Sapindaceae, Cyanolipids, and Bugs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Adeyemi Et Al., 2012)
Ife Journal of Science vol. 15, no. 2 (2013) 303 A REVIEW OF THE TAXONOMY OF AFRICAN SAPINDACEAE BASED ON QUANTITATIVE AND QUALITATIVE CHARACTERS *Adeyemi, T.O., Ogundipe, O.T. and Olowokudejo, J.D. Department of Botany, University of Lagos, Akoka, Lagos, Nigeria. e-mail addresses: [email protected], [email protected], [email protected] *Corresponding author: [email protected], +2348029180930 (Received: April, 2013; Accepted: June, 2013) ABSTRACT This study was conducted using qualitative and quantitative morphology to characterise and group different representative species of the family Sapindaceae in Africa. The morphological characters used included leaf, stem and fruit. Essentially, the similarities among various taxa in the family were estimated. A total of 28 genera and 106 species were assessed. Members possess compound leaves (paripinnate, imparipinnate or trifoliolate); flowers are in clusters, fruits occur as berry, drupe or capsule and contain seed with white or orange aril. UPGMA dendograms were generated showing relationships amongst taxa studied. The dendograms consists of a single cluster from 0 57 % similarity coefficients suggesting a single line decent of the members of the family. At 65 % two clusters were observed with Majidea fosterii being separated from the cluster. Also, at 67 % similarity coefficient, two clusters were discerned separating the climbing forms from the shrubby forms. Paullinia pinnata was separated from the other climbing forms at 67 % while Allophylus species were separated into two clusters at 91 % similarity coefficient. The dendograms revealed that the family can be separated into eleven (11) clusters based on qualitative morphological data. A key to the identification of genera is presented in this work. -
Sapindus Saponaria Florida Soapberry1 Edward F
Fact Sheet ST-582 October 1994 Sapindus saponaria Florida Soapberry1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Florida Soapberry grows at a moderate rate to 30 to 40 feet tall (Fig. 1). The pinnately compound, evergreen leaves are 12 inches long with each leaflet four inches long. Ten-inch-long panicles of small, white flowers appear during fall, winter, and spring but these are fairly inconspicuous. The fleshy fruits which follow are less than an inch-long, shiny, and orange/brown. The seeds inside are poisonous, a fact which should be considered in the tree’s placement in the landscape, especially if children will be present. The bark is rough and gray. The common name of Soapberry comes from to the soap-like material which is made from the berries in tropical countries. Figure 1. Mature Florida Soapberry. GENERAL INFORMATION DESCRIPTION Scientific name: Sapindus saponaria Height: 30 to 40 feet Pronunciation: SAP-in-dus sap-oh-NAIR-ee-uh Spread: 25 to 35 feet Common name(s): Florida Soapberry, Wingleaf Crown uniformity: symmetrical canopy with a Soapberry regular (or smooth) outline, and individuals have more Family: Sapindaceae or less identical crown forms USDA hardiness zones: 10 through 11 (Fig. 2) Crown shape: round Origin: native to North America Crown density: dense Uses: wide tree lawns (>6 feet wide); medium-sized Growth rate: medium tree lawns (4-6 feet wide); recommended for buffer Texture: medium strips around parking lots or for median strip plantings in the highway; reclamation plant; shade tree; Foliage residential street tree; no proven urban tolerance Availability: somewhat available, may have to go out Leaf arrangement: alternate (Fig. -
Landscape Plant List
APPENDIX B-Tree Technical Manual, Download at the "Unified Development Code" from: http://www.cityofedinburg.com/ City of Edinburg Native (Permitted) Plant List e e = P Wildlif s t rac espan: Scientific Name Family Common Name(s) Slow) Medium, Fast, COMMENTS Perennial, A=Annual, D=deciduous Period Blooming Color Bloom Aquatic Soils Moist Riparian Upland Full Shade Shade/Sun Full Sun Att Lif (Bi=Bird Bu=Butterfly(Bi=Bird Be=Bee Height Mature Width Mature Rate Growth ( Spacing Large Trees (Parking lot shade) Acacia wrightii Fabaceae Wright's Acacia X X X Be 30' 20' Medium 20' P, D Spring White Recurved spines; heat & drought tolerant Fast growing shade tree; small fruit is extremely valuable for birds; limbs fairly Celtis laevigata Ulmaceae Sugar Hackberry X X X X X Bi 