Effects of Hydropower Operation and Oligotrophication on Internal

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Hydropower Operation and Oligotrophication on Internal Effects of hydropower operation and oligotrophication on internal processes in Lake Brienz David Christian Finger D. Finger Effects of hydropower operation and oligotrophication on internal processes in Lake Brienz Diss. ETH No. 16827 Diss. ETH No. 16827 EFFECTS OF HYDROPOWER OPERATION AND OLIGOTROPHICATION ON INTERNAL PROCESSES IN LAKE BRIENZ A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZÜRICH for the degree of DOCTOR OF SCIENCES presented by David Christian Finger Dipl. Umwelt-Natw. ETH born August 22nd , 1974 citizen of Klagenfurt, Austria accepted on the recommendation of Prof. Dr. Alfred Wüest (Eawag), examiner Prof. Dr. Peter Reichert (Eawag), co-examiner Prof. Dr. Bernhard Wehrli (ETH), co-examiner Prof. Dr. Peter Huggenberger (University of Basel), co-examiner 2006 En mémoire de Marianne Irminger (1918 - 2004) 3 4 “Understanding the hydrodynamics of lakes, rivers and coastal waters is central for addressing the consequences of human activities and climate change in these systems. The future challenge of environmental science lies in implementing this knowledge in order to preserve the beauty of nature.” Sally MacIntyre, during the PPNW workshop in Lancaster, 6 September 2005 Marine Science Institute and Institute for Computational Earth Systems Science University of California, Santa Barbara 5 Content TABLE OF CONTENTS ABSTRACT..............................................................................................................................10 ZUSAMMENFASSUNG..........................................................................................................12 1 INTRODUCTION............................................................................................................ 15 1.1 Background .............................................................................................................. 15 1.2 Unique characteristics of Lake Brienz ..................................................................... 16 1.3 Allochthonous particle input to Lake Brienz ........................................................... 17 1.4 Impacts: Re-oligotrophication and hydropower operations ..................................... 18 1.4.1 Eutrophication and re-oligotrophication .......................................................... 19 1.4.2 Upstream hydropower operations .................................................................... 19 1.4.3 Global climate change...................................................................................... 20 1.5 Objectives and outline.............................................................................................. 21 1.5.1 Chapter 2: Effects of upstream hydropower operation on riverine particle transport and turbidity in downstream lakes .................................................................... 22 1.5.2 Chapter 3: Effects of upstream hydropower operations and re-oligotrophication on the light regime of a turbid peri-alpine lake................................................................ 22 1.5.3 Chapter 4: Effects of upstream hydropower operations on primary production in downstream lakes......................................................................................................... 22 1.5.4 Chapter 5: Effects of oligotrophication and upstream hydropower operations on plankton biomass in peri alpine lakes ......................................................................... 23 2 EFFECTS OF UPSTREAM HYDROPOWER OPERATION ON RIVERINE PARTICLE TRANSPORT AND TURBIDITY IN DOWNSTREAM LAKES ..................... 25 2.1 Introduction .............................................................................................................. 26 2.2 Study Site ................................................................................................................. 31 2.3 Material and Methods............................................................................................... 33 2.3.1 Monitoring and Sampling of In- and Outflows................................................ 33 2.3.2 Riverine Suspended Particle Loads.................................................................. 34 2.3.3 Particle Distributions in Downstream Lake Brienz.......................................... 37 2.3.4 Sediment Traps, Cores and Thermistor Moorings ........................................... 38 2.3.5 Estimation of Riverine Intrusion Depth ........................................................... 39 2.3.6 One-Box Model of the Upper Layer of Lake Brienz ....................................... 41 2.3.7 Modeling the Natural Hydrology of River Aare .............................................. 43 2.4 Observations and Results ......................................................................................... 45 6 Content 2.4.1 Estimation of Riverine Suspended Particle Load............................................. 45 2.4.2 Dynamics of Suspended Particle Input to Lake Brienz.................................... 47 2.4.3 Intrusion Depths of Aare and Lütschine .......................................................... 49 2.4.4 Vertical Distribution of Suspended Particles ................................................... 52 2.4.5 Simulated Present Particle Budget of Lake Brienz .......................................... 57 2.4.6 Particle Budget of Lake Brienz without Dams................................................. 59 2.5 Discussion ................................................................................................................ 63 2.6 Conclusions .............................................................................................................. 