Pseudorchis Albida (L.) Á
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus. -
75. LIPARIS Richard, De Orchid. Eur. 21, 30, 38. 1817, Nom. Cons. 羊耳蒜属 Yang Er Suan Shu Chen Xinqi (陈心启 Chen Sing-Chi); Paul Ormerod, Jeffrey J
Flora of China 25: 211–228. 2009. 75. LIPARIS Richard, De Orchid. Eur. 21, 30, 38. 1817, nom. cons. 羊耳蒜属 yang er suan shu Chen Xinqi (陈心启 Chen Sing-chi); Paul Ormerod, Jeffrey J. Wood Alipsa Hoffmannsegg; Anistylis Rafinesque; Diteilis Rafinesque; Dituilis Rafinesque; Empusa Lindley; Empusaria Reichen- bach; Iebine Rafinesque; Leptorkis Thouars; Malaxis sect. Platystylis Blume; Mesoptera Rafinesque; Paliris Dumortier; Platystylis (Blume) Lindley (1830), not Sweet (1828); Pseudorchis Gray (1821), not Séguier (1754); Sturmia Reichenbach (1826), not Hoppe (1799). Herbs, terrestrial, lithophytic, or epiphytic, rhizomatous, rarely mycotrophic and leaves reduced to scales. Stems pseudobulbous, sometimes appearing as a many-noded, fleshy stem, clustered or not, when young covered by sterile bracts. Leaves 1 to several, linear to ovate or elliptic, plicate or not, thinly textured to leathery, basal or cauline (terrestrial species), or arising from apex or sub- terminal nodes of pseudobulbs (epiphytic species), articulate or not at base. Inflorescences erect to pendulous, racemose, laxly or densely many flowered; floral bracts persistent, small. Flowers small or medium-sized, yellow, green, orange, or purple, often translucent, usually resupinate. Sepals spreading, dorsal sepal free, lateral sepals sometimes fused for part or all of their length. Petals free, often reflexed, often linear and unlike sepals; lip often reflexed, ovate, oblong, or flabellate, entire or lobed, usually with a basal callus, lacking a spur. Column incurved-arcuate, clavate, long, winged at apex and sometimes at base; anther cap attached by a slen- der filament, 2-locular; pollinia 4 in 2 pairs, waxy, ovoid, bilaterally flattened, each pair with a small viscidium; rostellum thinly textured, blunt. -
Phylogenetics of Tribe Orchideae (Orchidaceae: Orchidoideae)
Annals of Botany 110: 71–90, 2012 doi:10.1093/aob/mcs083, available online at www.aob.oxfordjournals.org Phylogenetics of tribe Orchideae (Orchidaceae: Orchidoideae) based on combined DNA matrices: inferences regarding timing of diversification and evolution of pollination syndromes Luis A. Inda1,*, Manuel Pimentel2 and Mark W. Chase3 1Escuela Polite´cnica Superior de Huesca, Universidad de Zaragoza, carretera de Cuarte sn. 22071 Huesca, Spain, 2Facultade de Ciencias, Universidade da Corun˜a, Campus da Zapateira sn. 15071 A Corun˜a, Spain and 3Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK * For correspondence. E-mail [email protected] Received: 3 November 2011 Returned for revision: 9 December 2011 Accepted: 1 March 2012 Published electronically: 25 April 2012 † Background and aims Tribe Orchideae (Orchidaceae: Orchidoideae) comprises around 62 mostly terrestrial genera, which are well represented in the Northern Temperate Zone and less frequently in tropical areas of both the Old and New Worlds. Phylogenetic relationships within this tribe have been studied previously using only nuclear ribosomal DNA (nuclear ribosomal internal transcribed spacer, nrITS). However, different parts of the phylogenetic tree in these analyses were weakly supported, and integrating information from different plant genomes is clearly necessary in orchids, where reticulate evolution events are putatively common. The aims of this study were to: (1) obtain a well-supported and dated phylogenetic hypothesis for tribe Orchideae, (ii) assess appropriateness of recent nomenclatural changes in this tribe in the last decade, (3) detect possible examples of reticulate evolution and (4) analyse in a temporal context evolutionary trends for subtribe Orchidinae with special emphasis on pollination systems. -
Managing Scotland's Pinewoods for Their Wild Flowers
