The B-L Phase Transition – Implications for Cosmology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Topic 3 Evidence for the Big Bang
Topic 3 Primordial nucleosynthesis Evidence for the Big Bang ! Back in the 1920s it was generally thought that the Universe was infinite ! However a number of experimental observations started to question this, namely: • Red shift and Hubble’s Law • Olber’s Paradox • Radio sources • Existence of CMBR Red shift and Hubble’s Law ! We have already discussed red shift in the context of spectral lines (Topic 2) ! Crucially Hubble discovered that the recessional velocity (and hence red shift) of galaxies increases linearly with their distance from us according to the famous Hubble Law V = H0d where H0 = 69.3 ±0.8 (km/s)/Mpc and 1/H0 = Age of Universe Olbers’ paradox ! Steady state Universe is: infinite, isotropic or uniform (sky looks the same in all directions), homogeneous (our location in the Universe isn’t special) and is not expanding ! Therefore an observer choosing to look in any direction should eventually see a star ! This would lead to a night sky that is uniformly bright (as a star’s surface) ! This is not the case and so the assumption that the Universe is infinite must be flawed Radio sources ! Based on observations of radio sources of different strengths (so-called 2C and 3C surveys) ! The number of radio sources versus source strength concludes that the Universe has evolved from a denser place in the past ! This again appears to rule out the so-called Steady State Universe and gives support for the Big Bang Theory Cosmic Microwave Background ! CMBR was predicted as early as 1949 by Alpher and Herman (Gamow group) as a “remnant -
Inflation, Large Branes, and the Shape of Space
Inflation, Large Branes, and the Shape of Space Brett McInnes National University of Singapore email: [email protected] ABSTRACT Linde has recently argued that compact flat or negatively curved spatial sections should, in many circumstances, be considered typical in Inflationary cosmologies. We suggest that the “large brane instability” of Seiberg and Witten eliminates the negative candidates in the context of string theory. That leaves the flat, compact, three-dimensional manifolds — Conway’s platycosms. We show that deep theorems of Schoen, Yau, Gromov and Lawson imply that, even in this case, Seiberg-Witten instability can be avoided only with difficulty. Using a specific cosmological model of the Maldacena-Maoz type, we explain how to do this, and we also show how the list of platycosmic candidates can be reduced to three. This leads to an extension of the basic idea: the conformal compactification of the entire Euclidean spacetime also has the topology of a flat, compact, four-dimensional space. arXiv:hep-th/0410115v2 19 Oct 2004 1. Nearly Flat or Really Flat? Linde has recently argued [1] that, at least in some circumstances, we should regard cosmological models with flat or negatively curved compact spatial sections as the norm from an Inflationary point of view. Here we wish to argue that cosmic holography, in the novel form proposed by Maldacena and Maoz [2], gives a deep new interpretation of this idea, and also sharpens it very considerably to exclude the negative case. This focuses our attention on cosmological models with flat, compact spatial sections. Current observations [3] show that the spatial sections of our Universe [as defined by observers for whom local isotropy obtains] are fairly close to being flat: the total density parameter Ω satisfies Ω = 1.02 0.02 at 95% confidence level, if we allow the imposition ± of a reasonable prior [4] on the Hubble parameter. -
Eternal Inflation and Its Implications
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL J. Phys. A: Math. Theor. 40 (2007) 6811–6826 doi:10.1088/1751-8113/40/25/S25 Eternal inflation and its implications Alan H Guth Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA E-mail: [email protected] Received 8 February 2006 Published 6 June 2007 Online at stacks.iop.org/JPhysA/40/6811 Abstract Isummarizetheargumentsthatstronglysuggestthatouruniverseisthe product of inflation. The mechanisms that lead to eternal inflation in both new and chaotic models are described. Although the infinity of pocket universes produced by eternal inflation are unobservable, it is argued that eternal inflation has real consequences in terms of the way that predictions are extracted from theoretical models. The ambiguities in defining probabilities in eternally inflating spacetimes are reviewed, with emphasis on the youngness paradox that results from a synchronous gauge regularization technique. Although inflation is generically eternal into the future, it is not eternal into the past: it can be proven under reasonable assumptions that the inflating region must be incomplete in past directions, so some physics other than inflation is needed to describe the past boundary of the inflating region. PACS numbers: 98.80.cQ, 98.80.Bp, 98.80.Es 1. Introduction: the successes of inflation Since the proposal of the inflationary model some 25 years ago [1–4], inflation has been remarkably successful in explaining many important qualitative and quantitative properties of the universe. In this paper, I will summarize the key successes, and then discuss a number of issues associated with the eternal nature of inflation. -