65 2.7 Acknowledgements .................................................................................................. 66 3 EFFECTS OF UPSTREAM HYDROPOWER OPERATION AND OLIGOTROPHICATION ON THE LIGHT REGIME OF A TURBID PERI-ALPINE LAKE ....................................................................................................................................... 67 3.1 Introduction .............................................................................................................. 68 3.2 Concepts of light regimes in natural waters............................................................. 70 3.3 Materials and Methods............................................................................................. 71 3.3.1 Beam attenuation and optically active constituents ......................................... 71 3.3.2 In situ attenuation measurements ..................................................................... 72 3.3.3 Secchi recordings ............................................................................................. 73 3.3.4 Reflectance measurements ............................................................................... 73 3.3.5 Parameterization of reflectance for past conditions ......................................... 74 3.3.6 Reconstruction of attenuation by Secchi depth and particles........................... 76 3.4 Results ...................................................................................................................... 77 3.4.1 Present light regime in Lake Brienz................................................................. 77 3.4.2 Temporal development of Secchi depth during the 20th century ..................... 77 3.4.3 Correlation of attenuation with Secchi depth and particles.............................. 80 3.4.4 Natural variability of attenuation ..................................................................... 82 3.4.5 Changes in reflectance due to oligotrophication.............................................. 84 3.5 Discussion ................................................................................................................ 87 3.5.1 Present light conditions in Lake Brienz ........................................................... 87 3.5.2 Effect of hydropower on light attenuation ....................................................... 88 3.5.3 Effect of oligotrophication on reflectance........................................................ 89 3.6 Conclusions .............................................................................................................. 90 3.7 Acknowledgements .................................................................................................. 91 7 Content 4 EFFECTS OF ALPINE HYDROPOWER OPERATION ON PRIMARY PRODUCTION IN A DOWNSTREAM LAKE...................................................................... 93 4.1 Introduction .............................................................................................................. 94 4.2 Study site - Lake Brienz........................................................................................... 95 4.3 Material and Methods............................................................................................... 98 4.3.1 Lake in situ primary production measurements ............................................... 99 4.3.2 Model approach.............................................................................................. 100 4.3.3 Estimation of production in clear water ......................................................... 104 4.3.4 Estimation of production under pre-dam conditions...................................... 104 4.4 Results and observations ........................................................................................ 105 4.4.1 Boundary conditions for primary production
Recommended publications
  • The 1996 AD Delta Collapse and Large Turbidite in Lake Brienz ⁎ Stéphanie Girardclos A, , Oliver T
    Marine Geology 241 (2007) 137–154 www.elsevier.com/locate/margeo The 1996 AD delta collapse and large turbidite in Lake Brienz ⁎ Stéphanie Girardclos a, , Oliver T. Schmidt b, Mike Sturm b, Daniel Ariztegui c, André Pugin c,1, Flavio S. Anselmetti a a Geological Institute-ETH Zurich, Universitätsstr. 16, CH-8092 Zürich, Switzerland b EAWAG, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland c Section of Earth Sciences, Université de Genève, 13 rue des Maraîchers, CH-1205 Geneva, Switzerland Received 13 July 2006; received in revised form 15 March 2007; accepted 22 March 2007 Abstract In spring 1996 AD, the occurrence of a large mass-transport was detected by a series of events, which happened in Lake Brienz, Switzerland: turbidity increase and oxygen depletion in deep waters, release of an old corpse into surface waters and occurrence of a small tsunami-like wave. This mass-transport generated a large turbidite deposit, which is studied here by combining high- resolution seismic and sedimentary cores. This turbidite deposit correlates to a prominent onlapping unit in the seismic record. Attaining a maximum of 90 cm in thickness, it is longitudinally graded and thins out towards the end of the lake basin. Thickness distribution map shows that the turbidite extends over ∼8.5 km2 and has a total volume of 2.72⁎106 m3, which amounts to ∼8.7 yr of the lake's annual sediment input. It consists of normally graded sand to silt-sized sediment containing clasts of hemipelagic sediments, topped by a thin, white, clay-sized layer. The source area, the exact dating and the possible trigger of this turbidite deposit, as well as its flow mechanism and ecological impact are presented along with environmental data (river inflow, wind and lake-level measurements).
