Gastropod-Borne Trematode Communities of Man-Made Reservoirs in Zimbabwe, with a Special Focus on Fasciola and Schistosoma Helminth Parasites

Total Page:16

File Type:pdf, Size:1020Kb

Gastropod-Borne Trematode Communities of Man-Made Reservoirs in Zimbabwe, with a Special Focus on Fasciola and Schistosoma Helminth Parasites FACULTY OF SCIENCE Gastropod-borne trematode communities of man-made reservoirs in Zimbabwe, with a special focus on Fasciola and Schistosoma helminth parasites Ruben SCHOLS Supervisor: Prof. Dr. Filip Volckaert Thesis presented in KU Leuven, Leuven (BE) fulfilment of the requirements Co-supervisor and mentor: Dr. Tine Huyse for the degree of Master of Science Royal Museum for Central Africa, Tervuren (BE) in Biology Co-supervisor: Prof. Dr. Maxwell Barson University of Zimbabwe, Harare (ZW) Academic year 2018-2019 © Copyright by KU Leuven Without written permission of the promotors and the authors it is forbidden to reproduce or adapt in any form or by any means any part of this publication. Requests for obtaining the right to reproduce or utilize parts of this publication should be addressed to KU Leuven, Faculteit Wetenschappen, Geel Huis, Kasteelpark Arenberg 11 bus 2100, 3001 Leuven (Heverlee), Telephone +32 16 32 14 01. A written permission of the promotor is also required to use the methods, products, schematics and programs described in this work for industrial or commercial use, and for submitting this publication in scientific contests. i ii Preface The thesis took almost a year from preparing the field trip to completing the writing process. Many people assisted me with the data collection and the writing process of this thesis. Without them this work would not have reached the present quality and each of them deserves a personal mention of gratitude here. First and foremost, I would like to thank Dr. Tine Huyse and prof. Filip Volckaert for providing me with the opportunity to work on this extremely interesting subject. I am very grateful for their substantial efforts in revising many initially rough versions and shaping it in a thesis of scientific quality. I particularly want to thank Tine for making the snail-group such a pleasant working environment and for being my harshest critic. Furthermore, I would like to thank my local supervisor, prof. Maxwell Barson, and fellow MSc student Kudzai Muzarabani together with the other students for assisting me on the many field work trips in Zimbabwe. These two, together with Aspire Mudavanhu and the entire Griffiths family made my stay in Zimbabwe an amazing trip that I will never forget. I want to especially thank Kazz Douie for making the lovely illustrations shown on the first page. I must thank VLIR-UOS for the financial support and the University of Zimbabwe and Royal Museum for Central Africa for hosting me. I am very grateful for the time and effort Kenny Meganck and Nathalie Smitz spent on guiding me. They endured many questions, provided additional scientific views and guided me throughout the everlasting lab work period in the RMCA. Furthermore, I wish to thank the assistance offered by Michiel Jorissen and Cyril Hammoud in analysing my data, Birgit Vanden Berghen for creating the beautiful maps indicating sampling locations, the experimental tips by Tim Maes, and the lab assistance offered by Jonathan Brecko, Bart Hellemans, Maria Papadaki, Mercy Ashepet and Alice Boudry. Without whom it would not have been possible to collect this vast amount of data. I also want to thank prof. Samson Mukaratirwa for providing interesting insights on gastropod distributions in Zimbabwe. I also want to express my gratitude towards Hans Carolus for providing me with valuable data and experiences, on which many of these new results are based. Finally, I want to thank my father, Dominique Schols, for doing a final quality check of this work. iii Abbreviations Full term Abbreviation Biomphalaria Bi. Bulinus B. Centre for Disease Control CDC cytochrome oxidase 1 gene COI Deoxyribonucleic acid DNA Gastropod-Borne Trematode GBT Gel electrophoresis GE Helisoma H. Hippopotamus Hi. Human Immunodeficiency Virus HIV Internal transcribed spacer ITS International Union for the Conservation of Nature IUCN Mitochondrial DNA mtDNA Neglected Tropical Disease NTD Polymerase chain reaction PCR Royal Museum for Central Africa RMCA University of Zimbabwe UZ World Health Organization WHO iv Index PREFACE ............................................................................................................................................................ III ABBREVIATIONS ............................................................................................................................................. IV INDEX .................................................................................................................................................................... V SUMMARY ....................................................................................................................................................... VII SAMENVATTING ........................................................................................................................................... VIII INTRODUCTION ................................................................................................................................................. 1 1. ROLE OF FRESHWATER GASTROPODS IN DISEASE TRANSMISSION ................................................................ 1 2. GASTROPODA ............................................................................................................................................. 