8.962 General Relativity, Spring 2017 Massachusetts Institute of Technology Department of Physics
8.962 General Relativity, Spring 2017 Massachusetts Institute of Technology Department of Physics Lectures by: Alan Guth Notes by: Andrew P. Turner May 26, 2017 1 Lecture 1 (Feb. 8, 2017) 1.1 Why general relativity? Why should we be interested in general relativity? (a) General relativity is the uniquely greatest triumph of analytic reasoning in all of science. Simultaneity is not well-defined in special relativity, and so Newton's laws of gravity become Ill-defined. Using only special relativity and the fact that Newton's theory of gravity works terrestrially, Einstein was able to produce what we now know as general relativity. (b) Understanding gravity has now become an important part of most considerations in funda- mental physics. Historically, it was easy to leave gravity out phenomenologically, because it is a factor of 1038 weaker than the other forces. If one tries to build a quantum field theory from general relativity, it fails to be renormalizable, unlike the quantum field theories for the other fundamental forces. Nowadays, gravity has become an integral part of attempts to extend the standard model. Gravity is also important in the field of cosmology, which became more prominent after the discovery of the cosmic microwave background, progress on calculations of big bang nucleosynthesis, and the introduction of inflationary cosmology. 1.2 Review of Special Relativity The basic assumption of special relativity is as follows: All laws of physics, including the statement that light travels at speed c, hold in any inertial coordinate system. Fur- thermore, any coordinate system that is moving at fixed velocity with respect to an inertial coordinate system is also inertial. -
Quantifying the Sensitivity of Big Bang Nucleosynthesis to Isospin Breaking
W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 5-2016 Quantifying the Sensitivity of Big Bang Nucleosynthesis to Isospin Breaking Matthew Ramin Hamedani Heffernan College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Nuclear Commons Recommended Citation Heffernan, Matthew Ramin Hamedani, "Quantifying the Sensitivity of Big Bang Nucleosynthesis to Isospin Breaking" (2016). Undergraduate Honors Theses. Paper 974. https://scholarworks.wm.edu/honorstheses/974 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Quantifying the Sensitivity of Big Bang Nucleosynthesis to Isospin Breaking Matthew Heffernan Advisor: Andr´eWalker-Loud Abstract We perform a quantitative study of the sensitivity of Big Bang Nucleosynthesis (BBN) to the two sources of isospin breaking in the Standard Model (SM), the split- 1 ting between the down and up quark masses, δq (md mu) and the electromagnetic ≡ 2 − coupling constant, αf:s:. To very good approximation, the neutron-proton mass split- ting, ∆m mn mp, depends linearly upon these two quantities. In turn, BBN is very ≡ − sensitive to ∆m. A simultaneous study of both of these sources of isospin violation had not yet been performed. Quantifying the simultaneous sensitivity of BBN to δq and αf:s: is interesting as ∆m increases with increasing δq but decreases with increasing αf:s:. A combined analysis may reveal weaker constraints upon possible variations of these fundamental constants of the SM. -
Arxiv:1707.01004V1 [Astro-Ph.CO] 4 Jul 2017
July 5, 2017 0:15 WSPC/INSTRUCTION FILE coc2ijmpe International Journal of Modern Physics E c World Scientific Publishing Company Primordial Nucleosynthesis Alain Coc Centre de Sciences Nucl´eaires et de Sciences de la Mati`ere (CSNSM), CNRS/IN2P3, Univ. Paris-Sud, Universit´eParis–Saclay, Bˆatiment 104, F–91405 Orsay Campus, France [email protected] Elisabeth Vangioni Institut d’Astrophysique de Paris, UMR-7095 du CNRS, Universit´ePierre et Marie Curie, 98 bis bd Arago, 75014 Paris (France), Sorbonne Universit´es, Institut Lagrange de Paris, 98 bis bd Arago, 75014 Paris (France) [email protected] Received July 5, 2017 Revised Day Month Year Primordial nucleosynthesis, or big bang nucleosynthesis (BBN), is one of the three evi- dences for the big bang model, together with the expansion of the universe and the Cos- mic