Uncultivated Nuts of the United States
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Erigenia : Journal of the Southern Illinois Native Plant Society
ERIGENIA THE LIBRARY OF THE DEC IS ba* Number 13 UNIVERSITY OF ILLINOIS June 1994 ^:^;-:A-i.,-CS..;.iF/uGN SURVEY Conference Proceedings 26-27 September 1992 Journal of the Eastern Illinois University Illinois Native Plant Society Charleston Erigenia Number 13, June 1994 Editor: Elizabeth L. Shimp, U.S.D.A. Forest Service, Shawnee National Forest, 901 S. Commercial St., Harrisburg, IL 62946 Copy Editor: Floyd A. Swink, The Morton Arboretum, Lisle, IL 60532 Publications Committee: John E. Ebinger, Botany Department, Eastern Illinois University, Charleston, IL 61920 Ken Konsis, Forest Glen Preserve, R.R. 1 Box 495 A, Westville, IL 61883 Kenneth R. Robertson, Illinois Natural History Survey, 607 E. Peabody Dr., Champaign, IL 61820 Lawrence R. Stritch, U.S.D.A. Forest Service, Shawnee National Forest, 901 S. Commercial Su, Harrisburg, IL 62946 Cover Design: Christopher J. Whelan, The Morton Arboretum, Lisle, IL 60532 Cover Illustration: Jean Eglinton, 2202 Hazel Dell Rd., Springfield, IL 62703 Erigenia Artist: Nancy Hart-Stieber, The Morton Arboretum, Lisle, IL 60532 Executive Committee of the Society - April 1992 to May 1993 President: Kenneth R. Robertson, Illinois Natural History Survey, 607 E. Peabody Dr., Champaign, IL 61820 President-Elect: J. William Hammel, Illinois Environmental Protection Agency, Springfield, IL 62701 Past President: Jon J. Duerr, Kane County Forest Preserve District, 719 Batavia Ave., Geneva, IL 60134 Treasurer: Mary Susan Moulder, 918 W. Woodlawn, Danville, IL 61832 Recording Secretary: Russell R. Kirt, College of DuPage, Glen EUyn, IL 60137 Corresponding Secretary: John E. Schwegman, Illinois Department of Conservation, Springfield, IL 62701 Membership: Lorna J. Konsis, Forest Glen Preserve, R.R. -
(KRAUSE, P. FAMILIES, for Kew
Staphyleaceae B.L. van der Linden Leyden) This smallish family, containing five genera¹, is almost confined to the northern hemisphere in both the Old and New World, overstepping the equator only in Ecuador and Peru in S. America and in Malaysia, where it is found southward to Java and New Guinea. Huertea Peru Among the genera is confined to and the West Indies (Cuba, Haiti). Tapiscia distributed in the and and Euscaphis are East Asian. Staphylea is widely subtropical temperate is and it is the zone on the northern hemisphere. Turpinia subtropical tropical, only genus represented in Malaysia. It is remarkable that the distributional areas of the latter two genera in SE. Asia. seem to exclude one another save for a slight overlapping be found from the into the Ecologically the members of the family may tropical lowland up in to the border of the montane at 2400 but in the mountains, Malaysia up upper zone c. m, ascend northern frontier is found Sinohimalayan area they may to c. 3000 nr. Latitudinally the at in America the southern border is found in c. 50° N (Central Germany, South Canada); S. Ecuador and Peru. The taxonomic position of the family has a chequered history. In the 18th century its place Was designated in the affinity of Rhamnaceae. A. P. DE CANDOLLE (1825) and MEISNER (1836) referred had the family as a tribe to the Celastraceae; ENDLICHER (1840) Staphyleaceae as an °rder next to the Celastraceae but placed Ochranthe as a separate family near the Hypericineae. EEICHENBACH (1828) had arranged it near Sapindaceae and this position was accepted by & referred to ASA EENTHAM EIOOKER, and up to the present day it is Sapindales by GRAY| ENGLER, HUTCHINSON, etc. -
Native Trees of Georgia
1 NATIVE TREES OF GEORGIA By G. Norman Bishop Professor of Forestry George Foster Peabody School of Forestry University of Georgia Currently Named Daniel B. Warnell School of Forest Resources University of Georgia GEORGIA FORESTRY COMMISSION Eleventh Printing - 2001 Revised Edition 2 FOREWARD This manual has been prepared in an effort to give to those interested in the trees of Georgia a means by which they may gain a more intimate knowledge of the tree species. Of about 250 species native to the state, only 92 are described here. These were chosen for their commercial importance, distribution over the state or because of some unusual characteristic. Since the manual is intended primarily for the use of the layman, technical terms have been omitted wherever possible; however, the scientific names of the trees and the families to which they belong, have been included. It might be explained that the species are grouped by families, the name of each occurring at the top of the page over the name of the first member of that family. Also, there is included in the text, a subdivision entitled KEY CHARACTERISTICS, the purpose of which is to give the reader, all in one group, the most outstanding features whereby he may more easily recognize the tree. ACKNOWLEDGEMENTS The author wishes to express his appreciation to the Houghton Mifflin Company, publishers of Sargent’s Manual of the Trees of North America, for permission to use the cuts of all trees appearing in this manual; to B. R. Stogsdill for assistance in arranging the material; to W. -
Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both. -
The Coastal Scrub and Chaparral Bird Conservation Plan
The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California A Project of California Partners in Flight and PRBO Conservation Science The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California Version 2.0 2004 Conservation Plan Authors Grant Ballard, PRBO Conservation Science Mary K. Chase, PRBO Conservation Science Tom Gardali, PRBO Conservation Science Geoffrey R. Geupel, PRBO Conservation Science Tonya Haff, PRBO Conservation Science (Currently at Museum of Natural History Collections, Environmental Studies Dept., University of CA) Aaron Holmes, PRBO Conservation Science Diana Humple, PRBO Conservation Science John C. Lovio, Naval Facilities Engineering Command, U.S. Navy (Currently at TAIC, San Diego) Mike Lynes, PRBO Conservation Science (Currently at Hastings University) Sandy Scoggin, PRBO Conservation Science (Currently at San Francisco Bay Joint Venture) Christopher Solek, Cal Poly Ponoma (Currently at UC Berkeley) Diana Stralberg, PRBO Conservation Science Species Account Authors Completed Accounts Mountain Quail - Kirsten Winter, Cleveland National Forest. Greater Roadrunner - Pete Famolaro, Sweetwater Authority Water District. Coastal Cactus Wren - Laszlo Szijj and Chris Solek, Cal Poly Pomona. Wrentit - Geoff Geupel, Grant Ballard, and Mary K. Chase, PRBO Conservation Science. Gray Vireo - Kirsten Winter, Cleveland National Forest. Black-chinned Sparrow - Kirsten Winter, Cleveland National Forest. Costa's Hummingbird (coastal) - Kirsten Winter, Cleveland National Forest. Sage Sparrow - Barbara A. Carlson, UC-Riverside Reserve System, and Mary K. Chase. California Gnatcatcher - Patrick Mock, URS Consultants (San Diego). Accounts in Progress Rufous-crowned Sparrow - Scott Morrison, The Nature Conservancy (San Diego). -
Juglans Nigra Juglandaceae L
Juglans nigra L. Juglandaceae LOCAL NAMES English (walnut,American walnut,eastern black walnut,black walnut); French (noyer noir); German (schwarze Walnuß); Portuguese (nogueira- preta); Spanish (nogal negro,nogal Americano) BOTANIC DESCRIPTION Black walnut is a deciduous tree that grows to a height of 46 m but ordinarily grows to around 25 m and up to 102 cm dbh. Black walnut develops a long, smooth trunk and a small rounded crown. In the open, the trunk forks low with a few ascending and spreading coarse branches. (Robert H. Mohlenbrock. USDA NRCS. The root system usually consists of a deep taproot and several wide- 1995. Northeast wetland flora: Field office spreading lateral roots. guide to plant species) Leaves alternate, pinnately compound, 30-70 cm long, up to 23 leaflets, leaflets are up to 13 cm long, serrated, dark green with a yellow fall colour in autumn and emits a pleasant sweet though resinous smell when crushed or bruised. Flowers monoecious, male flowers catkins, small scaley, cone-like buds; female flowers up to 8-flowered spikes. Fruit a drupe-like nut surrounded by a fleshy, indehiscent exocarp. The nut has a rough, furrowed, hard shell that protects the edible seed. Fruits Bark (Robert H. Mohlenbrock. USDA NRCS. 1995. Northeast wetland flora: Field office produced in clusters of 2-3 and borne on the terminals of the current guide to plant species) season's growth. The seed is sweet, oily and high in protein. The bitter tasting bark on young trees is dark and scaly becoming darker with rounded intersecting ridges on maturity. BIOLOGY Flowers begin to appear mid-April in the south and progressively later until early June in the northern part of the natural range. -
Pharmaceutical Applications of a Pinyon Oleoresin;
