Identifying Molecular Functions of Heliotropic Motor Tissue Through Proteomic Analysis of Soybean Pulvini

Total Page:16

File Type:pdf, Size:1020Kb

Identifying Molecular Functions of Heliotropic Motor Tissue Through Proteomic Analysis of Soybean Pulvini ABSTRACT Title of Document: IDENTIFYING MOLECULAR FUNCTIONS OF HELIOTROPIC MOTOR TISSUE THROUGH PROTEOMIC ANALYSIS OF SOYBEAN PULVINI Hakme Lee, M.S., 2012 Directed By: Professor Joseph Sullivan, Plant Sciences and Landscape Architecture Heliotropic and nyctinastic leaf movement are mediated in soybean through turgor changes in the motor cells of the pulvinus, located at the base of the leaves. While some elements of the signaling pathways have been studied, a broad-scale protein identification has not yet been reported. In my research pulvini proteins were extracted in light- and dark-harvested soybean using the TCA/acetone method and identified by LC-MS/MS. Gene ontology analysis revealed proteins involved in proton transport were enriched in the soybean pulvinus proteome compared to a background soybean proteome. Proteins more highly expressed in the light were mostly stress response proteins, while under-expressed proteins were categorized as energy proteins. Further investigations using more sensitive extraction protocols and a multitude of sample times will build on these initial results to provide a thorough examination of heliotropic mechanisms at the molecular level. IDENTIFYING MOLECULAR FUNCTIONS OF HELIOTROPIC MOTOR TISSUE THROUGH PROTEOMIC ANALYSIS OF SOYBEAN PULVINI By Hakme Lee Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Master of Science 2012 Advisory Committee: Professor Joseph Sullivan, Chair Associate Professor Irwin Forseth Adjunct Assistant Professor Savithiry Natarajan © Copyright by Hakme Lee 2012 Dedication I would like to thank my parents and my siblings for loving me just as I am. ii Acknowledgements I wish to thank Joseph Sullivan for advising me on my research for the past two and a half years, Savi Natarajan for research guidance, and post-docs/technicians Xi Chen, Farooq Khan, and Adelbary Prince for protocol assistance. Special thanks to Irv Forseth for participating in my thesis committee, Wes Garrett for mass spectrometry work, Bill Kenworthy for donating seeds, and Shaun Faulkner and Sydney Wallace for their assistance in growing the plants in the greenhouse. This research was made possible through a Cooperative Agreement between University of Maryland, College Park, and USDA Beltsville Agricultural Research Center (BARC). iii Table of Contents Dedication ..................................................................................................................... ii Acknowledgements ...................................................................................................... iii Table of Contents ......................................................................................................... iv List of Tables ............................................................................................................... vi List of Figures ............................................................................................................. vii Chapter 1: Introduction and Literature Review ............................................................ 1 Heliotropism overview.............................................................................................. 1 Introduction ........................................................................................................... 1 Benefits of heliotropism ........................................................................................ 1 Modulating factors in heliotropism ....................................................................... 2 Heliotropism and implications for agriculture ...................................................... 4 Pulvinar Structure and Mechanisms ......................................................................... 4 Histology ............................................................................................................... 4 Basic mechanism .................................................................................................. 5 Ion channels .......................................................................................................... 6 Induction factors for ion movement ...................................................................... 7 Other molecules implied in turgor change ............................................................ 8 Proteins involved in heliotropism ......................................................................... 9 Proteomics............................................................................................................... 10 History of Protein Analysis ................................................................................. 10 Study objectives .................................................................................................. 12 Chapter 2: Proteomic analysis of the Pulvinus, a Heliotropic Tissue, in Glycine max13 Abstract ................................................................................................................... 13 Introduction ............................................................................................................. 14 Experimental ........................................................................................................... 16 Plant Material ...................................................................................................... 16 Protein Extraction ............................................................................................... 16 2D gel electrophoresis......................................................................................... 