Utilizing Molecular Phylogenetics to Assess Genetic Diversity of Western

Total Page:16

File Type:pdf, Size:1020Kb

Utilizing Molecular Phylogenetics to Assess Genetic Diversity of Western Comparison of Biogeography Patterns of Two Freshwater Snails - Physa acuta and Helisoma cf. trivolvis by KELLY ROSE MARTIN B.S., University of Wisconsin Madison, 2017 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Master of Science Department of Museum and Field Studies 2019 This thesis entitled: Comparison of Biogeography Patterns of Two Freshwater Snails - Physa acuta and Helisoma cf. trivolvis written by Kelly Rose Martin has been approved for the Department of Museum and Field Studies _____________________________________ Dr. Jingchun Li _____________________________________ Dr. Pieter Johnson _____________________________________ Dr. J. Patrick Kociolek Date____________ The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standard of scholarly work in the above mentioned discipline. Martin, Kelly Martin (M.S., Museum and Field Studies) Comparison of Biogeography Patterns of Two Freshwater Snails - Physa acuta and Helisoma cf. trivolvis Thesis directed by Assistant Professor Dr. Jingchun Li Despite the important roles freshwater gastropods play in aquatic ecosystems, much of their basic biology and ecology are understudied. Particularly, information regarding species distribution, dispersal patterns and population structure is incomplete. This study addressed the biogeography of two native North American freshwater snails, Physa acuta (Gastropoda: Physidae) and Helisoma trivolvis (Gastropoda: Planorbidae), in the western United States and globally. We amplified two genetic markers (COI, 16S) from individuals belonging to multiple populations along the West Coast and downloaded existing genetic data from Genbank for the two species. We utilized minimum spanning networks to compare the population genetic patterns between the species and preformed Analysis of Molecular Variance (AMOVA) and linear regression analyses to determine whether watersheds, geographic distance, or other biotic factors contributed to the observed genetic structuring. We found that P. acuta was more genetically diverse and showed less overall population structuring than H. cf. trivolvis in the West Coast. Overall, we did not find a strong geographical partitioning for either species in the West Coast. Geographic distance and watersheds do not appear to be a predominate factor in shaping the snails’ genetic structure. The North-South genetic similarity indicates that a lack of watershed connectedness does not restrict gene flow. Thus, among watershed dispersal vectors are likely maintaining the snails’ population connectivity. The observed genetic patterns reflect the Pacific Flyway, a major migratory route in the western United States. This suggests that waterfowl are possible vectors in promoting ongoing gene flow over large geographic ranges and impacting the snails’ population structure along the West Coast. An analysis of the population genetics across North America revealed a certain level of East-West genetic structuring in both species. In addition, we found a previously identified P. acuta clade from west of the Rocky Mountains to occur in populations along the eastern slope, suggesting that the clade is not limited to west of the Rockies. The genetic distances among East-West populations in H. cf. trivolvis are relatively high, indicating the presence of a cryptic species. This paper provides an initial framework for continued biogeographical analysis of Physa and Helisoma in their native range. iii Acknowledgments First and foremost, I would like to thank my primary thesis advisor, Dr. Jingchun Li. Her dedication to my success was unparalleled. It was a privilege and an honor to work with someone who cares deeply about the work they do and for her students. She provided critical guidance and expertise throughout this thesis when I needed it most, but she also gave me the space to learn and grow on my own. Thank you for continuously pushing me to be the best scientist I can be. I could not have wished for a better advisor, mentor or advocate than you. I would also like to extend my gratitude to my other committee members, Dr. Pieter Johnson and Dr. Patrick Kociolek. Without their guidance, this thesis would not have been possible. Their willingness to share their expertise and provide meaningful input was essential to the success of this thesis. I would also like to acknowledge the other members of the Li Lab. Your dedication to reading multiple iterations of this thesis was instrumental. Know that your comments and suggestions were greatly appreciated. Your friendship and encouragement mean a lot to me. Additionally, I would like to thank all of the individuals in the Johnson Lab and Jay Bowerman, who facilitated the collection of the specimens used in this study. The scale of this research was only possible with your help. Most importantly, I would like to thank my parents for their constant love and support. You both have taught me to never set a limit on what is possible and to embrace opportunity with an open heart and unwavering mind. You supported me through the highs and lows of this journey and for that I am profoundly grateful. This is for you. I love you. Finally, I am incredibly grateful to all the individuals in the Museum & Field Studies Graduate Program that have contributed to my growth and continued passion for museum collections. I would like to thank the University of Colorado Museum of Natural History for providing financial support of this thesis. iv Table of Contents 1. Introduction………………………………………………………………………………1 2. Methods 2.1 Sampling……………………………………………………………………….