Managing Scotland’s pinewoods for their wild fl owers Back from the Brink Management Series Back from the Brink Management Series Over the last two decades, there has been welcome enthusiasm for revitalising Scotland’s Old Caledonian pinewoods. Management has focused on regenerating trees within the few remaining natural woods and establishing trees to create ‘new native woodlands’ but with relatively little attention to the wider plant community of these woods. This booklet provides land managers with advice on managing native and semi-natural pinewoods for their vascular plant communities, based on recent and ongoing management trials. It focuses especially on the characteristic pinewood herbs. Plantlife is the organisation that is Wild plants have been marginalised and speaking up for the nation’s wild plants. taken for granted for too long. Please help We work hard to protect wild plants on the us by supporting our work. ground and to build understanding of the vital role they play in everyone’s lives. Wild plants To find out more, please visit our website are essential to life – they clean our air and or contact us at the office below. water, provide food and shelter for our insects, birds and animals and are critical in the fight Plantlife Scotland against climate change. Balallan House Allan Park Plantlife carries out practical conservation Stirling work across Scotland, manages nature FK8 2QG reserves, influences policy and legislation, Tel. 01786 478509/479382 runs events and activities that help people discover wild plants and works with others to promote the conservation of wild plants www.plantlife.org.uk for the benefit of all. -
Wildlife Travel Burren 2018
The Burren 2018 species list and trip report, 7th-12th June 2018 WILDLIFE TRAVEL The Burren 2018 s 1 The Burren 2018 species list and trip report, 7th-12th June 2018 Day 1: 7th June: Arrive in Lisdoonvarna; supper at Rathbaun Hotel Arriving by a variety of routes and means, we all gathered at Caherleigh House by 6pm, sustained by a round of fresh tea, coffee and delightful home-made scones from our ever-helpful host, Dermot. After introductions and some background to the geology and floral elements in the Burren from Brian (stressing the Mediterranean component of the flora after a day’s Mediterranean heat and sun), we made our way to the Rathbaun, for some substantial and tasty local food and our first taste of Irish music from the three young ladies of Ceolan, and their energetic four-hour performance (not sure any of us had the stamina to stay to the end). Day 2: 8th June: Poulsallach At 9am we were collected by Tony, our driver from Glynn’s Coaches for the week, and following a half-hour drive we arrived at a coastal stretch of species-rich limestone pavement which represented the perfect introduction to the Burren’s flora: a stunningly beautiful mix of coastal, Mediterranean, Atlantic and Arctic-Alpine species gathered together uniquely in a natural rock garden. First impressions were of patchy grassland, sparkling with heath spotted- orchids Dactylorhiza maculata ericetorum and drifts of the ubiquitous and glowing-purple bloody crane’s-bill Geranium sanguineum, between bare rock. A closer look revealed a diverse and colourful tapestry of dozens of flowers - the yellows of goldenrod Solidago virgaurea, kidney-vetch Anthyllis vulneraria, and bird’s-foot trefoil Lotus corniculatus (and its attendant common blue butterflies Polyommatus Icarus), pink splashes of wild thyme Thymus polytrichus and the hairy local subspecies of lousewort Pedicularis sylvatica ssp. -
“Dynamic Speciation Processes in the Mediterranean Orchid Genus Ophrys L