    [Show full text]
  • Human Impact on the Transport of Terrigenous and Anthropogenic Elements to Peri-Alpine Lakes (Switzerland) Over the Last Decades
    Aquat Sci (2013) 75:413–424 DOI 10.1007/s00027-013-0287-6 Aquatic Sciences RESEARCH ARTICLE Human impact on the transport of terrigenous and anthropogenic elements to peri-alpine lakes (Switzerland) over the last decades Florian Thevenon • Stefanie B. Wirth • Marian Fujak • John Pote´ • Ste´phanie Girardclos Received: 22 August 2012 / Accepted: 6 February 2013 / Published online: 22 February 2013 Ó The Author(s) 2013. This article is published with open access at Springerlink.com Abstract Terrigenous (Sc, Fe, K, Mg, Al, Ti) and suspended sediment load at a regional scale. In fact, the anthropogenic (Pb and Cu) element fluxes were measured extensive river damming that occurred in the upstream in a new sediment core from Lake Biel (Switzerland) and watershed catchment (between ca. 1930 and 1950 and up to in previously well-documented cores from two upstream 2,300 m a.s.l.) and that significantly modified seasonal lakes (Lake Brienz and Lake Thun). These three large peri- suspended sediment loads and riverine water discharge alpine lakes are connected by the Aare River, which is the patterns to downstream lakes noticeably diminished the main tributary to the High Rhine River. Major and trace long-range transport of (fine) terrigenous particles by the element analysis of the sediment cores by inductively Aare River. Concerning the transport of anthropogenic coupled plasma mass spectrometry (ICP-MS) shows that pollutants, the lowest lead enrichment factors (EFs Pb) the site of Lake Brienz receives three times more terrige- were measured in the upstream course of the Aare River at nous elements than the two other studied sites, given by the the site of Lake Brienz, whereas the metal pollution was role of Lake Brienz as the first major sediment sink located highest in downstream Lake Biel, with the maximum val- in the foothills of the Alps.
    [Show full text]
  • Subaquatic Slope Instabilities: the Aftermath of River Correction And
    1 1 Subaquatic slope instabilities: The aftermath of river correction and 2 artificial dumps in Lake Biel (Switzerland) 3 4 Nathalie Dubois1,2, Love Råman Vinnå 3,5, Marvin Rabold1, Michael Hilbe4, Flavio S. 5 Anselmetti4, Alfred Wüest3,5, Laetitia Meuriot1, Alice Jeannet6,7, Stéphanie 6 Girardclos6,7 7 8 1 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of 9 Surface Waters – Research and Management, Dübendorf, Switzerland 10 2 Department of Earth Sciences, ETHZ, Zürich, Switzerland 11 3 Physics of Aquatic Systems Laboratory, Margaretha Kamprad Chair, École 12 Polytechnique Fédérale de Lausanne, Institute of Environmental Engineering, 13 Lausanne, Switzerland 14 4 Institute of Geological Sciences and Oeschger Centre for Climate Change Research, 15 University of Bern, Bern, Switzerland 16 5 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of 17 Surface Waters - Research and Management, Kastanienbaum, Switzerland 18 6 Department of Earth Sciences, University of Geneva, Geneva, Switzerland 19 7 Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland 20 21 Corresponding author: Nathalie Dubois, [email protected] 22 23 Associate Editor – Fabrizio Felletti 24 Short Title – Mass transport events linked to river correction 25 This document is the accepted manuscript version of the following article: Dubois, N., Råman Vinnå, L., Rabold, M., Hilbe, M., Anselmetti, F. S., Wüest, A., … Girardclos, S. (2019). Subaquatic slope instabilities: the aftermath of river correction and artificial dumps in Lake Biel (Switzerland). Sedimentology. https://doi.org/10.1111/sed.12669 2 26 ABSTRACT 27 River engineering projects are developing rapidly across the globe, drastically 28 modifying water courses and sediment transfer.