17 In-gel digestion ................................................................................................... 18 Mass spectrometry .............................................................................................. 19 Data analysis ....................................................................................................... 19 Results and Discussion ........................................................................................... 20 Protein Extraction, Identification, and Functional Analysis ............................... 20 Proton transport ................................................................................................... 28 Malate metabolism .............................................................................................. 29 Cytoskeletal processes ........................................................................................ 30 Ion transporters and Aquaporins ......................................................................... 30 Pulvinus proteome compared to guard cells ....................................................... 31 Conclusion .............................................................................................................. 33 Chapter 3: Differentially Expressed Proteins of Soybean (Glycine max) Pulvinus in Light and Dark Conditions.......................................................................................... 35 Abstract ................................................................................................................... 35 iv Introduction ............................................................................................................. 36 Experimental ........................................................................................................... 38 2-D PAGE ........................................................................................................... 38 Results ..................................................................................................................... 39 Discussion ............................................................................................................... 42 Overview ............................................................................................................. 42 Pulvinus proteins more highly expressed in the light include stress response proteins ................................................................................................................ 44 The increased expression of beta amylase in the light may reflect greater sucrose demand by the pulvinus ...................................................................................... 45 Proteins with increased expression in the dark may be a result of multiple factors ............................................................................................................................. 46 Rubisco activase expression levels are possibly a result of circadian rhythms .. 46 Other explanations for diminished photosynthetic and carbon-fixing proteins in the light ............................................................................................................... 47 Conclusion .............................................................................................................. 49 Chapter 4: Conclusions ............................................................................................... 50 Overview ................................................................................................................. 50 A note on methodology ........................................................................................... 52 New directions ........................................................................................................ 53 Bibliography ..............................................................................................................
Recommended publications
  • Stenospermocarpy Biological Mechanism That Produces Seedlessness in Some Fruits (Many Table Grapes, Watermelon)
    Phytohormones The growth and development of a plant are influenced by: •Gene:c factors •External environmental factors •Chemical hormones inside the plant Secondary messengers 1. Involve in the transfer informaon from sources to targets 2. Amplify the signal produced by the phytohormone Phytohormones Plant hormones are organic compounds that are effec:ve at very low concentraon (1g 20,000 tons-1) They interact with specific target :ssues to cause physiological responses •Growth •Fruit ripening Phytohormones •Hormones s:mulate or inhibit plant growth Major groups of hormones: 1. Auxins 2. Gibberellins 3. Ethylene 4. Cytokinins 5. Abscisic acid 6. Brassinostereoids 7. Salicylic acid 8. Polyaminas 9. Jasmonates 10. Systemin 11. Nitric oxide Arabidopsis thaliana Phytohormones EARLY EXPERIMENTS ON PHOTROPISM SHOWED THAT A STIMULUS (LIGHT) RELEASED CHEMICALS THAT INFLUENCED GROWTH Auxins Auxin causes several responses in plants: * Phototropism * Geotropism * Promo:on of apical dominance * Flower formaon * Fruit set and growth * Formaon of adven::ous roots * Differen:aon of vascular :ssues (de novo or repairing existent vascular :ssue) Auxins Addi:on of auxins produce parthenocarpic fruit. Stenospermocarpy Biological mechanism that produces seedlessness in some fruits (many table grapes, watermelon) diploid + tetraploid parent = triploid seeds vegetave parthenocarpy Plants that do not require pollinaon or other s:mulaon to produce parthenocarpic fruit (cucumber) Auxins Synthe:c auxins Widely used in agriculture and hor:culture • prevent leaf abscission • prevent fruit drop • promote flowering and frui:ng • control weeds Agent Orange - 1:1 rao of 2,4-D and 2,4,5-T Dioxin usually contaminates 2,4,5-T, which is linked to miscarriages, birth defects, leukemia, and other types of cancer.