2 1.1. Diversity .................................................................................................................................................. 2 1.2. Biology .................................................................................................................................................... 2 1.3. Classification ........................................................................................................................................... 2 3. GASTROPOD - BORNE TREMATODES ........................................................................................................... 3 2.1. Lifecycles ................................................................................................................................................. 3 2.2. Classification ........................................................................................................................................... 5 4. SCHISTOSOMA .............................................................................................................................................. 6 5.1. Biology and Ecology ............................................................................................................................... 6 5.2. Hybridization ........................................................................................................................................... 9 5. FASCIOLA .................................................................................................................................................. 11 6. AMPHISTOMES .......................................................................................................................................... 13 7. INVASIVE GASTROPODS IN SOUTHERN AFRICA ......................................................................................... 15 8. THE EFFECT OF MAN-MADE LAKES ON TREMATODE EPIDEMIOLOGY ......................................................... 17 AIMS .................................................................................................................................................................... 19 MATERIALS AND METHODS........................................................................................................................ 19 1. ETHICAL STATEMENT AND RISK ASSESSMENT .......................................................................................... 19 2. SAMPLING ................................................................................................................................................ 20 2.1. Sampling locations ................................................................................................................................ 20 2.2. Sampling methodology .......................................................................................................................... 21 3. MOLECULAR ANALYSIS ............................................................................................................................ 24 3.1. Molecular identification of gastropod and trematode species .............................................................. 24 3.2. Multiplex PCR assays for detection of gastropod infection status ........................................................ 27 3.3. Haplotype and genotype mapping based on COI and ITS respectively ................................................. 28 3.4. Screening for hybrids ............................................................................................................................ 29 4. ANALYSIS OF GASTROPOD COMMUNITIES ................................................................................................. 29 RESULTS ............................................................................................................................................................ 30 1. GASTROPOD AND TREMATODE DIVERSITY ................................................................................................ 30 v 1.1. Gastropod diversity ............................................................................................................................... 30 1.3. Trematode diversity
Recommended publications
  • A SECOND ASSEMBLAGE of PLIOCENE INVERTEBRATE FOSSILS from LANGEBAANWEG, CAPE Are Issued in Parts at Irregular Intervals As Material Becomes Available
    ANNALS OF THE SOUTH AFRICAN MUSEUM ANNALE VAN DIE SUID-AFRIKAANSE MUSEUM Volume 72 Band April 1977 April Part 10 Deel A SECOND ASSEMBLAGE OF PLIOCENE INVERTEBRATE FOSSILS FROM LANGEBAANWEG, CAPE are issued in parts at irregular intervals as material becomes available word uitgegee in dele op ongereelde tye na beskikbaarheid van stof OUT OF PRINT/UIT DRUK 1,2(1,3, 5-8), 3(1-2, 4-5,8, t.-p.i.), 5(1-3, 5, 7-9), 6(1, t.-p.i.), 7(1-4), 8, 9(1-2,7), 10(1), 11(1-2,5,7, t.-p.i.), 15(4-5),24(2),27,31(1-3),33 Price of this part/Prys van hierdie deel R2,50 Trustees of the South African Museum © Trustees van die Suid-Afrikaanse Museum 1977 Printed in South Africa by In Suid-Afrika gedruk deur The Rustica Press, Pty., Ltd., Die Rustica-pers, Edms., Bpk., Court Road, Wynberg, Cape Courtweg, Wynberg, Kaap A SECOND ASSEMBLAGE OF PLIOCENE INVERTEBRATE FOSSILS FROM LANGEBAANWEG, CAPE BRIAN KENSLEY South African Museum, Cape Town An assemblage of fossils from the Quartzose Sand Member of the Varswater Formation at Langebaanweg is described. The assemblage consists of 20 species of gasteropods, 2 species of bivalves, 1 amphineuran species, about 4 species of ostracodes, and the nucules of a species of the alga Chara (stonewort). Included amongst the molluscs is a new species of Bu/lia, to be described later by P. Nuttall of the British Museum, and a new species of the bivalve genus Cuna described here.