PHARMAC E UT I CAL A PPL ICAT IONS OF A PINYON OLEORESIN by VICTOR H. DUKE A thesis submitted to the faculty of the University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pharmacognosy College of Pharmacy University of Utah May, 1961 LIBRARY UNIVERSITY elF UTAH I I This Thesis for the Ph. D. degree by Victor H. Duke has been approved by Reader, Supervisory Head, Major Department iii Acknowledgements The author wishes to acknowledge his gratitude to each of the following: To Dr. L. David Hiner, his Dean, counselor, and friend, who suggested the problem and encouraged its completion. To Dr. Ewart A. Swinyard, critical advisor and respected teacher, for inspiring his original interest in pharmacology. To Dr. Irving B. McNulty and Dr. Robert K. Vickery, true gentlemen of the botanical world, for patiently intro ducing him to its wonders. To Dr. Robert V. Peterson, an amiable faculty con sultant, for his unstinting assistance. To his wife, Shirley and to his children, who have worked with him, worried with him, and who now have succeeded with him. i v TABLE OF CONTENTS Page I. INTRODUCTION 1 II. REPORTED USES OF PINYON OLEORESI N 6 A. Internal Uses 6 B. External Uses 9 III. GENUS PINUS 1 3 A. Introduction 13 B. Pinyon Pines 14 1. Pinus edulis Engelm 18 2. Pinus monophylla Torr. and Frem. 23 3. Anatomy 27 (a) Leaves 27 (b) Bark 27 (c) Wood 30 IV. COLLECTION OF THE OLEORESIN 36 A. Ch ip Method 40 B. -
Non-Wood Forest Products from Conifers
Page 1 of 8 NON -WOOD FOREST PRODUCTS 12 Non-Wood Forest Products From Conifers FAO - Food and Agriculture Organization of the United Nations The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-37 ISBN 92-5-104212-8 (c) FAO 1995 TABLE OF CONTENTS FOREWORD ACKNOWLEDGMENTS ABBREVIATIONS INTRODUCTION CHAPTER 1 - AN OVERVIEW OF THE CONIFERS WHAT ARE CONIFERS? DISTRIBUTION AND ABUNDANCE USES CHAPTER 2 - CONIFERS IN HUMAN CULTURE FOLKLORE AND MYTHOLOGY RELIGION POLITICAL SYMBOLS ART CHAPTER 3 - WHOLE TREES LANDSCAPE AND ORNAMENTAL TREES Page 2 of 8 Historical aspects Benefits Species Uses Foliage effect Specimen and character trees Shelter, screening and backcloth plantings Hedges CHRISTMAS TREES Historical aspects Species Abies spp Picea spp Pinus spp Pseudotsuga menziesii Other species Production and trade BONSAI Historical aspects Bonsai as an art form Bonsai cultivation Species Current status TOPIARY CONIFERS AS HOUSE PLANTS CHAPTER 4 - FOLIAGE EVERGREEN BOUGHS Uses Species Harvesting, management and trade PINE NEEDLES Mulch Decorative baskets OTHER USES OF CONIFER FOLIAGE CHAPTER 5 - BARK AND ROOTS TRADITIONAL USES Inner bark as food Medicinal uses Natural dyes Other uses TAXOL Description and uses Harvesting methods Alternative -
Go Nuts! P2 President’S Trees Display Fall Glory in a ‘Nutritious’ Way Report by Lisa Lofland Gould P4 Pollinators & Native Plants UTS HAVE Always Fascinated N Me
NEWSLETTER OF THE NC NATIVE PLANT SOCIETY Native Plant News Fall 2020 Julie Higgie, editor Vol. 18, Issue 3 INSIDE: Go Nuts! P2 President’s Trees Display Fall Glory in a ‘NUTritious’ Way Report By Lisa Lofland Gould P4 Pollinators & Native Plants UTS HAVE always fascinated N me. I was a squirrel for a while when I P6 Book Review was around six years old. My best friend and I spent hours under an oak tree in a P10 Habitat Report neighbor’s yard one autumn, amassing piles of acorns and dashing from imagined preda- P12 Society News tors. So, it seems I’ve always known there’s P14 Scholar News nothing like a good stash of nuts to feel ready for winter. P16 Member It’s not surprising that a big nut supply might leave a winter-conscious Spotlight beast feeling smug. Nuts provide fats, protein, carbohydrates, and vit- amins, along with a number of essential elements such as copper, MISSION zinc, potassium, and manganese. There is a great deal of food value STATEMENT: in those little packages! All that compactly bundled energy evolved to give the embryo plenty of time to develop; the nut’s worth to foraging Our mission is to animals assures that the fruit is widely dispersed. Nut trees pay a promote the en- price for the dispersal work of the animals, but apparently enough sur- vive to make it worth the trees’ efforts: animals eat the nuts and even joyment and con- bury them in storage, but not all are retrieved, and those that the servation of squirrels forget may live to become the mighty denizens of our forests. -
Ecological Site F136XY031GA PROVISIONAL - Bottomland Forest, Thermic Temperature Regime