    [Show full text]
  • A Framework for Plant Behavior Author(S): Jonathan Silvertown and Deborah M
    A Framework for Plant Behavior Author(s): Jonathan Silvertown and Deborah M. Gordon Reviewed work(s): Source: Annual Review of Ecology and Systematics, Vol. 20 (1989), pp. 349-366 Published by: Annual Reviews Stable URL: http://www.jstor.org/stable/2097096 . Accessed: 10/02/2012 12:56 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Annual Reviews is collaborating with JSTOR to digitize, preserve and extend access to Annual Review of Ecology and Systematics. http://www.jstor.org Annu. Rev. Ecol. Syst. 1989. 20:349-66 Copyright ? 1989 by Annual Reviews Inc. All rights reserved A FRAMEWORKFOR PLANT BEHAVIOR Jonathan Silvertown' and Deborah M. Gordon2 'BiologyDepartment, Open University, Milton Keynes MK7 6AA, UnitedKingdom 2Departmentof Zoology,University of Oxford,South Parks Rd, Oxford,OXI 3PS, UnitedKingdom INTRODUCTION The language of animalbehavior is being used increasinglyto describecertain plant activities such as foraging (28, 31, 56), mate choice (67), habitatchoice (51), and sex change (9, 10). Furthermore,analytical tools such as game theory, employed to model animal behavior, have also been applied to plants (e.g. 42, 54). There is some question whetherwords used to describe animal behavior, such as the word behavior itself, or foraging, can be properly applied to the activities of plants.
    [Show full text]
  • Plant Physiology
    PLANT PHYSIOLOGY Vince Ördög Created by XMLmind XSL-FO Converter. PLANT PHYSIOLOGY Vince Ördög Publication date 2011 Created by XMLmind XSL-FO Converter. Table of Contents Cover .................................................................................................................................................. v 1. Preface ............................................................................................................................................ 1 2. Water and nutrients in plant ............................................................................................................ 2 1. Water balance of plant .......................................................................................................... 2 1.1. Water potential ......................................................................................................... 3 1.2. Absorption by roots .................................................................................................. 6 1.3. Transport through the xylem .................................................................................... 8 1.4. Transpiration ............................................................................................................. 9 1.5. Plant water status .................................................................................................... 11 1.6. Influence of extreme water supply .......................................................................... 12 2. Nutrient supply of plant .....................................................................................................
    [Show full text]
  • History and Epistemology of Plant Behaviour: a Pluralistic View?
    Synthese (2021) 198:3625–3650 https://doi.org/10.1007/s11229-019-02303-9 BIOBEHAVIOUR History and epistemology of plant behaviour: a pluralistic view? Quentin Hiernaux1 Received: 8 June 2018 / Accepted: 24 June 2019 / Published online: 2 July 2019 © Springer Nature B.V. 2019 Abstract Some biologists now argue in favour of a pluralistic approach to plant activities, under- standable both from the classical perspective of physiological mechanisms and that of the biology of behaviour involving choices and decisions in relation to the environ- ment. However, some do not hesitate to go further, such as plant “neurobiologists” or philosophers who today defend an intelligence, a mind or even a plant consciousness in a renewed perspective of these terms. To what extent can we then adhere to pluralism in the study of plant behaviour? How does this pluralism in the study and explanation of plant behaviour fit into, or even build itself up, in a broader history of science? Is it a revolutionary way of rethinking plant behaviour in the twenty-first century or is it an epistemological extension of an older attitude? By proposing a synthesis of the question of plant behaviour by selected elements of the history of botany, the objective is to show that the current plant biology is not unified on the question of behaviour, but that its different tendencies are in fact part of a long botanical tradition with contrasting postures. Two axes that are in fact historically linked will serve as a common thread. 1. Are there several ways of understanding or conceiving plant behaviour within plant sciences and their epistemology? 2.