    [Show full text]
  • The Periodicity of Phytoplankton in Lake Constance (Bodensee) in Comparison to Other Deep Lakes of Central Europe
    Hydrobiologia 138: 1-7, (1986). 1 © Dr W. Junk Publishers, Dordrecht - Printed in the Netherlands. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of central Europe Ulrich Sommer University of Constance, Institute of Limnology, PO. Box 5560, D-7750 Constance, FRG New address: Max Planck Institute of Limnology, PO. Box 165, D-2320 Plon, FRG Keywords: phytoplankton succession, inter-lake comparison, oligotrophic-eutrophic gradient, central Eu- ropean lakes Abstract Phytoplankton periodicity has been fairly regular during the years 1979 to 1982 in Lake Constance. Algal mass growth starts with the vernal onset of stratification; Cryptophyceae and small centric diatoms are the dominant algae of the spring bloom. In June grazing by zooplankton leads to a 'clear-water phase' dominated by Cryptophyceae. Algal summer growth starts under nutrient-saturated conditions with a dominance of Cryptomonas spp. and Pandorinamorum. Depletion of soluble reactive phosphorus is followed by a domi- nance of pennate and filamentous centric diatoms, which are replaced by Ceratium hirundinella when dis- solved silicate becomes depleted. Under calm conditions there is a diverse late-summer plankton dominated by Cyanophyceae and Dinobryon spp.; more turbulent conditions and silicon resupply enable a second sum- mer diatom growth phase in August. The autumnal development leads from a Mougeotia - desmid assem- blage to a diatom plankton in late autumn and winter. Inter-lake comparison of algal seasonality includes in ascending order of P-richness K6nigsee, Attersee, Walensee, Lake Lucerne, Lago Maggiore, Ammersee, Lake Ziirich, Lake Geneva, Lake Constance. The oligo- trophic lakes have one or two annual maxima of biomass; after the vernal maximum there is a slowly develop- ing summer depression and sometimes a second maximum in autumn.
    [Show full text]
  • Switzerland Vacation
    Switzerland Vacation Bruce McKay www.Travel-Pix.ca Switzerland Vacation Contents Contents 2 Introduction 3 Maps 4 Welcome 6 Interlaken 9 Harder Kulm 11 Lauterbrunnen 17 Murren 27 Lake Brienz 36 Schynige Platte 44 Lake Thun 46 Rain Day 50 Zurich 54 Lake Zurich 56 Switzerland Vacation Introduction After I first visited Switzerland and had a great time I often told friends it was a place I'd love to revisit. An opportunity for that arose when I booked on for the European Castles Tours "Three Corners of Europe – Black Forest, Alsace and Switzerland". That tour was designed for air travel to and from Zurich, so there was an easy way to add an extension of my own. The last full day of the tour was at Lucerne, and I was able to plan my extension starting there. I didn't want to repeat everything I'd done before, but I did know there was a magic region where I'd love to spend some more time. The Bernese Oberland in central Switzerland extends south into the Bernese Alps. Its mixture of mountains, lakes, and valleys has made it very popular, not only for sightseeing but also for hiking and active sports, both winter and summer. I visited the most famous sites on an earlier tour. This was a more relaxed visit. I stayed in Interlaken, the regional transportation hub, and made day excursions from there. The photos from my longer tour are in the Switzerland-1 and -2 PDFs, and the ones from the first part of this trip are on the "Three Corners" page.
    [Show full text]
  • Active Faulting in Lake Constance (Austria, Germany, Switzerland) Unraveled by Multi-Vintage Reflection Seismic Data
    ORIGINAL RESEARCH published: 11 August 2021 doi: 10.3389/feart.2021.670532 Active Faulting in Lake Constance (Austria, Germany, Switzerland) Unraveled by Multi-Vintage Reflection Seismic Data S.C. Fabbri 1*, C. Affentranger 1, S. Krastel 2, K. Lindhorst 2, M. Wessels 3, Herfried Madritsch 4, R. Allenbach 5, M. Herwegh 1, S. Heuberger 6, U. Wielandt-Schuster 7, H. Pomella 8, T. Schwestermann 8 and F.S. Anselmetti 1 1Institute of Geological Sciences and Oeschger Centre of Climate Change Research, University of Bern, Bern, Switzerland, 2Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 3Institut für Seenforschung der LUBW, Langenargen, Germany, 4National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen, Switzerland, 5Federal Office of Topography Swisstopo, Wabern, Switzerland, 6Department of Earth Sciences, ETH Zürich, Zürich, Switzerland, 7Landesamt für Geologie, Rohstoffe und Bergbau Baden-Württemberg, Freiburg i. Br., Germany, 8Department of Geology, University of Innsbruck, Innsbruck, Austria Probabilistic seismic hazard assessments are primarily based on instrumentally recorded Edited by: and historically documented earthquakes. For the northern part of the European Alpine Francesco Emanuele Maesano, Istituto Nazionale di Geofisicae Arc, slow crustal deformation results in low earthquake recurrence rates and brings up the Vulcanologia (INGV), Italy necessity to extend our perspective beyond the existing earthquake catalog. The Reviewed by: overdeepened basin of Lake Constance (Austria, Germany, and Switzerland), located Chiara Amadori, within the North-Alpine Molasse Basin, is investigated as an ideal (neo-) tectonic archive. University of Pavia, Italy Alessandro Maria Michetti, The lake is surrounded by major tectonic structures and constrained via the North Alpine University of Insubria, Italy Front in the South, the Jura fold-and-thrust belt in the West, and the Hegau-Lake *Correspondence: Constance Graben System in the North.