“DYNAMIC SPECIATION PROCESSES IN THE MEDITERRANEAN ORCHID GENUS OPHRYS L. (ORCHIDACEAE)” Tesi di Dottorato in Biologia Avanzata, XXIV ciclo (Indirizzo Sistematica Molecolare) Universitá degli Studi di Napoli Federico II Facoltá di Scienze Matematiche, Fisiche e Naturali Dipartimento di Biologia Strutturale e Funzionale 1st supervisor: Prof. Salvatore Cozzolino 2nd supervisor: Prof. Serena Aceto PhD student: Dott. Hendrik Breitkopf 1 Cover picture: Pseudo-copulation of a Colletes cunicularius male on a flower of Ophrys exaltata ssp. archipelagi (Marina di Lesina, Italy. H. Breitkopf, 2011). 2 TABLE OF CONTENTS GENERAL INTRODUCTION CHAPTER 1: MULTI-LOCUS NUCLEAR GENE PHYLOGENY OF THE SEXUALLY DECEPTIVE ORCHID GENUS OPHRYS L. (ORCHIDACEAE) CHAPTER 2: ANALYSIS OF VARIATION AND SPECIATION IN THE OPHRYS SPHEGODES SPECIES COMPLEX CHAPTER 3: FLORAL ISOLATION IS THE MAIN REPRODUCTIVE BARRIER AMONG CLOSELY RELATED SEXUALLY DECEPTIVE ORCHIDS CHAPTER 4: SPECIATION BY DISTURBANCE: A POPULATION STUDY OF CENTRAL ITALIAN OPHRYS SPHEGODES LINEAGES CONTRIBUTION OF CO-AUTHORS ACKNOWLEDGEMENTS 3 GENERAL INTRODUCTION ORCHIDS With more than 22.000 accepted species in 880 genera (Pridgeon et al. 1999), the family of the Orchidaceae is the largest family of angiosperm plants. Recently discovered fossils document their existence for at least 15 Ma. The last common ancestor of all orchids has been estimated to exist about 80 Ma ago (Ramirez et al. 2007, Gustafsson et al. 2010). Orchids are cosmopolitan, distributed on all continents and a great variety of habitats, ranging from deserts and swamps to arctic regions. Two large groups can be distinguished: Epiphytic and epilithic orchids attach themselves with aerial roots to trees or stones, mostly halfway between the ground and the upper canopy where they absorb water through the velamen of their roots. -
Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local Study)
plants Article Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local study) Lukáš Wittlinger and Lucia Petrikoviˇcová * Department of Geography and Regional Development, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 94974 Nitra, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +421-907-3441-04 Abstract: In the years 2018–2020, we carried out large-scale mapping in the Western Carpathians with a focus on determining the biodiversity of taxa of the family Orchidaceae using field biogeographical research. We evaluated the research using phytogeographic analysis with an emphasis on selected ecological environmental factors (substrate: ecological land unit value, soil reaction (pH), terrain: slope (◦), flow and hydrogeological productivity (m2.s−1) and average annual amounts of global radiation (kWh.m–2). A total of 19 species were found in the area, of which the majority were Cephalenthera longifolia, Cephalenthera damasonium and Anacamptis morio. Rare findings included Epipactis muelleri, Epipactis leptochila and Limodorum abortivum. We determined the ecological demands of the abiotic environment of individual species by means of a functional analysis of communities. The research confirmed that most of the orchids that were studied occurred in acidified, calcified and basophil locations. From the location of the distribution of individual populations, it is clear that they are generally arranged compactly and occasionally scattered, which results in ecological and environmental diversity. During the research, we identified 129 localities with the occurrence of Citation: Wittlinger, L.; Petrikoviˇcová, L. Phytogeographical Analysis and 19 species and subspecies of orchids. We identify the main factors that threaten them and propose Ecological Factors of the Distribution specific measures to protect vulnerable populations. -
The Moth Pollinators of Greater Butterfly Orchids Platanthera
JOURNAL of the HARDY ORCHID SOCIETY Vol. 11 No. 1 (71) January 2014 The Moth Pollinators of Greater Butterfly Orchids Platanthera chlorantha in Central Scotland Roy Sexton With essential help from the following moth recorders: Stuart Bence, Claire Bird, Lorna Blackmore, Tim Brain, Michael Christie, Jennifer Davidson, Bob Dawson, John Knowler, Barbara Macritchie, John Oates, Tony Rogers, Melissa Shaw. In his book ‘T he Various Contrivances by which Orchids are Fertilised by Insects ’ Charles Darwin (1862; 1877) speculated that the Greater Butterfly Orchid (GBO) was pollinated by large night-flying moths. He based his