    [Show full text]
  • Plant Classification and Seeds
    Ashley Pearson – Plant Classification and Seeds ● Green and Gorgeous Oxfordshire ● Cut flowers ● Small amounts of veg still grown and sold locally Different Classification Systems Classification by Life Cycle : Ephemeral (6-8 wks) Annual Biennial Perennial Classification by Ecology: Mesophyte, Xerophyte, Hydrophyte, Halophyte, Cryophyte Raunkiaers Life Form System: based on the resting stage Raunkiaers Life Form System Classification contd. Classification by Plant Growth Patterns Monocots vs. Dicots (NB. only applies to flowering plants - angiosperms) Binomial nomenclature e.g., Beetroot = Beta vulgaris Plantae, Angiosperms, Eudicots, Caryophyllales, Amaranthaceae, Betoideae, Beta, Beta vulgaris After morphological characters, scientists used enzymes and proteins to classify plants and hence to determine how related they were via evolution (phylogeny) Present day we use genetic data (DNA, RNA, mDNA, even chloroplast DNA) to produce phylogenetic trees Plant part modifications ● Brassica genus ● ● Roots (swede, turnips) ● Stems (kohl rabi) ● Leaves (cabbages, Brussels Sprouts-buds) ● Flowers (cauliflower, broccoli) ● Seeds (mustards, oil seed rape) Plant hormones / PGR's / phytohormones ● Chemicals present in very low concentrations that promote and influence the growth, development, and differentiation of cells and tissues. ● NB. differences to animal hormones! (no glands, no nervous system, no circulatory system, no specific mode of action) ● Not all plant cells respond to hormones, but those that do are programmed to respond at specific points in their growth cycle ● Five main classes of PGR's ● Abscisic acid (ABA) ● Role in abscission, winter bud dormancy (dormin) ● ABA-mediated signalling also plays an important part in plant responses to environmental stress and plant pathogens ● ABA is also produced in the roots in response to decreased water potential.
    [Show full text]
  • Motion in Plants and Animals SMPK Penabur Jakarta Motion
    Motion in Plants and Animals SMPK Penabur Jakarta Motion What is that? Which part? Have you ever see the flying bird? Why they can do stable flying? What affects them? Let’s learn! Plant’s motion Animal’s motion in water, on air, and on land Why so important?? To know and explain motion in living things Important Terms Motion Stimulation Inertia Elasticity Surface Tension Mimosa pudica Have you ever see? Mimosa pudica Response to stimulation If the leaves got stimulation, the water flow will keep away from stimulated area Stimulated area water less, turgor tension less leaves will closed Turgor tension= tension affected by cell contents to wall cell in plant Movement Movement in living system they can change chemical energy to mechanical energy Human and animal active movement Plants have different movement Motion in Plant Growth Reaction to respond stimuli (irritability) Endonom Hygroscopic Etionom PHOTOTROPISM HYDROTROPISM TROPISM GEOTROPISM THIGMOTROPISM ENDONOM RHEOTROPISM PLANT MOTION HYGROSCOPIC ETIONOM PHOTOTAXIS TAXIS CHEMOTAXIS NICTINASTY THIGMONASTY/ NASTIC SEISMONASTY PHOTONASTY COMPLEX A. Endogenous Movement Spontaneusly Not known yet its cause certainly Predicted it caused by stimulus from plant itself Ex: ◦ Movement of cytoplasm in cell ◦ Bending movement of leaf bid because of different growth velocity ◦ Movement of chloroplast Chloroplast movement B. Hygroscopic Movement Caused by the influence of the change of water level from its cell non-homogenous wrinkling Ex: ◦ The breaking of dried fruit of leguminous fruit, such as kacang buncis (Phaseolus vulgaris), kembang merak (Caesalpinia pulcherrima), and Impatiens balsamina (pacar air) and other fruits ◦ The opening of sporangium in fern ◦ Rolled of peristomal gear in moss’ sporangium C.