    [Show full text]
  • Quaternary Glaciation History of Northern Switzerland
    Quaternary Science Journal GEOzOn SCiEnCE MEDiA Volume 60 / number 2–3 / 2011 / 282–305 / DOi 10.3285/eg.60.2-3.06 iSSn 0424-7116 E&G www.quaternary-science.net Quaternary glaciation history of northern switzerland Frank Preusser, Hans Rudolf Graf, Oskar keller, Edgar krayss, Christian Schlüchter Abstract: A revised glaciation history of the northern foreland of the Swiss Alps is presented by summarising field evidence and chronologi- cal data for different key sites and regions. The oldest Quaternary sediments of Switzerland are multiphase gravels intercalated by till and overbank deposits (‘Deckenschotter’). Important differences in the base level within the gravel deposits allows the distin- guishing of two complex units (‘Höhere Deckenschotter’, ‘Tiefere Deckenschotter’), separated by a period of substantial incision. Mammal remains place the older unit (‘Höhere Deckenschotter’) into zone MN 17 (2.6–1.8 Ma). Each of the complexes contains evidence for at least two, but probably up-to four, individual glaciations. In summary, up-to eight Early Pleistocene glaciations of the Swiss alpine foreland are proposed. The Early Pleistocene ‘Deckenschotter’ are separated from Middle Pleistocene deposition by a time of important erosion, likely related to tectonic movements and/or re-direction of the Alpine Rhine (Middle Pleistocene Reorganisation – MPR). The Middle-Late Pleistocene comprises four or five glaciations, named Möhlin, Habsburg, Hagenholz (uncertain, inadequately documented), Beringen, and Birrfeld after their key regions. The Möhlin Glaciation represents the most extensive glaciation of the Swiss alpine foreland while the Beringen Glaciation had a slightly lesser extent. The last glacial cycle (Birrfeld Glaciation) probably comprises three independent glacial advances dated to ca.
    [Show full text]
  • Interlaken, a Picturesque Swiss Town, U
    Reserve your Swiss Alps trip today! Trip #:2-25308 PROGRAM DATES . e d t l Send to MIT Alumni Travel Program g e S a v June 10-18, 2020 t Land Program with Air dates: d s a 600 Memorial Drive, W98-2nd Floor d i r e o T t a r Cambridge, MA 02139 P I P o . June 11-18, 2020 H Land Program without Air dates: s S A . e Please contact the MIT Alumni Travel Program at 800-992-6749 or AHI Travel at r U P 800-323-7373 with questions regarding this trip or to make a reservation. Dear MIT Alumni and Friends, Full Legal Name (exactly as it appears on passport) LAND PROGRAM Embark on a journey through the majestic Swiss Alps. Tucked into the cultural and ! 1) _______________________________________________________________________ geographic heart of Europe, Switzerland boasts breathtaking mountains, crystalline e SwissINTERLAKAEN lp s Title First Middle Last Full Price Special Savings Special Price* r lakes and crisp Alpine air. Stay for seven nights in Interlaken, a picturesque Swiss town, u $3,545 $250 $3,295 t Email: ___________________________________________ ___________________ and spend your days discovering the treasures of this epic destination. MIT Affiliation Uncover the beauty of the Bernese Oberland during hikes, rail journeys, lake cruises, n *Special Price valid if booked by the date found on the address panel. e 2) _______________________________________________________________________ VAT is an additional $295 per person. and funicular and gondola rides. Visit iconic Swiss locales, including Grindelwald and v Title First Middle Last All prices quoted are in USD, per person, based on double occupancy and the capital city of Bern.