proposal on the following observations: i) the flowers were white and so would show up at night ii) the floral scent to attract pollinators was produced nocturnally iii) the sugary nectar to reward insect visitors was found at the end of a 26mm long conical nectary or spur. This could only be reached by insects with long tongues like butterflies or moths. Careful examination of the structure of the flowers led Darwin to propose that when moths drank nectar the club-shaped masses of pollen positioned either side of the spur entrance became glued to their large com - pound eyes. He speculated that the pollen mass was repositioned as it dried and twist - ed so that it was deposited on the stigmas of the flowers which the moth visited subse - quently. Naturalists soon caught moths with GBO pollen on their eyes consistent with this hypothesis, but it was the meticulous studies of Anders Nilsson (1978) a century later that provided detailed scientific sup - port. It is his Swedish observations that I have attempted to confirm on Scottish plants. -
New Record of Goodyera Repens (L.) R. Br
Life Science Journal 2013;10(4) http://www.lifesciencesite.com New record of Goodyera repens (L.) R. Br. (Orchidaceae) on Przedborska Upland (Poland) Andrzej Grzyl 1, Agnieszka Rewicz 2, Spyros Tsiftsis 3 1,2 Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland 3 Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece [email protected] Abstract: Goodyera repens in Poland occur mainly in the northern and north-eastern parts of the country, as well as in the Carpathians and the Sudeten Mountains. In central Poland it could be considered as a rare species which has been found only in a limited number of sites with a small number of individuals. In Poland it is characterized as a critically endangered species which faces the danger of extinction in many of its sites. A new site of G. repen has been found in central Poland hosting a relatively large number of individuals. Data about its habitat, its population size as well as its spatial structure are provided. [Grzyl, A, Rewicz, A, Tsiftsis, S. New record of Goodyera repens (L.) R. Br. (Orchidaceae) on Przedborska Upland (Poland). Life Sci J 2013;10(4):2993-2995]. (ISSN:1097-8135). http://www.lifesciencesite.com. 397 Key words: Goodyera repens; Chęcińsko-Kielecki Landacape Park; floristic diversity; rare species; protected species; new locality 1. Introduction (Kucharczyk and Wójciak, 1995), while according to Goodyera repens (L.) R. Br. (Creeping Lady's Bróż and Przemyski (2009) in western Poland it is Tresses) is a circumboreal species that mainly occurs regarded as vulnerable (V) and in northern Poland in Central, North and East Europe, Caucasus, North (Gdańsk Pomerania) is considered as near threatened and East Asia, the Himalayas and North America (NT) (Markowski and Buliński, 2004). -
The Orchids of the Isle of Formentera
Jour. Eur. Orch. 37 (4): 501 – 528. 2005. Barbara Klahr Translated by Dr.Eckhard Kiehl The Orchids of the Isle of Formentera Keywords Orchidaceae; Aceras anthropophorum, Barlia robertiana, Gennaria diphylla, Neotinea maculata, Ophrys bombyliflora, O. dyris, O. cf. fabrella, O. fusca, O. speculum, O. tenthredinifera, Orchis collina, O. fragrans, Serapias parviflora; Formentera, Pityuses, Balearic Islands; distribution; ecology; endangerment; protection. Summary Klahr, B. (2005): The orchids of Formentera.- Jour. Eur. Orch. 37 (4): 501 XXX. A short review of history and geography of Formentera is given; aspects of flora and fauna of a south mediterranean Island, survival of plants in a half-arid zone without any wells or fresh ground water. As the most southern Island of the Pityuses, Formentera belongs climatically more to Africa than to Europe. It is a very rocky eroded Island after having had a long period without agriculture. Endemic species in flora and fauna are mentioned. Wild Orchids are growing on this small Island mainly in the higher regions of the plateau La Mola and Cap de Barbaria. There is not as