    [Show full text]
  • Historical Biogeography and Phylogeography of Indoplanorbis Exustus
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.28.446081; this version posted May 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Historical biogeography and phylogeography of Indoplanorbis exustus Maitreya Sil1*, Juveriya Mahveen1,2, Abhishikta Roy1,3, K. Praveen Karanth4, and Neelavara Ananthram Aravind1,5* 1 Suri Sehgal Centre for Biodiversity and Conservation, Ashoka Trust For Research In Ecology And The Environment, Royal Enclave, Sriramapura, Jakkur PO, Bangalore 560064, India 2The Department of Microbiology, St. Joseph’s College, Bangalore 560027, India 3The University of Trans-Disciplinary Health Sciences and Technology, Jarakbande Kaval, Bangalore 560064, India 4 Centre for Ecological Sciences, Indian Institute of science, Bangalore 560012, India 5Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Derlakatte, Mangalore 575018, India *Author for correspondence [email protected] [email protected] Abstract: The history of a lineage is intertwined with the history of the landscape it resides in. Here we showcase how the geo-tectonic and climatic evolution in South Asia and surrounding landmasses have shaped the biogeographic history of Indoplanorbis exustus, a tropical Asian, freshwater, pulmonated snail. We amplified partial COI gene fragment from all over India and combined this with a larger dataset from South and Southeast Asia to carry out phylogenetic reconstruction, species delimitation analysis, and population genetic analyses. Two nuclear genes were also amplified from one individual per putative species to carry out divergence dating and ancestral area reconstruction analyses.
    [Show full text]
  • Mitochondrial Genome of Bulinus Truncatus (Gastropoda: Lymnaeoidea): Implications for Snail Systematics and Schistosome Epidemiology
    Journal Pre-proof Mitochondrial genome of Bulinus truncatus (Gastropoda: Lymnaeoidea): implications for snail systematics and schistosome epidemiology Neil D. Young, Liina Kinkar, Andreas J. Stroehlein, Pasi K. Korhonen, J. Russell Stothard, David Rollinson, Robin B. Gasser PII: S2667-114X(21)00011-X DOI: https://doi.org/10.1016/j.crpvbd.2021.100017 Reference: CRPVBD 100017 To appear in: Current Research in Parasitology and Vector-Borne Diseases Received Date: 21 January 2021 Revised Date: 10 February 2021 Accepted Date: 11 February 2021 Please cite this article as: Young ND, Kinkar L, Stroehlein AJ, Korhonen PK, Stothard JR, Rollinson D, Gasser RB, Mitochondrial genome of Bulinus truncatus (Gastropoda: Lymnaeoidea): implications for snail systematics and schistosome epidemiology, CORTEX, https://doi.org/10.1016/ j.crpvbd.2021.100017. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2021 The Author(s). Published by Elsevier B.V. Journal Pre-proof Mitochondrial genome of Bulinus truncatus (Gastropoda: Lymnaeoidea): implications for snail systematics and schistosome epidemiology Neil D. Young a,* , Liina Kinkar a, Andreas J. Stroehlein a, Pasi K. Korhonen a, J.