    [Show full text]
  • Effects of Alpine Hydropower Dams on Particle Transport and Lacustrine
    Aquat. Sci. 69 (2007) 179 – 198 1015-1621/07/020179-20 Aquatic Sciences DOI 10.1007/s00027-007-0875-4 Eawag, Dbendorf 2007 Research Article Effects of Alpine hydropower dams on particle transport and lacustrine sedimentation Flavio S. Anselmetti1, *, Raphael Bhler1, 4, David Finger2, Stphanie Girardclos1, Andy Lancini1, 5, Christian Rellstab3, 6 and Mike Sturm3 1 Geological Institute, ETH Zrich, Universittsstrasse 16, CH-8092 Zrich, Switzerland 2 Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland 3 Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dbendorf, Switzerland 4 Current address: Jckli AG, CH-8048 Zrich, Switzerland 5 Current address: Schenker Korner & Partner GmbH, CH-6006 Luzern, Switzerland 6 Institute of Integrative Biology, ETH Zrich, CH-8092 Zrich, Switzerland Received: 24 July 2006; revised manuscript accepted: 23 December 2006 Abstract. The effects of high-alpine hydropower Brienz by two thirds. Modeling the particle budgets in damming on lacustrine sedimentation and transport the Aare with and without dams indicates that the fine of solid particles were investigated in the glaciated fraction budgets are only slightly affected by dam- Grimsel area and in downstream Lake Brienz, pro- ming, but that the reservoirs cause a shift in seasonal viding quantitative denudation rates and sediment runoff timing resulting in increasing and decreasing yield on a source-sink basis. A total of 271 kt/yr of solid particle transport in winter and summer, respectively. particles entered the Grimsel reservoirs on average in Thus, hydrodamming alters mostly deltaic sedimenta- the last 71 years, mostly by turbiditic underflowsACHTUNGRE that tion in Lake Brienz, where the coarse fraction is focused sedimentation in depocenters upstreamACHTUNGRE of deposited, whereas fine grained distal sedimentation obstacles such as bedrock ridges, submerged mor- and varve formation on lateral slopes are less affected.
    [Show full text]
  • Gemeindenachrichten
    GEMEINDENACHRICHTEN 03/2019 Editorial Auch ein anderes Vorhaben, dass aller- dings eher eine Pflicht- als eine Kürauf- gabe ist, steht kurz vor seiner Vollen- Liebe Quartnerinnen und Quartner dung: Das Hochwasserschutzprojekt Endlich steht er, der Leuchtturm auf Chammenbach ist weitestgehend ab- der Hafenmole in Unterterzen. Und er geschlossen. Zwar steht die Schluss- löst die Erwartungen ein, die an solche abrechnung noch aus, doch dürfen wir Installation geknüpft sind. Er weckt In- davon ausgehen, dass die Kosten im teresse, bringt Diskussionen in Gang erwarteten Rahmen liegen werden. und lässt kreative Ideen entstehen. So Geplant ist selbstverständlich auch ei- lockt die Hafenmole neugierige Besu- ne Einweihungsfeier, die am 30. Au- cher an, es werden Selfies geschos- gust 2019 ab 17.00 Uhr stattfinden sen, Flugaufnahmen mit Drohnen ge- wird. Gerne laden wir dazu unsere Ein- macht und Medienberichte verfasst. wohnerinnen und Einwohner ein. Das Bereits haben sich auch Personen ge- Festprogramm steht noch nicht im De- meldet, die gerne Leuchtturmwärterin tail fest. Sicher ist, dass die Ansprache werden möchten und es kursiert sogar kurz sein und neben Speis und Trank ein Wappen für das Dorf Unterterzen, auch etwas Besonderes für kleine und auf dem der Leuchtturm neben dem grosse Kinder geboten wird. Lassen Bischofsstab platziert ist. Farblich passt Sie sich überraschen und reservieren er ja bestens zu den traditionellen Sie sich einen gemütlichen Abend am Wappen in unserer Gemeinde. Chammenbach. Natürlich hat unsere neue Attraktion Erich Zoller, Gemeindepräsident aber noch Steigerungspotential. Ideen stehen schon einige im Raum. Ange- regt werden bisher Sitzgelegenheit, Beleuchtung und Einstiegsmöglichkei- ten. Entschieden ist zwar noch nichts Konkretes.