45' 50' Fast 50' P, D Spring Greenish brittle; drops fine, sticky sap, which is messy Fragrant, showy clusters of small, white flowers produce large quantities of fruit Ehretia anacua Boraginaceae Anacua X X X Bi 45' 50' Slow 50' P, D Jun-Oct White valuable to wildlife; fruit drop can be messy; good shade tree Large, spreading tree that requires regular watering to reach full potential; Fraxinus berlandieriana Oleaceae Mexican Ash, Fresno X X X X Bi 50' 75' Medium 75' P, D Spring Greenish papery, winged fruits on female trees only Very fast growing tree, but relatively Tepeguaje, Lead Leucaena pulverulenta Fabaceae X X Be 40' 50' Fast 50' P, D Spring Summer White short lived; limbs brittle and break easily, Tree and subject to girdling beetles Dense shade tree provides important -
Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO. -
Illustrated Flora of East Texas Illustrated Flora of East Texas
ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D. -
Trees in the Landscape, Part 6: Sapindus Saponaria Donald R
WESTERN A rborist Trees in the landscape, Part 6: Sapindus saponaria Donald R. Hodel Sapindus saponaria L. workers consider a separate species; it ranges from northern Florida into Sapindus saponaria is a distinctive, Georgia and South Carolina. splendid, highly adaptable, and use- Common names: soapberry; Florida ful small to medium ornamental tree soapberry; soap seed; wing-leaf soap- for the urban forest and landscape berry; jaboncillo (Puerto Rico); Hawai- (Fig. 1). Tolerant of a wide variety ian soapberry, mānele, a‘e (Hawai‘i) of harsh conditions, including heat, aridity, wind, salt, poor soil, and Etymology: The genus name Sapin- drought once established, this hand- dus is derived from the Latin sapo, some tree is noted for its attractive, meaning soap, and indicus, meaning often glossy and dark green, pinnate Indian, and alludes to the soapy lather foliage and showy, shiny orange- or produced when the saponin-rich yellow-brown, marble-like fruits. fruits are cut or rubbed and mixed With few or no cultural problems, it with water, a process much used by makes a superb specimen for use as Indians and other indigenous peoples a park, shade, lawn, and street tree, throughout the tree’s range in the and also as a screen or fruiting and Americas and the South Pacific. The tropical accent. specific epithet saponaria is also de- rived from the Latin sapo and alludes Taxonomy and history to the saponin-rich fruits. Synonyms: TROPICOS (2012) lists Figure 2. In habitat in Hawai‘i Sapindus 24 synonyms of which Sapindus inae- History: The famous Swedish natural- saponaria can sometimes become a qualis DC. -
Global Distribution of Sapindus Habitats Under Current and Future Climate Change Scenarios
Global distribution of Sapindus habitats under current and future climate change scenarios Jiming Liu Key Laboratory of Silviculture and Conservation of the Ministry of Education, Beijing Forestry University Lianchun Wang Southwest Forestry University Caowen Sun Nanjing Forestry University Benye Xi Key Laboratory of Silviculture and Conservation of the Ministry of Education, Beijing Forestry University Doudou Li Key Laboratory of Silviculture and Conservation of the Ministry of Education, Beijing Forestry University Zhong Chen National Energy R&D Center for Non-food Biomass, Beijing Forestry University Qiuyang He China Jiliang University Xuehuang Weng Yuanhua Forestry Biological Technology Co., Ltd Liming Jia ( [email protected] ) Key Laboratory of Silviculture and Conservation of the Ministry of Education, Beijing Forestry University Research Article Keywords: Sapindus, MaxEnt model, habitat, SDMtoolbox, ArcGIS, Climate change Posted Date: May 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-506226/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract Sapindus (Sapindus L.) is a widely distributed economically important tree genus that provides biodiesel, biomedical and biochemical products. However, with climate change, deforestation, and economic development, Sapindus germplasm resources have been lost. Therefore, utilising historical environmental data and future climate projections from the BCC-CSM2-MR global climate database, we simulated the present and future global distributions of suitable habitats for Sapindus using a Maximum Entropy (MaxEnt) model. The estimated ecological thresholds for critical environmental factors were: a minimum temperature of 0– 20°C in the coldest month, soil moisture levels of 40–140 mm, a mean temperature of 2–25°C in the driest quarter, a mean temperature of 19–28°C in the wettest quarter, and a soil pH of 5.6–7.6. -