    [Show full text]
  • Host-Parasite Interactions: Snails of the Genus Bulinus and Schistosoma Marqrebowiei BARBARA ELIZABETH DANIEL Department of Biol
    / Host-parasite interactions: Snails of the genus Bulinus and Schistosoma marqrebowiei BARBARA ELIZABETH DANIEL Department of Biology (Medawar Building) University College London A Thesis submitted for the degree of Doctor of Philosophy in the University of London December 1989 1 ProQuest Number: 10609762 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10609762 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT Shistes c m c a In Africa the schistosomes that belong to the haematobium group are transmitted in a highly species specific manner by snails of the genus Bulinus. Hence the miracidial larvae of a given schistosome will develop in a compatible snail but upe*\. ^entering an incompatible snail an immune response will be elicited which destroys the trematode. 4 The factors governing such interactions were investigated using the following host/parasite combination? Bulinus natalensis and B^_ nasutus with the parasite Spect'e3 marqrebowiei. This schistosome^develops in B^_ natalensis but not in B_;_ nasutus. The immune defence system of snails consists of cells (haemocytes) and haemolymph factors.
    [Show full text]
  • Aflenz Basin, Eastern Alps, Austria
    Pala¨ontol Z DOI 10.1007/s12542-011-0117-x RESEARCH PAPER A Middle Miocene endemic freshwater mollusc assemblage from an intramontane Alpine lake (Aflenz Basin, Eastern Alps, Austria) Mathias Harzhauser • Thomas A. Neubauer • Oleg Mandic • Martin Zuschin • Stjepan C´ oric´ Received: 18 February 2011 / Accepted: 11 August 2011 Ó Springer-Verlag 2011 Abstract The mollusc fauna of the early Middle Miocene roetzeli Harzhauser and Neubauer nov. sp., Nematurella (Langhian) intramontane Alpine Lake Groisenbach is zuschini Neubauer and Harzhauser nov. sp., Romania described for the first time. The shells derive from the fastigata Neubauer and Harzhauser nov. sp., Odontohy- Feistring Formation in the Aflenz Basin in Austria, which drobia groisenbachensis Neubauer and Harzhauser nov. sp., was covered by Lake Groisenbach. The assemblage is Odontohydrobia pompatica Neubauer and Harzhauser nov. moderately diverse with 12 gastropod and 2 bivalve species, sp., Odontohydrobia styriaca Harzhauser and Neubauer nov. suggesting shallow lacustrine and fluvial settings. Among sp., Planorbis austroalpinus Harzhauser and Neubauer the gastropods, only Theodoxus crenulatus (Klein, 1853) is nov. sp., Gyraulus sachsenhoferi Harzhauser and Neubauer known from other Miocene localities, whilst all other spe- nov. sp., Bulinus corici Harzhauser and Neubauer nov. sp., cies are documented so far only from Lake Groisenbach. Ferrissia crenellata Harzhauser and Neubauer nov. sp. and None of the Early and Middle Miocene lake systems of the Stagnicola reinholdkunzi Harzhauser and Neubauer nov. Alpine-Carpathian Foredeep and the Balkan Peninsula sp. are introduced as new species. displays any faunistic resemblance with this new fauna. Even coeval lake faunas from the close-by Graz Basin have Keywords Gastropoda Á Miocene Á Freshwater Á no species in common with Lake Groisenbach.