    [Show full text]
  • Switzerland Itinerary
    SWITZERLAND ITINERARY 8 DAYS, 8 NIGHTS — DAY 1 — Welcome to Switzerland! We suggest arriving in Zurich prior to this day so you have time to walk the timeless streets of old town Zurich. First thing in the morning we will meet for an orientation breakfast and depart from Zurich by vehicle to the Alpstein mountain range of northeast Switzerland. We will check into our hotel in the village of Appenzell and set off immediately on our first adventure. We will embark on a dreamlike hike taking in a stunning mountain, Saxer Lucke, before continuing on to Falensee Lake. We’ll enjoy a hearty lake side lunch at a local mountain hut. We would suggest trying a local favorite: A steaming plate of rosti smothered in Appenzeller cheese. We’ll then return to the hotel to rest or do some sightseeing at one of the nearby castles. — DAY 2 — After breakfast, we will embark on a hike that epitomizes the incredible vistas of the Swiss Alps. It starts with a cableway ride to some historic cultural stops. We’ll pass through the Wildkirchli Museum caves and stop at the must-see cliff-side Aescher restaurant. We will spend the rest of the day hiking across magnificent terrain with views spanning to three countries filled with wildflowers, lakes, and massifs. You will pass mountain farms that make the famous Appenzell cheeses from their herds of cows freely grazing on the slopes. We’ll end the day with dinner beside Seealp Lake before returning to our hotel. EPICONEADVENTURES.COM — DAY 3 — We’ll take a slower pace today as we leave Appenzell for the famed Lauterbrunnen Valley and the cliff top village of Murren where we will lodge for the next two nights.
    [Show full text]
  • Gemeindenachrichten
    GEMEINDENACHRICHTEN 01/2020 Editorial Die Auslieferung der mobilen Küche und der drei Kompressor-Anhänger für Liebe Einwohnerinnen und Einwohner den Zivilschutz konnten sie kürzlich aus der Tagespresse entnehmen und es steht noch weiteres Korps Material zur massive Anpassungen über sich erge- Auslieferung an die RZSO bereit. Die hen lassen müssen. Es ist fast nichts Finanzierung des zu übernehmenden mehr so, wie es vor zwei Jahren einmal Korps Materials wird über die Schutz- war. Aufgrund der gesetzlichen Vor- raum Ersatzabgaben getätigt und be- schriften des Kantons St. Gallen muss- lastet die laufende Rechnung somit te auf anfangs 2019 die Zivilschutzre- nicht. Generell sind aber die Kosten für form 2015+ umgesetzt werden. Aus Zivilschutzaufgaben infolge der perso- den früher 23 Regionalen Zivilschutzor- nellen Aufstockung angestiegen. ganisationen (RZSO) sind durch die Reform nur noch acht übriggeblieben. Ein Meilenstein in der Organisation der Im Sarganserland mussten die RZSO RZSO Sarganserland war die Zertifizie- Walensee und RZSO Pizol zur RZSO rung durch die Inspektoren des Kanto- Sarganserland zusammengehen. nalen Amtes für Militär und Zivilschutz anfangs März 2019. Dies ist ein Grad- Die neuen Strukturen bildeten nun die messer für die Einsatzbereitschaft einer Grundlagen für den Ausbau der perso- Zivilschutzorganisation. Es bestätigt, nellen wie materiellen Infrastruktur. Auf dass die RZSO Sarganserland für ei- Grund der Grösse der neuen RZSO nen Einsatz zur Rettung von Mensch Sarganserland musste die neu ge- und Tier bereit ist, und alle dazu not- schaffene Stelle einer Zivilschutzstel- wendigen Vorkehrungen getroffen hat. lenleitung mit 40% besetzt werden. Die Wir können beruhigt und stolz auf eine Kommandostellen sind auf 140% ange- gut funktionierende hoben worden, damit den überarbeite- und einsatzbereite ten Anforderungen von Bund und Kan- RZSO Sarganser- ton an den Zivilschutz, Rechnung ge- land blicken, die im tragen werden konnte.
    [Show full text]