    [Show full text]
  • Plant-Environment Interactions: from Sensory Plant Biology to Active
    Signaling and Communication in Plants Series Editors František Baluška Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany Jorge Vivanco Center for Rhizosphere Biology, Colorado State University, 217 Shepardson Building, Fort Collins, CO 80523-1173, USA František Baluška Editor Plant-Environment Interactions From Sensory Plant Biology to Active Plant Behavior Editor František Baluška Department of Plant Cell Biology IZMB University of Bonn Kirschallee 1 D-53115 Bonn Germany email: [email protected] ISSN 1867-9048 ISBN 978-3-540-89229-8 e-ISBN 978-3-540-89230-4 DOI: 10.1007/978-3-540-89230-4 Library of Congress Control Number: 2008938968 © 2009 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com František Baluška dedicates this book to Prof.
    [Show full text]
  • Circadian Regulation of Sunflower Heliotropism, Floral Orientation, and Pollinator Visits
    Title: Circadian regulation of sunflower heliotropism, floral orientation, and pollinator visits Authors: Hagop S. Atamian1, Nicky M. Creux1, Evan A. Brown2, Austin G. Garner2, Benjamin K. Blackman2,3, and Stacey L. Harmer1* Affiliations: 1Department of Plant Biology, University of California, One Shields Avenue, Davis, CA 95616, USA. 2Department of Biology, University of Virginia, PO Box 400328, Charlottesville, VA 22904, USA. 3Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720, USA. *Correspondence to: [email protected]. Abstract: Young sunflower plants track the sun from east to west during the day and then reorient during the night to face east in anticipation of dawn. In contrast, mature plants cease movement with their flower heads facing east. We show that circadian regulation of directional growth pathways accounts for both phenomena and leads to increased vegetative biomass and enhanced pollinator visits to flowers. Solar tracking movements are driven by antiphasic patterns of elongation on the east and west sides of the stem. Genes implicated in control of phototropic growth, but not clock genes, are differentially expressed on the opposite sides of solar tracking stems. Thus interactions between environmental response pathways and the internal circadian oscillator coordinate physiological processes with predictable changes in the environment to influence growth and reproduction. One Sentence Summary: Sun-tracking when young, east-facing when mature, warmer sunflowers attract more pollinators. Text+References+Legends Cover Main Text: Most plant species display daily rhythms in organ expansion that are regulated by complex interactions between light and temperature sensing pathways and the circadian clock (1). These rhythms arise in part because the abundance of growth-related factors such as light signaling components and hormones such as gibberellins and auxins are regulated both by the circadian clock and light (2-4).
    [Show full text]
  • University of Groningen the Thermal Ecology of Flowers Van Der Kooi
    University of Groningen The thermal ecology of flowers van der Kooi, Casper J.; Kevan, Peter G.; Koski, Matthew H. Published in: Annals of Botany DOI: 10.1093/aob/mcz073 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2019 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van der Kooi, C. J., Kevan, P. G., & Koski, M. H. (2019). The thermal ecology of flowers. Annals of Botany, 124(3), 343-353. https://doi.org/10.1093/aob/mcz073 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Kinematic Amplification Strategies in Plants and Engineering
    Kinematic amplification strategies in plants and engineering Victor Charpentier, Philippe Hannequart, Sigrid Adriaenssens, Olivier Baverel, Emmanuel Viglino, Sasha Eisenman To cite this version: Victor Charpentier, Philippe Hannequart, Sigrid Adriaenssens, Olivier Baverel, Emmanuel Viglino, et al.. Kinematic amplification strategies in plants and engineering. Smart Materials and Structures, IOP Publishing, 2017, 26 (6), pp.63002 - 63002. 10.1088/1361-665X/aa640f. hal-01618277 HAL Id: hal-01618277 https://hal-enpc.archives-ouvertes.fr/hal-01618277 Submitted on 17 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Page 1 of 30 AUTHOR SUBMITTED MANUSCRIPT - SMS-104018.R2 1 2 3 Kinematic amplification strategies in plants and engineering 4 5 6 1 2,3 1 2 7 Victor Charpentier* , Philippe Hannequart* , Sigrid Adriaenssens , Olivier Baverel , 3 4 8 Emmanuel Viglino , Sasha Eisenman 9 10 1Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA 11 12 2 Laboratoire Navier, UMR 8205, École des Ponts, IFSTTAR, CNRS, UPE, Champs-sur-Marne, France 13 14 3 Arcora, Ingérop Group, Rueil-Malmaison, France 15 16 4 Department of Landscape Architecture and Horticulture, Temple University, Ambler, PA, USA 17 18 19 *The authors designated have contributed equally to the research and writing of the manuscript 20 21 22 23 Abstract: 24 While plants are primarily sessile at the organismal level, they do exhibit a vast array of 25 movements at the organ or sub-organ level.