Microwave Background. There is a good global agreement over a range of nine orders of magnitude between abundances of 4He, D, 3He and 7Li deduced from observations, and calculated in primordial nucleosynthesis. However, there remains a yet–unexplained discrepancy of a factor ≈3, between the calculated and observed lithium primordial abundances, that has not been reduced, neither by recent nuclear physics experiments, nor by new observations. The precision in deuterium observations in cosmological clouds has recently improved dramatically, so that nuclear cross sections involved in deuterium BBN need to be known with similar precision. We will shortly discuss nuclear aspects re- lated to BBN of Li and D, BBN with non-standard neutron sources, and finally, improved sensitivity studies using Monte Carlo that can be used in other sites of nucleosynthesis. -
Big Bang Blunder Bursts the Multiverse Bubble
WORLD VIEW A personal take on events IER P P. PA P. Big Bang blunder bursts the multiverse bubble Premature hype over gravitational waves highlights gaping holes in models for the origins and evolution of the Universe, argues Paul Steinhardt. hen a team of cosmologists announced at a press world will be paying close attention. This time, acceptance will require conference in March that they had detected gravitational measurements over a range of frequencies to discriminate from fore- waves generated in the first instants after the Big Bang, the ground effects, as well as tests to rule out other sources of confusion. And Worigins of the Universe were once again major news. The reported this time, the announcements should be made after submission to jour- discovery created a worldwide sensation in the scientific community, nals and vetting by expert referees. If there must be a press conference, the media and the public at large (see Nature 507, 281–283; 2014). hopefully the scientific community and the media will demand that it According to the team at the BICEP2 South Pole telescope, the is accompanied by a complete set of documents, including details of the detection is at the 5–7 sigma level, so there is less than one chance systematic analysis and sufficient data to enable objective verification. in two million of it being a random occurrence. The results were The BICEP2 incident has also revealed a truth about inflationary the- hailed as proof of the Big Bang inflationary theory and its progeny, ory. The common view is that it is a highly predictive theory. -
Sacred Rhetorical Invention in the String Theory Movement
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public. -
Origin and Evolution of the Universe Baryogenesis
Physics 224 Spring 2008 Origin and Evolution of the Universe Baryogenesis Lecture 18 - Monday Mar 17 Joel Primack University of California, Santa Cruz Post-Inflation Baryogenesis: generation of excess of baryon (and lepton) number compared to anti-baryon (and anti-lepton) number. in order to create the observed baryon number today it is only necessary to create an excess of about 1 quark and lepton for every ~109 quarks+antiquarks and leptons +antileptons. Other things that might happen Post-Inflation: Breaking of Pecci-Quinn symmetry so that the observable universe is composed of many PQ domains. Formation of cosmic topological defects if their amplitude is small enough not to violate cosmological bounds. There is good evidence that there are no large regions of antimatter (Cohen, De Rujula, and Glashow, 1998). It was Andrei Sakharov (1967) who first suggested that the baryon density might not represent some sort of initial condition, but might be understandable in terms of microphysical laws. He listed three ingredients to such an understanding: 1. Baryon number violation must occur in the fundamental laws. At very early times, if baryon number violating interactions were in equilibrium, then the universe can be said to have “started” with zero baryon number. Starting with zero baryon number, baryon number violating interactions are obviously necessary if the universe is to end up with a non-zero asymmetry. As we will see, apart from the philosophical appeal of these ideas, the success of inflationary theory suggests that, shortly after the big bang, the baryon number was essentially zero. 2. CP-violation: If CP (the product of charge conjugation and parity) is conserved, every reaction which produces a particle will be accompanied by a reaction which produces its antiparticle at precisely the same rate, so no baryon number can be generated. -
The Center for Theoretical Physics: the First 50 Years
