The Effect of Vibrations on Cryogens Boil Off During Launch, Transfer and Transport
Total Page:16
File Type:pdf, Size:1020Kb
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2016 The Effect of Vibrations on Cryogens Boil Off During Launch, Transfer and Transport Erin Schlichenmaier University of Central Florida Part of the Mechanical Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Schlichenmaier, Erin, "The Effect of Vibrations on Cryogens Boil Off During Launch, Transfer and Transport" (2016). Electronic Theses and Dissertations, 2004-2019. 5143. https://stars.library.ucf.edu/etd/5143 THE EFFECT OF VIBRATION ON CRYOGENS BOIL-OFF DURING LAUNCH, TRANSFER AND TRANSPORT by ERIN SCHLICHENMAIER B.S. Mechanical Engineering, University of Central Florida, 2003 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering in the Department of Mechanical and Aerospace Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Summer Term 2016 ABSTRACT Boil-off of a cryogenic fluid which is caused by the temperature difference between the fluid and its environment is a phenomenon which has long been studied and is well understood. However, vibrational excitation of a cryogenic storage tank and the fluid inside it also play a role in the loss of cryogens. Mechanical energy applied to the system in the form of vibrational input is converted into thermal energy via viscous damping of the fluid. As a result, when a storage tank full of cryogenic fluids is vibrated, it boils off at an increased rate. A series of experiments were performed in which a cryogenic storage Dewar filled with liquid nitrogen was subjected to vibrational input and the rate of boil-off was measured. Based on the results of the testing, it has been determined that the rate of boil-off of a cryogenic fluid increases by a factor of up to five times the resting boil off rate during the application of vibrational energy. The development of advanced cryogenic storage systems capable of reducing vibrational loading of the fluid could significantly decrease the loss of cryogens during procedures such as transporting and storing the fluid or launching a space vehicle. ii ACKNOWLEDGMENTS The author wishes to express sincere appreciation to Dr. Louis Chow and Dr. Wei Wu for all of their assistance in the preparation of this thesis. In addition, special thanks to Rudy Werlink and James Fesmire at the NASA Cryogenics Test Laboratory and Mark Hamilton and Dan Ciarlariello at the NASA Vibrations Test Laboratory for all their hard work setting up and performing the necessary testing. This project was supported by the National Aeronautics and Space Administration through the University of Central Florida’s NASA-Florida Space Grant Consortium. iii TABLE OF CONTENTS LIST OF FIGURES ................................................................................................................................. vi LIST OF TABLES .................................................................................................................................. viii ACRONYMS ............................................................................................................................................. ix CHAPTER 1 INTRODUCTION ....................................................................................................... 1 1.1. Introduction .................................................................................................................... 1 1.2. Project History ................................................................................................................ 2 1.3. Scope of Work ................................................................................................................ 3 CHAPTER 2 BACKGROUND .......................................................................................................... 4 2.1. Cryogenics Overview ..................................................................................................... 4 2.2. Vibrations Overview ...................................................................................................... 6 2.2.1. The Frequency Response Function ..................................................................... 7 2.2.2. The Half-Power Bandwidth Method ................................................................... 7 2.2.3. Filtering Data............................................................................................................ 9 2.2.4. Displacement .......................................................................................................... 10 2.3. Energy ............................................................................................................................ 11 2.3.1. Mechanical Energy Absorbed ............................................................................. 12 2.3.2. Thermal Energy Lost ............................................................................................ 14 2.3.1. Mechanical Energy Input ..................................................................................... 15 CHAPTER 3 EXPERIMENTAL DESIGN ................................................................................... 17 3.1. Test Equipment ............................................................................................................ 17 3.2. Test Development ....................................................................................................... 21 CHAPTER 4 RESULTS AND ANALYSIS .................................................................................... 24 iv 4.1. Test Results ................................................................................................................... 24 4.1.1. Input Data ............................................................................................................... 25 4.1.2. Response Data ....................................................................................................... 29 4.1.3. Filtering the Data ................................................................................................... 32 4.1.4. Creating Frequency Response Functions ......................................................... 36 4.1.5. Flow Meter Data .................................................................................................... 45 4.2. Analysis .......................................................................................................................... 49 4.2.1. Calculating Mechanical Energy Absorbed ........................................................ 49 4.2.2. Calculating Thermal Energy Lost ....................................................................... 57 4.2.3. Total Energy ........................................................................................................... 60 CHAPTER 5 CONCLUSION ........................................................................................................... 61 5.1. Conclusion ..................................................................................................................... 61 APPENDIX MATLAB PROGRAM ................................................................................................. 62 LIST OF REFERENCES ...................................................................................................................... 70 v LIST OF FIGURES Figure 1 – Half Power Bandwidth Method ........................................................................................... 9 Figure 2 – Spring-Mass-Damper Model ............................................................................................... 12 Figure 3 – Electrodynamic Shaker System ........................................................................................... 18 Figure 4 – Test Configuration Diagram ............................................................................................... 19 Figure 5 – Test Configuration Photo .................................................................................................... 20 Figure 6 – Lab Test: Baseline Test With 10L Water .......................................................................... 21 Figure 7 – Input Data Recorded by Accelerometers ......................................................................... 26 Figure 8 – Input Data Recorded by Accelerometers (continued) ................................................... 27 Figure 9 – Response Data ....................................................................................................................... 30 Figure 10 – Response Data (continued) ............................................................................................... 31 Figure 11 – Filter Visualization .............................................................................................................. 33 Figure 12 – Comparison of Raw and Filtered Response Data ........................................................ 34 Figure 13 - Comparison of Raw and Filtered Response Data (continued) ................................... 35 Figure 14 – Frequency Response Functions ......................................................................................