……...5 2.2 DNA amplification……………………………………………………………………5 2.3 Population Structure…………………………………………………………………..7 3. Results 3.1 West Coast…………………………………………………………………………….8 3.2 Global………………………………………………………………………………..10 4. Discussion 4.1 West Coast…………………………………………………………………...……....12 4.2 Global………………………………………………………………………………...15 4.3 Broader Implications & Ecological Interactions……………………………………..18 4.3.1 Host-Parasite Interactions………………………………………………….19 4.3.2 Conservation……………………………………………………………….20 4.3.3 Invasive Species……………………………………………………………21 5. Conclusions……………………………………………………………………………...21 Literature Cited………………………………………………………………………………23 Appendix……………………………………………………………………………………..39 v Tables 1. Analysis of molecular variance……………………………………………………………….30 2. Population statistics and molecular diversity indexes, by watershed…………………………30 3. Overall molecular diversity indexes, West Coast……………………………………………..31 4. Population ΦST values between watersheds…………………………………………………...31 vi Figures 1. Museum examples of Physa acuta and Helisoma cf. trivolvis……………………………...32 2. Map of sampling locations………………………………………………………………….32 3. COI haplotype network in the West Coast, Physa acuta…………………………………...33 4. 16S haplotype network in the West Coast, Physa acuta…………………………………....33 5. COI haplotype network in the West Coast, Helisoma cf. trivolvis………………………….34 6. 16S haplotype network in the West Coast, Helisoma cf. trivolvis…………………………..34 7. Global COI haplotype network, Physa acuta………………………………………….……35 8. Global 16S haplotype network, Physa acuta……………………………………….……….35 9. Global COI haplotype network, Helisoma cf. trivolvis…………………………….….……36 10. Effect of geographic distance on pairwise genetic distance, 16S………………….….…...36 11. Effect of geographic distance on pairwise genetic distance, COI………………….….…..37 12. Effect of longitudinal distance on pairwise genetic distance, 16S………………………...37 13. Effect of longitudinal distance on pairwise genetic distance, COI………………………..38 vii 1. Introduction Freshwater snails play important roles in complex ecological interactions. For example, many freshwater snails are intermediate hosts of diverse parasites that ultimately infect vertebrate hosts, including humans (Adema et al. 2012). Some freshwater snails are invasive species, which disrupt ecosystem function, negatively impact agriculture, and threaten native species through predation and competition (Carlsson et al. 2004; Robert 2002; Burlakova et al. 2009). Additionally, freshwater snails can be excellent bioindicators of water quality because of their sensitivity to small-scale disturbances. Unfortunately, freshwater mollusks also represent one of the most threatened animal groups on Earth (Lydeard et al. 2004). Compared to other gastropods, freshwater snails face a disproportionately large risk of extinction (Strong et al. 2007; Lydeard et al. 2004). Their biodiversity losses are a result of anthropogenic impacts, such as habitat loss, degradation and manipulation (Strong et al. 2007). Despite the important roles freshwater gastropods play in aquatic ecology, climatology, conservation, and epidemiology, their basic biology and ecology are still understudied (Adema et al. 2012). Particularly, the understanding of their systematics is largely incomplete (Strong et al. 2007). The taxonomical status of many taxa is uncertain, which is further impaired by a lack of information on species distribution, dispersal patterns and population structure (Strong et al. 2007). If fundamental questions regarding freshwater gastropod ecosystem functions are to be answered, a thorough understanding of their biogeography is essential (Ebbs et al. 2018; Morgan et al. 2002). One of the major factors that determines biogeographical distribution of freshwater snails is their dispersal mode and ability (Brown & Lydeard 2010). Aquatic
Recommended publications
  • Diversity of Echinostomes (Digenea: Echinostomatidae) in Their Snail Hosts at High Latitudes
    Parasite 28, 59 (2021) Ó C. Pantoja et al., published by EDP Sciences, 2021 https://doi.org/10.1051/parasite/2021054 urn:lsid:zoobank.org:pub:9816A6C3-D479-4E1D-9880-2A7E1DBD2097 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Diversity of echinostomes (Digenea: Echinostomatidae) in their snail hosts at high latitudes Camila Pantoja1,2, Anna Faltýnková1,* , Katie O’Dwyer3, Damien Jouet4, Karl Skírnisson5, and Olena Kudlai1,2 1 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic 2 Institute of Ecology, Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania 3 Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, H91 T8NW, Galway, Ireland 4 BioSpecT EA7506, Faculty of Pharmacy, University of Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France 5 Laboratory of Parasitology, Institute for Experimental Pathology, Keldur, University of Iceland, IS-112 Reykjavík, Iceland Received 26 April 2021, Accepted 24 June 2021, Published online 28 July 2021 Abstract – The biodiversity of freshwater ecosystems globally still leaves much to be discovered, not least in the trematode parasite fauna they support. Echinostome trematode parasites have complex, multiple-host life-cycles, often involving migratory bird definitive hosts, thus leading to widespread distributions. Here, we examined the echinostome diversity in freshwater ecosystems at high latitude locations in Iceland, Finland, Ireland and Alaska (USA). We report 14 echinostome species identified morphologically and molecularly from analyses of nad1 and 28S rDNA sequence data. We found echinostomes parasitising snails of 11 species from the families Lymnaeidae, Planorbidae, Physidae and Valvatidae.