CTP50 The Center for Theoretical Physics: The First 50 Years Saturday, March 24, 2018 50 SPEAKERS Andrew Childs, Co-Director of the Joint Center for Quantum Information and Computer CTPScience and Professor of Computer Science, University of Maryland Will Detmold, Associate Professor of Physics, Center for Theoretical Physics Henriette Elvang, Professor of Physics, University of Michigan, Ann Arbor Alan Guth, Victor Weisskopf Professor of Physics, Center for Theoretical Physics Daniel Harlow, Assistant Professor of Physics, Center for Theoretical Physics Aram Harrow, Associate Professor of Physics, Center for Theoretical Physics David Kaiser, Germeshausen Professor of the History of Science and Professor of Physics Chung-Pei Ma, J. C. Webb Professor of Astronomy and Physics, University of California, Berkeley Lisa Randall, Frank B. Baird, Jr. Professor of Science, Harvard University Sanjay Reddy, Professor of Physics, Institute for Nuclear Theory, University of Washington Tracy Slatyer, Jerrold Zacharias CD Assistant Professor of Physics, Center for Theoretical Physics Dam Son, University Professor, University of Chicago Jesse Thaler, Associate Professor, Center for Theoretical Physics David Tong, Professor of Theoretical Physics, University of Cambridge, England and Trinity College Fellow Frank Wilczek, Herman Feshbach Professor of Physics, Center for Theoretical Physics and 2004 Nobel Laureate The Center for Theoretical Physics: The First 50 Years 3 50 SCHEDULE 9:00 Introductions and Welcomes: Michael Sipser, Dean of Science; CTP Peter -
2012-2013 Chair James Rosenzweig
Department of Physics Astronomy ANNUAL REPORT 2013 219728_AnnualReport.indd 1 11/18/13 4:02 PM UCLA Physics and Astronomy Department 2012-2013 Chair James Rosenzweig Chief Administrative Officer Will Spencer Feature Article Eric Hudson Editorial Assistants Corinna Koehnenkamp, D.L. MacLaughlan-Dumes, Laurie Ultan-Thomas Design Mary Jo Robertson © 2013 by the Regents of the University of California All rights reserved. Requests for additional copies of the publication UCLA Department of Physics and Astronomy 2012-2013 Annual Report may be sent to: Office of the Chair UCLA Department of Physics and Astronomy 430 Portola Plaza Box 951547 Los Angeles California 90095-1547 For more information on the Department see our website: http://www.pa.ucla.edu/ UCLA DEPARTMENT OF PHYSICS & ASTRONOMY 219728_AnnualReport.indd 2 11/18/13 4:02 PM Department of Physics Astronomy& 2013 Annual Report UNIVERSITY OF CALIFORNIA, LOS ANGELES 219728_AnnualReport.indd 3 11/18/13 4:02 PM CONTENTS FEATURE ARTICLE: P.7 “Harnessing quantum interactions for the future of science and technology” GIVING TO THE DEPARTMENT P.15 UCLA ALUMNI P.18 ASTRONOMY & ASTROPHYSICS P.19 ASTROPARTICLE PHYSICS P.31 PHYSICS RESEARCH HIGHLIGHTS P.37 PHYSICS & ASTRONOMY FACULTY/RESEARCHERS P.60 DEPARTMENT NEWS P.61 OUTREACH-ASTRONOMY LIVE P. 64 GRADUATION 2012-13 P.66 219728_AnnualReport.indd 4 11/18/13 4:02 PM Message from the Chair As Chair of the UCLA Department of Physics and Astronomy, it is with pride that I present to you our 2013 Annual Report. This document is intended to give an overview of the departmental accomplishments recorded in the last year, extending from recog- nition of faculty excellence in teaching and research, to the welcoming of new members to our ranks. -
Finding the Radiation from the Big Bang
Finding The Radiation from the Big Bang P. J. E. Peebles and R. B. Partridge January 9, 2007 4. Preface 6. Chapter 1. Introduction 13. Chapter 2. A guide to cosmology 14. The expanding universe 19. The thermal cosmic microwave background radiation 21. What is the universe made of? 26. Chapter 3. Origins of the Cosmology of 1960 27. Nucleosynthesis in a hot big bang 32. Nucleosynthesis in alternative cosmologies 36. Thermal radiation from a bouncing universe 37. Detecting the cosmic microwave background radiation 44. Cosmology in 1960 52. Chapter 4. Cosmology in the 1960s 53. David Hogg: Early Low-Noise and Related Studies at Bell Lab- oratories, Holmdel, N.J. 57. Nick Woolf: Conversations with Dicke 59. George Field: Cyanogen and the CMBR 62. Pat Thaddeus 63. Don Osterbrock: The Helium Content of the Universe 70. Igor Novikov: Cosmology in the Soviet Union in the 1960s 78. Andrei Doroshkevich: Cosmology in the Sixties 1 80. Rashid Sunyaev 81. Arno Penzias: Encountering Cosmology 95. Bob Wilson: Two Astronomical Discoveries 114. Bernard F. Burke: Radio astronomy from first contacts to the CMBR 122. Kenneth C. Turner: Spreading the Word — or How the News Went From Princeton to Holmdel 123. Jim Peebles: How I Learned Physical Cosmology 136. David T. Wilkinson: Measuring the Cosmic Microwave Back- ground Radiation 144. Peter Roll: Recollections of the Second Measurement of the CMBR at Princeton University in 1965 153. Bob Wagoner: An Initial Impact of the CMBR on Nucleosyn- thesis in Big and Little Bangs 157. Martin Rees: Advances in Cosmology and Relativistic Astro- physics 163.