    [Show full text]
  • Mechanism of the Seismonastic Reaction in Mimosa Pudica' Robert D
    Plant Physiol. (1969) 44, 1101-1107 Mechanism of the Seismonastic Reaction in Mimosa pudica' Robert D. .Allen' Biophysics Department, University of California at Los Angeles, Los Angeles, California 90024 Received January 13, 1969. Abstract. The efflux of K+ from the pulvinar cells of Mimosa pudica was shown to inerease substantially during the seismonastic reaction. This result is shown to indicate a decrease in a (reflection coefiicient) of pulvinar cell membrane for potassium salts which could account for the pulvinar cell turgor decrease during the seismonastic reaction. Membrane potentials and concentrations of Ca2+, K+, Cl-, S, and P were measured in the top and bottom halves of pulvini. Pulvinar cells showed a large negative membrane potential, cell vacuole r:lative to external solution, but no significant difference in membrane potential could be detected between upper and lower pulvinar cells. A large difference in K+ and Cl- concentration betwe-n top and bottom pulvinar halves was evident in reactive pulvini but not in unreactive pulvini. The effect of K+ concentration on plant growth and leaf reactivity was also investigated. One of the most fascinating phenomena in the RTAC. Thermodynamic osmotic pressure differ- plant kingdom is the seismonastic, i.e. rapid, leaf ence across the cell membrane. movement exhibited by Mimosa pudica. Movement The reflection coefficient, the relative can be initiated by stimuli such as electrical shock or membrane permeability to solutes and touch, and is effected by the main pulvinus at the water. When of = 1, the membrane is base of the petiole. It is generally accepted that this semipermeable; when C = 0, the mem- stimulus causes a loss of turgor in the cells composing brane is completely nonselective to pas- the lower side of the pulvinus (20) ; the leaf then sage of solutes and water.
    [Show full text]
  • Genetic Basis of the “Sleeping Leaves” Revealed
    COMMENTARY Genetic basis of the “sleeping leaves” revealed Millán Cortizo and Patrick Laufs1 Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, and AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France ike most animals, plants also sleep at night, or at least some of them. L For instance, the flowers of many species, such as crocus, tulip, and morning glory, are open during the day or part of the day and close at night. Based on such observations, in 1751, the Swedish botanist Carl von Linné suggested com- bining several plant species in which the flowers open or close at specific and different times of the day to build a “Horologium Florae” (flower clock) that would accurately and colorfully predict time. Such daily movements of plants are not limited to flowers. In his book entitled The Power of Movement in Plants, Darwin (1880) described many examples of “sleep movements of leaves” and provided a “List of Genera, including species the leaves of which sleep” (1). Among these, he noted that the legume family “includes many more genera with sleeping species than all the other families put together.” He also described a specialized organ, called a joint, cushion, or pulvinus responsible for such movement (1). In PNAS, Chen et al. (2) identify the genetic determinant for the formation of these pulvini in three legumes: Fig. 1. Leaf of M. arabica (A) shows a detail of the pulvinus (B) and the extensor cells (C). (D) Schema Pisum sativum (pea), Medicago truncatula depicts nyctinasty in M. truncatula WT and elp1 mutant.
    [Show full text]