    [Show full text]
  • Report to Office of Water Science, Department of Science, Information Technology and Innovation, Brisbane
    Lake Eyre Basin Springs Assessment Project Hydrogeology, cultural history and biological values of springs in the Barcaldine, Springvale and Flinders River supergroups, Galilee Basin and Tertiary springs of western Queensland 2016 Department of Science, Information Technology and Innovation Prepared by R.J. Fensham, J.L. Silcock, B. Laffineur, H.J. MacDermott Queensland Herbarium Science Delivery Division Department of Science, Information Technology and Innovation PO Box 5078 Brisbane QLD 4001 © The Commonwealth of Australia 2016 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence Under this licence you are free, without having to seek permission from DSITI or the Commonwealth, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the source of the publication. For more information on this licence visit http://creativecommons.org/licenses/by/3.0/au/deed.en Disclaimer This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The department holds no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy. If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5725 Citation Fensham, R.J., Silcock, J.L., Laffineur, B., MacDermott, H.J.
    [Show full text]
  • Bayardella Burch, 1977
    Bayardella Burch, 1977 Diagnostic features Snails with small neritiform or cylindrical shell with a low spire. The shell surface has raised spiral ribs and transverse striae, giving appearance of small, incised rectangles The aperture length is almost equal to the whole shell, and has a continuous periostracal fringe. The columellar margin is reflected and slightly curved, without a columellar fold. A deep umbilicus is present. The copulatory organ has an accessory bursa, but lacks a flagellum. A large muscular bulb is suspended from the proximal end of the praeputium, into which the duct of the accessory bursa opens. The anus lies on the anterior edge of rectal lobe. Classification Class Gastropoda Infraclass Heterobranchia Megaorder Hygrophila Order Lymnaeida Superfamily Planorboidea Family Planorbidae Subfamily: Miratestinae Genus Bayardella Burch, 1977 Type species: Plesiophysa (Bayardella) johni Burch, 1977 Original reference: Burch, J.B. (1977). A new freshwater snail (Basommatophora : Planorbidae) from Australia, Plesiophysa (Bayardella) johni. Malacological Review 10: 79-80. Type locality: sdell River, Walcott nlet, north Western Australia. State of taxonomy We follow Walker (1988). We know of at least one undescribed species of Bayardella. Biology and ecology Under wood and stones, in streams and waterholes. At least one species (B. cosmeta) capable of aestivation (Smith and Burn, 1976); biology otherwise unstudied. Distribution Northern, central and eastern Australian mainland. Notes Only Glyptophysa (Glyptophysa) aliciae has similar heavy periostracal spiral ridges. Bayardella has a narrower and much smaller spire and a less distinct shoulder and is smaller in size than G. (G) aliciae. Bayardella also has a much larger aperture compared to G. (G) aliciae.