    [Show full text]
  • REVEALING BIOTIC DIVERSITY: HOW DO COMPLEX ENVIRONMENTS INFLUENCE HUMAN SCHISTOSOMIASIS in a HYPERENDEMIC AREA Martina R
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations Spring 5-9-2018 REVEALING BIOTIC DIVERSITY: HOW DO COMPLEX ENVIRONMENTS INFLUENCE HUMAN SCHISTOSOMIASIS IN A HYPERENDEMIC AREA Martina R. Laidemitt Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Recommended Citation Laidemitt, Martina R.. "REVEALING BIOTIC DIVERSITY: HOW DO COMPLEX ENVIRONMENTS INFLUENCE HUMAN SCHISTOSOMIASIS IN A HYPERENDEMIC AREA." (2018). https://digitalrepository.unm.edu/biol_etds/279 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Martina Rose Laidemitt Candidate Department of Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Eric S. Loker, Chairperson Dr. Jennifer A. Rudgers Dr. Stephen A. Stricker Dr. Michelle L. Steinauer Dr. William E. Secor i REVEALING BIOTIC DIVERSITY: HOW DO COMPLEX ENVIRONMENTS INFLUENCE HUMAN SCHISTOSOMIASIS IN A HYPERENDEMIC AREA By Martina R. Laidemitt B.S. Biology, University of Wisconsin- La Crosse, 2011 DISSERT ATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biology The University of New Mexico Albuquerque, New Mexico July 2018 ii ACKNOWLEDGEMENTS I thank my major advisor, Dr. Eric Samuel Loker who has provided me unlimited support over the past six years. His knowledge and pursuit of parasitology is something I will always admire. I would like to thank my coauthors for all their support and hard work, particularly Dr.
    [Show full text]
  • Study on the Ethiopian Freshwater Molluscs, Especially on Identification, Distribution and Ecology of Vector Snails of Human Schistosomiasis
    Jap. J. Trop. Med. Hyg., Vol. 3, No. 2, 1975, pp. 107-134 107 STUDY ON THE ETHIOPIAN FRESHWATER MOLLUSCS, ESPECIALLY ON IDENTIFICATION, DISTRIBUTION AND ECOLOGY OF VECTOR SNAILS OF HUMAN SCHISTOSOMIASIS HIROSHI ITAGAKI1, NORIJI SUZUKI2, YOICHI ITO2, TAKAAKI HARA3 AND TEFERRA WONDE4 Received for publication 17 February 1975 Abstract: Many surveys were carried out in Ethiopia from January 1969 to January 1971 to study freshwater molluscs, especially the intermediate and potential host snails of Schistosoma mansoni and S. haematobium, to collect their ecological data, and to clarify the distribution of the snails in the country. The gastropods collected consisted of two orders, the Prosobranchia and Pulmonata. The former order contained three families (Thiaridae, Viviparidae and Valvatidae) and the latter four families (Planorbidae, Physidae, Lymnaeidae and Ancylidae). The pelecypods contained four families : the Unionidae, Mutelidae, Corbiculidae and Sphaeriidae. Biomphalaria pfeifferi rueppellii and Bulinus (Physopsis)abyssinicus are the most important hosts of S. mansoniand S. haematobium respectively. The freshwater snail species could be grouped into two distibution patterns, one of which is ubiquitous and the other sporadic. B. pfeifferirueppellii and Bulinus sericinus belong to the former pattern and Biomphalaria sudanica and the members of the subgenus Physopsis to the latter. Pictorial keys were prepared for field workers of schistosomiasis to identify freshwater molluscs in Ethiopia. Habitats of bulinid and biomphalarian snails were ecologically surveyed in connection with the epidemiology of human schistosomiasis. Rain falls and nutritional conditions of habitat appear to influence the abundance and distribution of freshwater snails more seriously than do temperature and pH, but water current affects the distribution frequently.
    [Show full text]
  • Do Self-Fertilization and Genetic Drift Promote a Very Low Genetic Variability in the Allotetraploid Bulinus Truncatus (Gastropoda: Planorbidae) Populations?