much pastureland as in other mediterranean countries. Ophrys and Orchis predominate.. Most areas of Formentera were explored during the whole year, also difficult to reach regions like “Torrentes” (Canyons). The period of my observation is 2002 - 2005. The Orchids are endangered as a result of the reinforced agriculture and chemical fertilizing, subsidized by the EU, and by increasing building activities. Centuries fallow agricultural land that makes very interesting biotopes will be destroyed. The orchids of Formentera are bibliographically quoted; the results are to be supplemented with four new found species and new sites. -
Kew Science Publications for the Academic Year 2017–18
KEW SCIENCE PUBLICATIONS FOR THE ACADEMIC YEAR 2017–18 FOR THE ACADEMIC Kew Science Publications kew.org For the academic year 2017–18 ¥ Z i 9E ' ' . -,i,c-"'.'f'l] Foreword Kew’s mission is to be a global resource in We present these publications under the four plant and fungal knowledge. Kew currently has key questions set out in Kew’s Science Strategy over 300 scientists undertaking collection- 2015–2020: based research and collaborating with more than 400 organisations in over 100 countries What plants and fungi occur to deliver this mission. The knowledge obtained 1 on Earth and how is this from this research is disseminated in a number diversity distributed? p2 of different ways from annual reports (e.g. stateoftheworldsplants.org) and web-based What drivers and processes portals (e.g. plantsoftheworldonline.org) to 2 underpin global plant and academic papers. fungal diversity? p32 In the academic year 2017-2018, Kew scientists, in collaboration with numerous What plant and fungal diversity is national and international research partners, 3 under threat and what needs to be published 358 papers in international peer conserved to provide resilience reviewed journals and books. Here we bring to global change? p54 together the abstracts of some of these papers. Due to space constraints we have Which plants and fungi contribute to included only those which are led by a Kew 4 important ecosystem services, scientist; a full list of publications, however, can sustainable livelihoods and natural be found at kew.org/publications capital and how do we manage them? p72 * Indicates Kew staff or research associate authors. -
February 2019 ---International Rock Gardener--- February 2019
International Rock Gardener ISSN 2053-7557 Number 110 The Scottish Rock Garden Club February 2019 ---International Rock Gardener--- February 2019 A new viola species, described by John and Anita Watson; enjoying Orchids and winter-flowering species of Gran Canaria by Iep & Gerrit Eijkelenboom; and an overview of Aloinopsis/Nananthus Hybrids in Utah by John Stireman are our main articles this month. Also included is a review of a new book on galanthus, the ever-popular snowdrop. This book is a second edition of Freda Cox’ book, reviewed by the successful galanthus and narcissus breeder and grower, Anne Wright. Cover photo: Aloinopsis hot pink hybrid, photo John Stireman. ---Species Description--- The expanding kingdom of an Incredible Shrinking Violet (give or take a mm): a new diminutive-flowered rosulate Viola (section Andinium) from the Andes of Argentina John and Ana R. Flores (Anita Watson) Casilla 161, Los Andes, Aconcagua Provincia, Valparaiso Región, Chile. Email: [email protected] Published in IRG 110 February 2019 Pages 2 – 41. A sneak preview The room was small and crowded, people were moving around and chatting all the time: it was very distracting. The 'main event' was a home-video showing the two day ascent of the 4114 m Tromen volcano in Neuquén province, northern Argentinian Patagonia [Figs.1, 2], which gives its name to the provincial nature reserve park there (Parque Provincial El Tromen). The protagonists had been the resident park rangers, and the 'theatre' was their office. It was put on for our benefit, as they'd discovered our interest in the flora as a whole, and violas in particular.