    [Show full text]
  • Gastropoda: Physidae) in Singapore
    BioInvasions Records (2015) Volume 4, Issue 3: 189–194 Open Access doi: http://dx.doi.org/10.3391/bir.2015.4.3.06 © 2015 The Author(s). Journal compilation © 2015 REABIC Research Article Clarifying the identity of the long-established, globally-invasive Physa acuta Draparnaud, 1805 (Gastropoda: Physidae) in Singapore Ting Hui Ng1,2*, Siong Kiat Tan3 and Darren C.J. Yeo1,2 1Department of Biological Sciences, National University of Singapore 14 Science Drive 4, Singapore 117543, Republic of Singapore 2NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Republic of Singapore 3Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Republic of Singapore E-mail: [email protected] (THN), [email protected] (SKT), [email protected] (DCJY) *Corresponding author Received: 24 December 2014 / Accepted: 6 May 2015 / Published online: 2 June 2015 Handling editor: Vadim Panov Abstract The freshwater snail identified as Physastra sumatrana has been recorded in Singapore since the late 1980’s. It is distributed throughout the island and commonly associated with ornamental aquatic plants. Although the species has previously been considered by some to be native to Singapore, its origin is currently categorised as unknown. Morphological comparisons of freshly collected specimens and material in museum collections with type material, together with DNA barcoding, show that both Physastra sumatrana, and a recent gastropod record of Stenophysa spathidophallus, in Singapore are actually the same species—the globally-invasive Physa acuta. An unidentified physid snail was also collected from the Singapore aquarium trade.
    [Show full text]
  • Identifying Liver Fluke Snails
    Identifying liver fluke snails March 2017, Primefact 476, second edition Dr Joan Lloyd, former Veterinary Research Officer, EMAI Dr Joseph C Boray, former Principal Research Scientist, EMAI Dr Noel Campbell, former Senior Research Scientist, Department of Primary Industries, Victoria (Revised by) Stephen Love, Veterinarian/Research Officer (Parasitology), Sheep Industries, Armidale Introduction Finding liver fluke snails In NSW, about 20 million sheep and 2 million Liver fluke snails live in the mud or on plants in cattle graze pastures where liver fluke (Fasciola shallow water at the edge of springs, small hepatica) commonly occurs. Liver fluke is creeks, dam inflows and outflows, irrigation widespread across eastern NSW, where average channels, poorly drained drainage channels or in rainfall is about 600 mm or more a year. water troughs. They are small and sometimes Specifically, it occurs on the tablelands and difficult to find. nearby slopes, and the north and south coasts. It The kind of habitat in which the snail is found is also found in irrigation areas further west, often gives clues as to which type it is. For where the annual rainfall may only be 400 mm, example, Austropeplea (Lymnaea) tomentosa but is supplemented by regular irrigation. prefers trickling creeks flowing from hillside During its life cycle, liver fluke must develop in a springs and soaks (black bogs), and is only rarely particular type of small freshwater snail. found in dams, water troughs or large creeks. It can, however, be found in dam overflows after In Australia, the most important intermediate host heavy rain, or within spring-fed dam inflows and is the indigenous freshwater snail, Austropeplea outflows.
    [Show full text]
  • Organogen.Sis of the Reproductive System of Helisoma Duryi Eudiacus (Pilsbry) (Pulmonata, Gastropoda), with Notes on Breeding Habits
    Organogen.sis of the Reproductive System of Helisoma duryi eudiacus (Pilsbry) (Pulmonata, Gastropoda), with Notes on Breeding Habits U~eIM~ Department of Zoology Master of Science ABSTRACT The development of the reproductive system of the frvShwater pulmonate, Helisoma duryi eudiscus (Pilsbry), was studied by means of seriaI sections. Development yas traced from embryos to mature speci­ mens. Chronological and histologic&l changes in the reproductive organs yere studied. The tyO priaordia which gave ris. to the entire reproductive tract yere clarified. Br.eding habits such as mode of hatching, type of fertilization, quantity of eggs laid, effects of o~gen and temperature on hatching and the resist­ &Dca of egg membranes to chemicals were additional aspects dealt Yith in this stuay. • Organogenesis of the Reproductive System of He1isoma duryi eudiscus (Pi1sbry) (Pu1monata, Gastropoda), with Notes on Breeding Habits by Mabe1 Mai, B.Sc. A thesis submitted to the Facu1ty of Graduate Studies and Research in partial fu1fi11ment of the requirements for t.he degree of Master of Science. Department of Zoology YcGil1 University, Montreal Ju1y 1969 .' l' r'::\. Mabe1 Mai 19'70 ;1 .i ACKNOWLE1XHŒNTS The wri~er Yi.h•• to thank Dr. Carol M. Lalli for her close supervision over the major part of ~hi. study and for her patience and assistance in rea4ing and correcting every detail of the manuscrip~. A special note of thanks is due to Dr. Tyrell Smith for suggesting the ~opic and supervising part of the experiment. Ur. Ronald Chalk has been Most helptul in providing ~echnical assistance in the preparation of the photomicrographs.