Natural Resources Conservation Service Ecological site F136XY031GA PROVISIONAL - Bottomland Forest, Thermic Temperature Regime Accessed: 10/02/2021 General information MLRA notes Major Land Resource Area (MLRA): 136X–Southern Piedmont This area is in North Carolina (29 percent), Georgia (27 percent), Virginia (21 percent), South Carolina (16 percent), and Alabama (7 percent). It makes up about 64,395 square miles (166,865 square kilometers). (Ag Bulletin 296) The northeast-southwest trending Piedmont ecoregion comprises a transitional area between the mostly mountainous ecoregions of the Appalachians to the northwest and the relatively flat coastal plain to the southeast. It is a complex mosaic of Precambrian and Paleozoic metamorphic and igneous rocks with moderately dissected irregular plains and some hills. (EPA Ecoregions descriptions) ADD APPROPRIATE ECOREGION DESCRIPTION(S) Classification relationships A PROVISIONAL ECOLOGICAL SITE is a conceptual grouping of soil map unit components within a Major Land Resource Area (MLRA) based on the similarities in response to management. Although there may be wide variability in the productivity of the soils grouped into a Provisional Site, the soil vegetation interactions as expressed in the State and Transition Model are similar and the management actions required to achieve objectives, whether maintaining the existing ecological state or managing for an alternative state, are similar. Provisional Sites are likely to be refined into more precise group during the process of meeting the APPROVED ECOLOGICAL SITE DESCRIPTION criteria. This PROVISIONAL ECOLOGICAL SITE has been developed to meet the standards established in the National Ecological Site Handbook. The information associated with this ecological site does not meet the Approved Ecological Site Description Standard, but it has been through a Quality Control and Quality Assurance processes to assure consistency and completeness. -
Diversity of Wisconsin Rosids
Diversity of Wisconsin Rosids . oaks, birches, evening primroses . a major group of the woody plants (trees/shrubs) present at your sites The Wind Pollinated Trees • Alternate leaved tree families • Wind pollinated with ament/catkin inflorescences • Nut fruits = 1 seeded, unilocular, indehiscent (example - acorn) *Juglandaceae - walnut family Well known family containing walnuts, hickories, and pecans Only 7 genera and ca. 50 species worldwide, with only 2 genera and 4 species in Wisconsin Carya ovata Juglans cinera shagbark hickory Butternut, white walnut *Juglandaceae - walnut family Leaves pinnately compound, alternate (walnuts have smallest leaflets at tip) Leaves often aromatic from resinous peltate glands; allelopathic to other plants Carya ovata Juglans cinera shagbark hickory Butternut, white walnut *Juglandaceae - walnut family The chambered pith in center of young stems in Juglans (walnuts) separates it from un- chambered pith in Carya (hickories) Juglans regia English walnut *Juglandaceae - walnut family Trees are monoecious Wind pollinated Female flower Male inflorescence Juglans nigra Black walnut *Juglandaceae - walnut family Male flowers apetalous and arranged in pendulous (drooping) catkins or aments on last year’s woody growth Calyx small; each flower with a bract CA 3-6 CO 0 A 3-∞ G 0 Juglans cinera Butternut, white walnut *Juglandaceae - walnut family Female flowers apetalous and terminal Calyx cup-shaped and persistant; 2 stigma feathery; bracted CA (4) CO 0 A 0 G (2-3) Juglans cinera Juglans nigra Butternut, white -
Adeyemi Et Al., 2012)
Ife Journal of Science vol. 15, no. 2 (2013) 303 A REVIEW OF THE TAXONOMY OF AFRICAN SAPINDACEAE BASED ON QUANTITATIVE AND QUALITATIVE CHARACTERS *Adeyemi, T.O., Ogundipe, O.T. and Olowokudejo, J.D. Department of Botany, University of Lagos, Akoka, Lagos, Nigeria. e-mail addresses: [email protected], [email protected], [email protected] *Corresponding author: [email protected], +2348029180930 (Received: April, 2013; Accepted: June, 2013) ABSTRACT This study was conducted using qualitative and quantitative morphology to characterise and group different representative species of the family Sapindaceae in Africa. The morphological characters used included leaf, stem and fruit. Essentially, the similarities among various taxa in the family were estimated. A total of 28 genera and 106 species were assessed. Members possess compound leaves (paripinnate, imparipinnate or trifoliolate); flowers are in clusters, fruits occur as berry, drupe or capsule and contain seed with white or orange aril. UPGMA dendograms were generated showing relationships amongst taxa studied. The dendograms consists of a single cluster from 0 57 % similarity coefficients suggesting a single line decent of the members of the family. At 65 % two clusters were observed with Majidea fosterii being separated from the cluster. Also, at 67 % similarity coefficient, two clusters were discerned separating the climbing forms from the shrubby forms. Paullinia pinnata was separated from the other climbing forms at 67 % while Allophylus species were separated into two clusters at 91 % similarity coefficient. The dendograms revealed that the family can be separated into eleven (11) clusters based on qualitative morphological data. A key to the identification of genera is presented in this work.