    Genet. Res., Camb. (1993), 62, pp. 89-100 With 3 text-figures Copyright © 1993 Cambridge University Press 89 Do self-fertilization and genetic drift promote a very low genetic variability in the allotetraploid Bulinus truncatus (Gastropoda: Planorbidae) populations? FLOBERT NJIOKOU1, CHRISTIAN BELLEC1, PATRICK BERREBI2, BERNARD DELAY3 AND PHILIPPE JARNE3* 1 Laboraloire d'Epide'miologie des Maladies a Vecteurs, ORSTOM, 911 Avenue Agropolis, B.P. 5045, 34032 Montpellier, France 2 Genome et Populations (CNRS, URA 1493), Universite Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France 3 Genetique et Environnement, Institut des Sciences de /'Evolution, Universite Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France (Received 9 November 1992 and in revised form 13 April 1993) Summary Bulinus truncatus, one of the intermediate hosts of the genus Schistosoma is an hermaphrodite freshwater snail species occupying a variety of environments over almost all Africa. These environments are subjected to large variations in water availability. B. truncatus is allotetraploid and its populations exhibit various frequencies of aphallic individuals (unable to reproduce as male). Both traits probably favour a reproduction by self-fertilization. Here we investigate the genetic structure of populations of B. truncatus of Niger and Ivory Coast using protein electrophoresis to analyse the influence of the environment and of both the last traits. To obtain an estimate of the true heterozygosity in this allotetraploid species, we analyse independently the two diploid loci at each tetraploid locus. Our study indicates (i) an extremely low intrapopulation polymorphism with most alleles fixed and the total absence of heterozygotes and (ii) low differentiation between populations.
    [Show full text]
  • IUCN Bibliography (1299).Wpd
    Zambezi Basin Wetlands Volume IV : Bibliography i Back to links page CONTENTS VOLUME IV Bibliography Page ANNOTATED BIBLIOGRAPHY ........................................ 1 1 Introduction .................................................................. 1 2 Preparation of bibliography ......................................... 1 3 Results ......................................................................... 2 4 References ................................................................... 3 5 Annotated bibliography ......................... ..................... 5 A ................................................................ 5 B ................................................................ 8 C ................................................................ 18 D ................................................................ 23 E ................................................................ 28 F ................................................................ 29 G ................................................................ 31 H ................................................................ 34 I ................................................................ 41 J ................................................................ 42 K ................................................................ 46 L ................................................................ 48 M ................................................................ 50 N ................................................................ 60 O ...............................................................
    [Show full text]
  • Laboratory Feeding of Bulinus Truncatus and Bulinus Globosus with Tridax Procumbens Leaves
    Vol. 5(3), pp. 31-35, March 2013 DOI: 10.5897/JPVB 13.0109 Journal of Parasitology and ISSN 2141-2510 © 2013 Academic Journals http://www.academicjournals.org/JPVB Vector Biology Full Length Research Paper Laboratory feeding of Bulinus truncatus and Bulinus globosus with Tridax procumbens leaves O. M. Agbolade*, O. W. Lawal and K. A. Jonathan Department of Plant Science and Applied Zoology, Parasitology and Medical Entomology Laboratory, Olabisi Onabanjo University, P.M.B. 2002, Ago-Iwoye, Ogun State, Nigeria. Accepted 18 March, 2013 Suitability of Tridax procumbens leaves in laboratory feeding of Bulinus truncatus and Bulinus globosus was assessed in comparison with Lactuca sativa between September and October, 2011. The snails were collected from Eri-lope stream in Ago-Iwoye, while T. procumbens were collected from the Mini Campus of the Olabisi Onabanjo University, Ago-Iwoye, Ijebu North, Southwestern Nigeria. For B. truncatus, fresh, sun-dried and oven-dried T. procumbens were used, while only fresh T. procumbens were used for B. globosus. The mean percentage survivals of B. truncatus fed with fresh, sun-dried and oven-dried T. procumbens compared with those of the corresponding control snails showed no significant difference (2 = 0.51, 1.85, and 2.21, respectively). B. truncatus fed with fresh T. procumbens had the highest mean live-weight percentage increase (46.4%) as compared to those fed with sun-dried and oven-dried (2 = 45.65). The mean percentage survival of B. globosus fed with fresh T. procumbens (79.2%) was similar with that of the control (84.6%) (2 = 0.18).