SOAPBERRY Scientific Name: Sapindus Marginatus Willdenow
Common Name: SOAPBERRY Scientific Name: Sapindus marginatus Willdenow Other Commonly Used Names: Florida soapberry Previously Used Scientific Names: Sapindus saponaria Linnaeus Family: Sapindaceae (soapberry) Rarity Ranks: G5/S1 State Legal Status: Rare Federal Legal Status: none Federal Wetland Status: none Description: Small tree or large shrub usually less than 30 feet (10 meters) tall. Bark pale gray or brown, ridged, and warty. Leaves up to 1 foot (32 cm) long (including leaf stalk), alternate, with 6 - 13 leaflets; leaf stalk without wings between the leaflets. Leaflets 2 - 6 inches (5 - 15 cm) long and ¾ - 2¾ inches (2 - 7 cm) wide, lance-shaped with pointed tips, with no teeth along the edges; leaflets may be opposite or alternate along the stalk; leaves fall in the early spring. Flower clusters up to 7 inches (18 cm) long, with both female and male flowers. Flowers tiny, bell-shaped, with 5 pale yellow petals and 8 stamens. Fruits about ¾ inches (2 cm) long, oval but lopsided, golden-brown, leathery, wrinkled, and hard, with a large, black, poisonous seed. Similar Species: Tropical soapberry (Sapindus saponaria) is not native to Georgia, but may escape from cultivation. It has narrow wings on the leaf stalk between the leaflets; the leaflets have blunt or rounded tips, and its fruits are round. Some botanists consider Florida soapberry to be the same species as tropical soapberry. Related Rare Species: None in Georgia. Habitat: Coastal shell mounds and hardwood hammocks, often near edges of salt marsh, with live oak, red cedar, red bay, pignut hickory, and yaupon. Life History: Soapberry reproduces sexually. -
Limiting Factors of Five Rare Plant Species in Mesic Forests, Hawai`I Volcanoes National Park
Technical Report HCSU-015 LIMITING FACTORS OF FIVE RARE PLANT SPECIES IN MESIC FORESTS, HAWAI`I VOLCANOES NATIONAL PARK Linda W. Pratt1, Joshua R. VanDeMark2, and Melody Euaparadorn2 1U.S. Geological Survey, Pacifi c Island Ecosystems Research Center, Kilauea Field Station, P.O. Box 44, Hawai`i National Park, HI 96718 2Hawai`i Cooperative Studies Unit, University of Hawai`i at Hilo, Pacifi c Aquaculture and Coastal Resources Center, P.O. Box 44, Hawai`i National Park, HI 96718 Hawai`i Cooperative Studies Unit University of Hawai`i at Hilo Pacifi c Aquaculture and Coastal Resources Center (PACRC) 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 May 2010 The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U. S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U. S. Government. Technical Report HCSU-015 LIMITING FACTORS OF FIVE RARE PLANT SPECIES IN MESIC FORESTS OF HAWAI`I VOLCANOES NATIONAL PARK Linda W. Pratt1, Joshua R. VanDeMark2, and Melody Euaparadorn2 1U.S. Geological Survey, Pacific Island Ecosystems Research Center, Kīlauea Field Station, Hawai`i National Park, HI 96718 2U.S. Geological Survey Hawai`i Cooperative Studies Unit, Pacific Aquaculture and Coastal Resources Center, University of Hawai‘i at Hilo, Kīlauea Field Station, Hawai`i National Park, HI 96718 KEY WORDS Limiting factors, rare and endangered plant species, Hawai`i Volcanoes National Park CITATION Pratt, L. W., J. R. VanDeMark, and M. Euaparadorn. 2010. Limiting factors of five rare plant species in mesic forests of Hawai`i Volcanoes National Park. -
Morphometric Characterization and Seed Dormancy Overcoming of Sapindus Saponaria L
Journal of Agricultural Science; Vol. 10, No. 7; 2018 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Morphometric Characterization and Seed Dormancy Overcoming of Sapindus saponaria L. Maria Inajal R. S. das Neves1, João C. de Araújo Neto1, Vilma M. Ferreira1, Clissia B. da Silva1, João L. A. Melo Júnior1, Luan D. F. A. Melo1, Aristeia S. Farias1, Elaine R. Galvão2 & Vinicius S. G. da Silva1 1 Center of Agricultural Sciences, Federal University of Alagoas, Rio Largo, Brazil 2 Bahia State University, Juazeiro, Bahia Correspondence: Vinicius S. G. da Silva, Center of Agricultural Sciences, Federal University of Alagoas, Rio Largo, Alagoas, Brazil. Tel: 55-82-3214-1317. E-mail: [email protected] Received: March 28, 2018 Accepted: May 1, 2018 Online Published: June 15, 2018 doi:10.5539/jas.v10n7p329 URL: https://doi.org/10.5539/jas.v10n7p329 Abstract S. saponaria L. is a Brazilian native arboreal species, with relevant ecological importance in the recovery of degraded and marginal areas. The objectives of the present study were to characterize morphometrically Sapindus saponaria L. seeds, to extract and to quantify oil content, establish the percent composition of fatty acids; to describe their different post-seminal stages; to describe the different post-seminal stages, as well as to evaluate the germinative performance of the seeds as a function of different treatments to overcome dormancy. Seeds were evaluated as to water content and biometric length and width. The extraction and quantification of the seed oil was obtained by the solvent extraction method using the Soxhlet extractor system. -
North American Fungi
North American Fungi Volume 7, Number 9, Pages 1-35 Published July 27, 2012 THE XYLARIACEAE OF THE HAWAIIAN ISLANDS Jack D. Rogers1 and Yu-Ming Ju2 1Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430; 2Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115 29, Taiwan Rogers, J. D., and Y-M. Ju. 2012. The Xylariaceae of the Hawaiian Islands. North American Fungi 7(9): 1-35. doi: http://dx.doi: 10.2509/naf2012.007.009 Corresponding author: Jack D. Rogers [email protected] Accepted for publication journal July 16, 2012. http://pnwfungi.org Copyright © 2012 Pacific Northwest Fungi Project. All rights reserved. Abstract: Keys, species notes, references, hosts, and collection locations of the following xylariaceous genera are included: Annulohypoxylon, Ascovirgaria, Biscogniauxia, Daldinia, Hypoxylon, Jumillera, Kretzschmaria, Lopadostoma, Nemania, Rosellinia, Stilbohypoxylon, Xylaria, and Xylotumulus. Camarops and Pachytrype--non-xylariaceous genera--are included. Anthostomella, well-covered elsewhere, is not included here. A Host-Fungus Index is included. A new name, Xylaria alboareolata, is proposed. All of the Hawaiian Islands are included, but Lanai was not visited. Key words: Hawaiian Islands, Xylariaceae, including genera included in the Abstract (above). Introduction: The senior author became was joined in the work of identifying the interested in a mycobiotic study of the Hawaiian collections of the senior author and others by his Islands owing to experience studying former student and colleague, Yu-Ming Ju. xylariaceous specimens sent to him over a period of years by Donald Gardner, Roger Goos, W. Ko, The Hawaiian Islands are generally recognized Don Hemmes, Robert Gilbertson, and others. -
32 Potential Native Trees for Georgia Hardiness Zone 9A 2020
Publication WSFNR-20-32C May 2020 Potential Native Trees For Georgia Hardiness Zone 9a Dr. Kim D. Coder, Professor of Tree Biology & Health Care / University Hill Fellow University of Georgia Warnell School of Forestry & Natural Resources Native trees represent a great ecological bounty and a rich cultural history in Georgia. Native trees live from the mountains to the sea in many diverse habitats and under many environmental constraints. Native trees are wonderfully adapted to a local area’s climate, soils, pests and other plants. What happens to tree growth ranges and survival patterns when climate changes? Success Mapping One standard means of describing where trees are growing and will grow, and where to plant different tree species, involves measuring the average annual minimum temperature. A map showing areas with similar minimum temperatures is termed a hardiness zone map. Several organizations have generated these type of maps over many years, but the most cited map is the USDA Plant Hardiness Zone Map. This map is used by nurseries, planting reference manuals, and by tree selection specialists for estimating whether a tree will survive and grow in a particular area. Hardiness zone maps are periodically changed in association with changing climate temperature values. Decade of Change Over the last decade, average annual minimum temperatures have changed significantly across the nation and within Georgia. Figure 1. Some hardiness zones have shifted more than five counties northward in Georgia. These climate shifts have impacted, and will impact, planted tree species survival and growth, the pantheon of pests potentially damaging these trees, and existing tree and pest species, as well as exacerbating some abiotic stress problems.