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • Non-Native Freshwater Molluscs in the Neotropics: What Can Be Learned from Brazilian Reservoirs?
    Aquatic Invasions (2020) Volume 15, Issue 3: 455–472 CORRECTED PROOF Research Article Non-native freshwater molluscs in the Neotropics: what can be learned from Brazilian reservoirs? Igor Christo Miyahira*, Larissa Strictar Pereira and Luciano Neves dos Santos Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro (IBIO/UNIRIO). Avenida Pasteur, 458 – Urca, 22290-250, Rio de Janeiro – RJ, Brazil *Corresponding author E-mail: [email protected] Citation: Miyahira IC, Pereira LS, dos Santos LN (2020) Non-native freshwater Abstract molluscs in the Neotropics: what can be learned from Brazilian reservoirs? Aquatic Habitat modification and the establishment of non-native species are two major Invasions 15(3): 455–472, https://doi.org/10. causes of biodiversity loss. Reservoirs modify habitat, can restrain the occurrence 3391/ai.2020.15.3.06 of native species, and allow the establishment of non-native undesirable organisms. Received: 16 April 2019 Non-native species are widespread. However, the status and distribution of some Accepted: 20 April 2020 invaders in these man-made systems remains unclear, especially in the Neotropics. Published: 24 June 2020 In this study, we surveyed digital databases to determine the distribution of non- native molluscs in Brazilian reservoirs. Studies on non-native molluscs in Brazilian Handling editor: Demetrio Boltovskoy reservoirs had been increasing steadily until they reached their peak in 2015. Eight Thematic editor: Ian Duggan non-native mollusc species were recorded in reservoirs in all river basins except for Copyright: © Miyahira et al. the Amazonas River. Non-native molluscs were reported in 74 reservoirs, mostly This is an open access article distributed under terms located within the Paraná River basin.
    [Show full text]
  • Mollusca: Gastropoda) from Islands Off the Kimberley Coast, Western Australia Frank Köhler1, Vince Kessner2 and Corey Whisson3
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 27 021–039 (2012) New records of non-marine, non-camaenid gastropods (Mollusca: Gastropoda) from islands off the Kimberley coast, Western Australia Frank Köhler1, Vince Kessner2 and Corey Whisson3 1 Department of Environment and Conservation of Western Australia, Science Division, PO Box 51, Wanneroo, Western Australia 6946; and Australian Museum, 6 College Street, Sydney, New South Wales 2010, Australia. Email: [email protected] 2 162 Haynes Road, Adelaide River, Northern Terrritory 0846, Australia. Email: [email protected] 3 Department of Aquatic Zoology, Western Australian Museum, 49 Kew Street, Welshpool, Western Australia 6106, Australia. Email: [email protected] ABSTRACT – The coast of the Western Australian Kimberley boasts an archipelago that comprises several hundred large islands and thousands much smaller. While the non–marine gastropod fauna of the Kimberley mainland has been surveyed to some extent, the fauna of these islands had never been comprehensively surveyed and only anecdotal and unsystematic data on species occurrences have been available. During the Western Australian Department of Environment and Conservation’s Kimberley Island Survey, 2008–2010, 22 of the largest islands were surveyed. Altogether, 17 species of terrestrial non–camaenid snails were found on these islands. This corresponds to about 75% of all terrestrial, non–camaenid gastropods known from the entire Kimberley region. In addition, four species of pulmonate freshwater snails were found to occur on one or more of four of these islands. Individual islands harbour up to 15, with an average of eight, species each. Species diversity was found to be higher in the wetter parts of the region.