    [Show full text]
  • Paternity Outcomes in the Freshwater Gastropod, Chilina Dombeiana in the Biobı´O River, Chile
    RESEARCH ARTICLE Paternity Outcomes in the Freshwater Gastropod, Chilina dombeiana in the BiobõÂo River, Chile JeÂssica Bo rquez☯, Antonio Brante*☯ Departamento de EcologõÂa, Facultad de Ciencias, Centro de InvestigacioÂn en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad CatoÂlica de la Ssma, ConcepcioÂn, CHILE ☯ These authors contributed equally to this work. * [email protected] a1111111111 a1111111111 Abstract a1111111111 a1111111111 Studying the mating system of obligate aquatic organisms that inhabit river ecosystems is a1111111111 important for understanding its evolution as well as the role of biological and environmental factors in modulating population dynamics and species distributional patterns. Here, we studied the reproductive strategy of the Chilean endemic freshwater snail, Chilina dombei- ana, in the BiobõÂo River, one of the largest rivers in Chile. This species has a low potential OPEN ACCESS for dispersal given the absence of a free-swimming larval stage (benthic larval development) Citation: BoÂrquez J, Brante A (2017) Paternity and given that adults have a low capacity for mobility. We hypothesized that: 1. Females Outcomes in the Freshwater Gastropod, Chilina would mate with different males (polyandry) resulting in intrabrood multiple paternity, 2. Indi- dombeiana in the BiobõÂo River, Chile. PLoS ONE 12(1): e0169574. doi:10.1371/journal. viduals from closer sites would be more related than individuals from distant sites, and 3. pone.0169574 Male parental contributions would be unevenly distributed within broods. Individuals from Editor: Donald James Colgan, Australian Museum, three different sites were sampled along the river: upper, mid, and river mouth. In the labora- AUSTRALIA tory, hatching juveniles from a total of 15 broods were collected for paternity analyses.
    [Show full text]
  • Et Les Espèces Exotiques Envahissantes : Décisions Adoptées Par Les Parties
    Espèces exotiques envahissantes dans les collectivités françaises d’outre-mer Etat des lieux et recommandations Yohann Soubeyran Ouvrage publié par le Comité français de l’UICN, Paris, France. Citation de l’ouvrage : Soubeyran Y. (2008). Espèces exotiques envahissantes dans les collectivités françaises d’outre-mer. Etat des lieux et recommandations. Collection Planète Nature. Comité français de l’UICN, Paris, France. Conception éditoriale et maquette : Trait de Caractère(s) - 2, rue Monge - 15000 Aurillac Tél. : 04 71 43 03 89 - Fax : 04 71 48 75 45 - email : [email protected] Edition : Imprimerie Caractère - 2, rue Monge - 15000 Aurillac Tél. : 04 71 48 05 46 - Fax : 04 71 48 75 45 Photos de couverture : J. Le Breton, J.-P. Palasi, J.-L. Chapuis et J. Triolo. Pour commander l’ouvrage : Comité français de l’UICN - 26, rue Geoffroy Saint Hilaire - 75005 Paris Tel. : +33 1 47 07 78 58 - Fax : +33 1 47 07 71 78 - e-mail : [email protected] La reproduction à des fins non commerciales, notamment éducatives, est permise sans autorisation écrite à condition que la source soit dûment citée. La reproduction à des fins commerciales, et notamment en vue de la vente, est interdite sans permission écrite préalable du Comité français de l’UICN. La présentation des documents et des termes géographiques utilisés dans cet ouvrage ne sont en aucun cas l’expression d’une opinion quelconque de la part du Comité français de l’UICN sur le statut juridique ou l’autorité de quelque Etat, territoire ou région, ou sur leurs frontières ou limites territoriales. ISBN : 978-2-9517953-9-6 Dépôt légal juillet 2008.
    [Show full text]