin Matejka1,2,3,4,5☯, Ferdinand StuÈ ckler6☯, Michael Salomon7, Regina Ensenauer8,9,10, Eva Reischl11,12, Lena Hoerburger13, Harald Grallert3,4,5,11,12, Gabi KastenmuÈ ller14, Annette Peters3,12,15, Hannelore Daniel2,16, Jan Krumsiek6,17, Fabian J. Theis6,18*, 1,2,3,4,5,19 1,2,3,4,5,13,20,21 a1111111111 Hans Hauner , Helmut LaumenID * a1111111111 a1111111111 1 Chair of Nutritional Medicine, Else KroÈner-Fresenius-Center for Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technische UniversitaÈt MuÈnchen, Freising-Weihenstephan, Germany, 2 ZIEL- a1111111111 Research Center for Nutrition and Food Sciences, TUM School of Life Sciences Weihenstephan, Technische a1111111111 UniversitaÈt MuÈnchen, Freising-Weihenstephan, Germany, 3 German Center for Diabetes Research (DZD), Neuherberg, Germany, 4 Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum MuÈnchen, Neuherberg, Germany, 5 Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Technische UniversitaÈt MuÈnchen, Freising-Weihenstephan, Germany, 6 Institute of Computational Biology, Helmholtz Zentrum MuÈnchen, Neuherberg, Germany, 7 SIRION Biotech GmbH, Martinsried, Germany, 8 Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-UniversitaÈt MuÈnchen, OPEN ACCESS MuÈnchen, Germany, 9 Experimental Pediatrics and Metabolism, Department of General Pediatrics, Citation:
    [Show full text]
  • Medium-Chain Acyl Coa Dehydrogenase Protects Mitochondria from Lipid Peroxidation in Glioblastoma
    Author Manuscript Published OnlineFirst on May 26, 2021; DOI: 10.1158/2159-8290.CD-20-1437 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Medium-chain acyl CoA dehydrogenase protects mitochondria from lipid peroxidation in glioblastoma Francesca Puca1*, Fei Yu1, Caterina Bartolacci5, Piergiorgio Pettazzoni1, Alessandro Carugo2, Emmet Huang-Hobbs1, Jintan Liu1, Ciro Zanca2, Federica Carbone8, Edoardo Del Poggetto1, Joy Gumin3, Pushan Dasgupta1, Sahil Seth1,2, Sanjana Srinivasan1, Frederick F. Lang3, Erik P. Sulman4, Philip L. Lorenzi11, Lin Tan11, Mengrou Shan6, Zachary P. Tolstyka6, Maureen Kachman7, Li Zhang6, Sisi Gao8, Angela K. Deem2,8, Giannicola Genovese9, Pier Paolo Scaglioni5, Costas A. Lyssiotis6,10,12*, Andrea Viale1* and Giulio F. Draetta1* 1Department of Genomic Medicine, 2The Translational Research to Advance Therapeutics and Innovation in Oncology Platform, 3Department of Neurosurgery, 4Department of Radiation Oncology, 8Institute for Applied Cancer Science, 9Department of Genitourinary Medical Oncology, 11Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA 5Department of Internal Medicine Division of Hematology & Oncology, University of Cincinnati, Cincinnati, OH, USA 6Department of Molecular and Integrative Physiology, 7Michigan Regional Comprehensive Metabolomics Resource Core, 10Department of Internal Medicine, Division of Gastroenterology and Hepatology, 12University
    [Show full text]
  • Lipid Myopathies
    Journal of Clinical Medicine Review Lipid Myopathies Elena Maria Pennisi 1,*, Matteo Garibaldi 2 and Giovanni Antonini 2 1 Unit of Neuromuscular Disorders, Neurology, San Filippo Neri Hospital, 00135 Rome, Italy 2 Unit of Neuromuscular Diseases, Department of Neurology, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant’ Andrea Hospital, 00189 Rome, Italy; [email protected] (M.G.); [email protected] (G.A.) * Correspondence: [email protected] or [email protected]; Tel.: +39-(06)-3306-2374 Received: 28 October 2018; Accepted: 17 November 2018; Published: 23 November 2018 Abstract: Disorders of lipid metabolism affect several tissues, including skeletal and cardiac muscle tissues. Lipid myopathies (LM) are rare multi-systemic diseases, which most often are due to genetic defects. Clinically, LM can have acute or chronic clinical presentation. Disease onset can occur in all ages, from early stages of life to late-adult onset, showing with a wide spectrum of clinical symptoms. Muscular involvement can be fluctuant or stable and can manifest as fatigue, exercise intolerance and muscular weakness. Muscular atrophy is rarely present. Acute muscular exacerbations, resulting in rhabdomyolysis crisis are triggered by several factors. Several classifications of lipid myopathies have been proposed, based on clinical involvement, biochemical defect or histopathological findings. Herein, we propose a full revision of all the main clinical entities of lipid metabolism disorders with a muscle involvement, also including some those disorders of fatty acid oxidation (FAO) with muscular symptoms not included among previous lipid myopathies classifications. Keywords: lipid myopathies; lipid storage disease; muscle lipidosis; lipid metabolism disorders; beta-oxidation defects; FAO defect; metabolic myopathies 1.
    [Show full text]