    [Show full text]
  • Conservation Advice for the Karst Springs and Associated Alkaline Fens of the Naracoorte Coastal Plain Bioregion
    The Threatened Species Scientific Committee provided their advice to the Minister on 31 July 2020. The Minister approved this Conservation Advice on 3 December 2020 and agreed that no recovery plan is required at this time. Conservation Advice1 for the Karst springs and associated alkaline fens of the Naracoorte Coastal Plain Bioregion This document combines the approved conservation advice and listing assessment for the threatened ecological community. It provides a foundation for conservation action and further planning. Karst springs and alkaline fens, Ewen Ponds © Copyright, Anthony Hoffman Conservation Status The Karst springs and associated alkaline fens of the Naracoorte Coastal Bioregion is listed in the Endangered category of the threatened ecological communities list under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act). The ecological community was assessed by the Threatened Species Scientific Committee, who found it to be eligible for listing as Endangered and recommended that a recovery plan is not required at this time. The Committee’s assessment and recommendations are at Section 6. The Committee’s assessment of the eligibility against each of the listing criteria is: Criterion 1: Vulnerable Criterion 2: Endangered Criterion 3: Insufficient data Criterion 4: Endangered Criterion 5: Insufficient data Criterion 6: Insufficient data The main factors that make the threatened ecological community eligible for listing in the Endangered category are its historic losses to drainage, clearing and resulting fragmentation, and ongoing threats to its integrity and function, particularly from hydrological changes. The Karst springs and associated alkaline fens of the Naracoorte Coastal Plain Bioregion occurs within country (the traditional lands) of the Boandik and the Gunditjmara peoples.
    [Show full text]
  • Correcting Misidentifications and First Confirmation of the Globally-Invasive Physa Acuta Draparnaud, 1805 (Gastropoda: Physidae) in Thailand and Laos
    BioInvasions Records (2018) Volume 7, Issue 1: 15–19 Open Access DOI: https://doi.org/10.3391/bir.2018.7.1.03 © 2018 The Author(s). Journal compilation © 2018 REABIC Rapid Communication Correcting misidentifications and first confirmation of the globally-invasive Physa acuta Draparnaud, 1805 (Gastropoda: Physidae) in Thailand and Laos Ting Hui Ng1,*, Yanin Limpanont2, Yupa Chusongsang2, Phirapol Chusongsang2 and Somsak Panha1,* 1Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 2Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand Author e-mails: [email protected] (THN), [email protected] (YL), [email protected] (YC), [email protected] (PC), [email protected] (SP) *Corresponding authors Received: 11 September 2017 / Accepted: 14 December 2017 / Published online: 27 January 2018 Handling editor: Kenneth Hayes Abstract Introduced freshwater gastropods in the Indo-Burmese region may be under-documented owing to a lack of research attention. For the first time, we report on the widespread establishment of the globally invasive freshwater snail Physa acuta (Physidae) in Thailand and Laos, including decades old records that had previously been misidentified as Camptoceras jiraponi (Planorbidae). Occurrence of Physa acuta as hitchhikers among ornamental aquatic plants suggests that the ornamental trade was a likely introduction pathway of the species into Thailand. That a globally invasive species was able to spread unnoticed for such a long period of time highlights the need for countries like Thailand to focus research efforts on prevention and early detection of introduced species, in addition to increasing our understanding of native biodiversity.
    [Show full text]
  • Life History Cost of Trematode Infection in Helisoma Anceps Using Mark–Recapture in Charlie's Pond
    J. Parasitol., 94(2), 2008, pp. 314–325 ᭧ American Society of Parasitologists 2008 LIFE HISTORY COST OF TREMATODE INFECTION IN HELISOMA ANCEPS USING MARK–RECAPTURE IN CHARLIE’S POND N. J. Negovetich* and G. W. Esch Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109. e-mail: [email protected] ABSTRACT: Parasitism has the potential to affect key life history traits of an infected host. Perhaps the most studied interactions are in snail–trematode systems, where infection can result in altered growth rates, survival, and/or fecundity of the individual. Positive correlations between host size and parasite prevalence are often attributed to changes in growth rates or mortality, which have been observed in the laboratory. Extending lab-based conclusions to the natural setting is problematic, especially when environmental conditions differ between the laboratory and the field. The present study uses reproduction experiments and mark– recapture methods to directly measure key life history traits of the pulmonate snail Helisoma anceps in Charlie’s Pond. Based on previous laboratory and field experiments on H. anceps, we predict a significant reduction in fecundity, but not growth rate or survival, of infected snails. Individual capture histories were analyzed with multistate models to obtain estimates of survival and infection probabilities throughout the year. Recaptured individuals were used to calculate specific growth rates. Trematode infection resulted in complete castration of the host. However, neither survival nor growth rates were found to differ between infected and uninfected individuals. The probability of infection exhibited seasonal variation, but it did not vary with size of the snail.
    [Show full text]